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Abstract

Factorization theory is a prominent field of mathematics; however,
most previous research in this area lies in the commutative case. Noncom-
mutative factorization theory is a relatively new topic of interest. This
paper examines the factorization properties of noncommutative atomic
semigroups of integral matrices. In particular, semigroups with determi-
nant conditions, triangular matrices, rank 1 matrices, and bistochastic
matrices are studied with the operation of multiplication and, in a special
case, addition. The authors find invariants of interest in factorization the-
ory such as the minimum and maximum length of atomic factorizations,
elasticity of the semigroups, and the delta set of the semigroups.
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1 Introduction

Factorization theory has become a popular field in recent years. In particular,
the study of non-unique factorizations has been very well developed and unified
in [8]; the study of non-unique factorization, however, has been studied primarily
in commutative contexts (see references in [8]). Noncommutative factorization
has been studied by Cohn as early as 1963 in [4]. Noncommutative factorization
has been studed in the context of matrices by Jacobson and Wisner in [15] as well
as by Ch’uan and Chuan in [2]. Motivated by these results, this paper applies
the concepts of contemporary factorization theory to semigroups of integral
matrices.

Throughout this paper, let Z represent the set of integers. Let N be the set
of natural numbers, while N0 = N ∪ {0}. In the factorization theory context,
the notation from [1] is used. Let S be a semigroup. If [0] ∈ S, then S• denotes
{A ∈ S : A is not a zero divisor}. When the identity I ∈ S, define A ∈ S to
be a unit if there exists some B ∈ S such that AB = I or BA = I. Define S×

to be the units of S and S∗ to be the nonunits of S. A,B ∈ S are considered
associates, or A ∼= B, if there exists some unit U ∈ S× such that A = BU .
A ∈ S∗ is called an atom if A = BC implies that either B or C is a unit. I(S)
denotes the set of atoms of S. Call S atomic if each A ∈ S∗ can be written as
the product of atoms.

Let S be an atomic semigroup. For A ∈ S∗, define L(A) to be the set of
lengths of atomic factorizations of A. Formally, L(A) = {t : A = A1 · · ·At
for some Ai ∈ I(S)}. L(A) = supL(A) denotes the maximum factorization
length of A, while `(A) = minL(A) denotes the minimum factorization length
of A. Define ρ(A) = L(A)

`(A) to be the elasticity of A. The elasticity of S is
ρ(S) = sup

A∈S∗
ρ(A).

Define Li(A) such that Li ∈ L(A) and Li(A) < Li+1(A) for 1 ≤ i < |L(A)|.
Let ∆(A) = {Li+1(A)−Li(A) : 1 ≤ i < |L(A)|} be the delta set of A. The delta
set of S is defined ∆(S) =

⋃
A∈S∗

∆(A). This paper evaluates these invariants for

various matrix semigroups.
An atomic semigroup S is called factorial if every factorization is unique up to

units; since matrix factorization is noncommutative, consider A = P1P2 = P2P1

to be two distinct factorizations of A. Call S half-factorial if L(A) = `(A) for
each A ∈ S∗. Additionally, call S bifurcus if `(A) = 2 for each A ∈ S∗.
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Table 1: Notation
Symbol Definition
P {p ∈ Z : p is prime}
detA the determinant of the matrix A
r(a) number of primes, counting multiplicity, in a ∈ Z; r(0) =∞
r(A) r(detA)
ω(a) number of distinct primes in a ∈ Z; ω(0) =∞
ω(A) ω(detA)
gcd(a, b) greatest common divisor of the integers a and b
gcd(A) greatest common divisor of the entries of the matrix A
ηk(a) greatest integer t such that kt | a ∈ Z
ηk(A) greatest integer t such that kt | detA
[a] matrix with all entries equal to a ∈ Z
S× {U ∈ S : U−1 ∈ S}
I(S) {P ∈ S : P /∈ S× and P = AB ⇒ one of A,B ∈ S×}
L(A) {t : ∃P1, P2, . . . Pt ∈ I(S)(A = P1P2 · · ·Pt)}
L(A) supL(A)
`(A) minL(A)
ρ(A) L(A)

`(A)

ρ(S) sup
A∈S

ρ(A)

∆(A) {Li+1 − Li : 1 ≤ i < |L(A)|}
∆(S)

⋃
A∈S

∆(A)

S• {A ∈ S : ∀B ∈ S(B 6= [0]⇒ AB,BA 6= [0])}

2



Table 2: B: semigroup is bifurcus (see Corollary 2.7); F: semigroup is factorial
or half-factorial (see Introduction)

Semigroup Atoms ` L ρ ∆
Integer Entries 3.7 3.7 F F F
Triangular, Z 3.7 3.7 F F F
detA > 1 3.7 3.7 F F F
Triangular, detA > 1 3.7 3.7 F F F
k | detA, k = ph 3.11 3.12 3.10 3.14 3.16
k | detA, k 6= ph 3.11 3.17 3.10 B B
Composite Determinant 3.19 3.21 3.20 3.22 3.23
2× 2 Triangular, N 4.1 n/a 4.2 4.3 4.4
2× 2 Triangular, N0 4.8 n/a 4.13 n/a n/a
Triangular, entries divisible by k 4.16 4.17 4.15 B B
2× 2 Triangular, entries in 3 ideals 4.18 4.18 4.21 B B
n× n Unitriangular, N n/a 4.27 n/a B B
n× n Unitriangular, N0 4.25 n/a 4.24 4.26 n/a
2× 2 Unitriangular 4.29 4.30 F F F
3× 3 Unitriangular, N 4.40 4.27 4.41 B B
3× 3 Unitriangular, N0 4.36 4.38 4.35 4.39 4.38
4× 4 Unitriangular, N 4.42 4.42 n/a B B
Gauss Matrices, N 4.43 4.44 4.44 B/F B/F
Gauss Matrices, N0 4.45 4.46 F F F
2× 2 Equal-Diagonal Triangular 4.51 4.56 4.54 4.57 4.61
Rank 1, N 5.2 5.2 5.4 B B
Rank 1, mN 5.5 5.5 5.7 B B
Rank 1 generated by a set of vectors 5.13 5.15 5.13 B B
Rows of Zero 5.16 5.16 5.17 B B
Single-Value, n = pk 5.18 5.19 5.19 5.19 5.19
Single-Value, n = st and gcd (st) = 1 5.18 5.19 5.19 B B
Bistochastic (+), N 6.2 6.3 6.1 B B
Bistochastic (+), N0 6.6 6.7 F F F
2× 2 Bistochastic (×) detA odd, N 6.9 n/a 6.10 n/a n/a
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2 General Results

Theorem 2.1. Let S be an atomic semigroup. S is half-factorial if and only if
there exists a φ : S → N such that φ(AB) = φ(A) + φ(B) for all A,B ∈ S and
φ(P ) = 1 for all atoms P ∈ S. If such a φ exists, then L(A) = `(A) = φ(A) for
all A ∈ S.

Proof. Suppose that there exists such a φ. Let P1P2 · · ·Pm = Q1Q2 · · ·Qn for
some atoms Pi, Qi ∈ S. Then m = φ(P1P2 · · ·Pm) = φ(Q1Q2 · · ·Qn) = n.
Hence S is half-factorial. Let A = A1A2 · · ·At for some atoms Ai ∈ S. Since S
is half-factorial, L(A) = `(A) = t = φ(A1A2 · · ·At) = φ(A).
Suppose that S is half-factorial. Then L(A) : S → N and L(AB) = L(A)+L(B)
for all A,B ∈ S and L(P ) = 1 for all atoms P ∈ S.

Theorem 2.2. Let S be an atomic semigroup and let φ : S → H where H ⊆ Z
such that φ(AB) = φ(A)φ(B) for all A,B ∈ S. If, whenever φ(X) = uv for
some u, v ∈ H∗, there exist U, V ∈ S∗ such that φ(U) = u, φ(V ) = v, and
X = UV , then the factorization properties of S are identical to those of H.
Specifically, L(X) = L(φ(X)).

Proof. Suppose that φ(A) = h. Since φ is a homomorphism, A is an atom if
and only if h is an atom.
Suppose that t ∈ L(X). Then X = X1X2 · · ·Xt for some atoms Xi ∈ S, so
φ(X) = φ(X1)φ(X2) · · ·φ(Xt), so t ∈ L(φ(X)).
Suppose that t ∈ L(φ(X)). Then φ(X) = x1x2 · · ·xt for some atoms xi ∈ H,
so by assumption there exist atoms X1X2 · · ·Xt such that φ(Xi) = xi and
X = X1X2 · · ·Xt. Hence t ∈ L(X).

Theorem 2.3. Let k ∈ N. Let S be an atomic semigroup and let A ∈ S∗. If
`(X) − k < `(XP ) for any atom P | A and any X ∈ S∗ such that X | A, then
∆(A) ⊆ {1, 2, 3, . . . , k}.

Proof. Let t = L(A). Then A = A1A2 · · ·At for some atoms Ai ∈ S. Let
`i = `(A1A2 · · ·Ai). Notice that `i − k < `i+1 ≤ `i + 1 by assumption, `1 = 1
and `t = `(A). If we take the minimum length factorization of A1A2 · · ·Ai and
append Ai+1 · · ·At, we have a factorization of A with length Li = `i + t − i.
Thus we have a map from {1, 2, 3, . . . , t} to {L(A), L(A) − 1, . . . , `(A)}. Since
`i − k + t − i − 1 < `i+1 + t − i − 1 ≤ `i + t − i, Li − k ≤ Li+1 ≤ Li,
so there can be no gaps in the factorization lengths greater than k. Hence
∆(A) ⊆ {1, 2, 3, . . . , k}.

Theorem 2.4. Let k ∈ N. Let S be an atomic semigroup and let A ∈ S∗. If
L(XP ) < L(X) + k for any atom P | A and any X ∈ S∗ such that X | A, then
∆(A) ⊆ {1, 2, 3, . . . , k − 2}.

Proof. Let A be an arbitrary element of S such that A = P1P2 · · ·Pt for some
atoms Pi ∈ S. Let Li = L(P1P2 · · ·Pi). Note that L1 = L(P1) = 1 and Li ≥ i
for all 2 ≤ i ≤ t.
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Case 1: Li > i for some 2 ≤ i ≤ t. Let m be minimal such that Lm > m.
Then P1P2 · · ·Pm = Q1Q2 · · ·QLm

, so A = P1P2 · · ·Pt =
Q1Q2 · · ·QLm

Pm+1 · · ·Pt. Hence t−m+ Lm ∈ L(A). By the minimality of m,
Lm−1 = m−1, so Lm < Lm−1 +k = m+k−1 and thus Lm ≤ m+k−2. Hence
t−m+Lm ≤ t−m+m+ k− 2 = t+ k− 2, so t+ 1 ≤ t−m+Lm ≤ t+ k− 2.
Since there is some factorization of A with length between t+ 1 and t+ k − 2,
the gap between t and the next longer factorization length of A is at most k−2.

Case 2: Li = i for all 2 ≤ i ≤ t. Then Lt = L(A), so there is no longer
factorization of A.

Since for any factorization length t of A, the next larger length is at most
t+ k − 2, ∆(A) ⊆ {1, 2, 3, . . . , k − 2}.

Theorem 2.5. Let S be an atomic semigroup. If there exists a natural number
k such that `(A) < `(AX) for all A ∈ S and for all X ∈ S such that L(X) ≥ k,
then ρ(S) ≤ k.

Proof. Let A ∈ S. Suppose for such a k we have L(A) = kq+ r with 0 < r < k.
Write A = RX1X2 · · ·Xq, where L(Xi) = k and L(A) = L(R) + L(X1) +
· · · + L(Xq). Observe that `(RX1X2 · · ·Xq) ≥ `(RX1X2 · · ·Xq−1) + 1 ≥ · · · ≥
`(R) + q. Hence ρ(A) ≤ kq+L(R)

q+`(R) < kq+k
q+1 = k. Now suppose L(A) = kq. The

proof that ρ(A) ≤ k is identical.

Theorem 2.6. If `(A) ≤ k for all A ∈ S, then ρ(S) = ∞ and ∆(S) ⊆
{1, 2, 3, . . . , k − 1}.

Proof. Let P ∈ S be an atom in S. ρ(S) ≥ lim
i→∞

ρ(P i) ≥ lim
i→∞

i
k =∞.

Since `(X)−k+1 ≤ 1 < `(XP ) for all X ∈ S and all atoms P ∈ S, by Theorem
2.3 ∆(S) ⊆ {1, 2, 3, . . . , k − 1}.

Corollary 2.7. If S is bifurcus, then ρ(S) =∞ and ∆(S) = {1}.

Theorem 2.8. Let R be a subsemiring of Z and let S be a semigroup of matrices
with entries from R such that S has no units. Let a ∈ R be nonzero; for all
A ∈ aS, if a2 - gcd(A), A is an atom, and if A = a2B where B ∈ S, then A is
an atom in aS if and only if B is an atom in S. Furthermore, if S is bifurcus,
then aS is bifurcus.

Proof. If A = A1A2 for A1, A2 ∈ aS, A = A1A2 = (aB1)(aB2) = a2B1B2 where
B1, B2 ∈ S, so a2| gcd(A). Hence if a2 - gcd(A), A is an atom.
Now let A = a2B where B ∈ S. If B = B1B2 for some B1, B2 ∈ S, then A =
a2B = (aB1)(aB2), and aB1, aB2 ∈ aS. If A = A1A2 for some A1, A2 ∈ aS,
then a2B = A = A1A2 = (aC1)(aC2) for some C1, C2 ∈ S, so B = C1C2 is
reducible. Hence A is an atom if and only if B is an atom.

Let A be an arbitrary reducible matrix in aS. Then A = A1A2 for some
A1, A2 ∈ aS, so A = A1A2 = (aB1)(aB2) for some B1, B2 ∈ S. Since B1B2 ∈ S
and S is bifurcus, A = a2B1B2 = a2P1P2 = (aP1)(aP2) for some atoms P1, P2 ∈
S.
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Suppose aPi is reducible in aS. Then aPi = XY for some X,Y ∈ aS, so
aPi = aX ′Y where X ′ ∈ S. Hence Pi = X ′Y where X ′ ∈ SR and Y ∈ aS ⊆ S,
→←. Thus aPi is an atom.

Hence any matrix in aS may be factored into two atoms, so aS is bifurcus.

Theorem 2.9. Let S be an atomic matrix semigroup and let ST = {AT :
A ∈ S}. Then the factorization properties of ST are identical to those of S.
Specifically, L(AT ) = L(A).

Proof. Let U ∈ S be a unit in S. Since U−1 ∈ S, (UT )−1 = (U−1)T ∈ ST , so
UT is a unit in ST . Let A ∈ S be reducible. Then A = BC for some nonunits
B,C ∈ S, AT = CTBT for some nonunits CT , BT ∈ ST .
Suppose that t ∈ L(A). Then A = A1A2 · · ·At for some atoms Ai ∈ S, so
AT = ATt · · ·AT2 AT1 . Hence t ∈ L(AT ).
Suppose that t ∈ L(AT ). Then AT = B1B2 · · ·Bt for some atoms Bi ∈ ST , so
A = BTt · · ·BT2 BT1 . Hence t ∈ L(A).

Because of this result, when considering triangular matrices it is not im-
portant to draw distinctions between upper triangular matrices and the corre-
sponding lower triangulars; the factorization properties will be identical.

3 Determinant Conditions

The determinant is a crucial property of any matrix. The multiplicatve property
of the determinant (namely, that detAB = detAdetB) provides a useful tool
for studying factorization properties of matrices. Matrices with integer entries,
and hence integral determinants, are of wide interest in mathematics [22][13].
Additionally, matrices with conditions on their determinant are also of interest.
For example, factorization of integral matrices with prime determinants has
previously been studied [3]. Other determinant conditions, such as determinant
divisible by a fixed number, arise in mathematics as well [6].

3.1 Factorization of Determinants

Let S denote the semigroup of n×n matrices with integer entries and non-zero
determinant.

Theorem 3.1. A is a unit in S if and only if |detA| = 1.

Proof. If A is a unit, there exists B ∈ Z such that AB = BA = I. Hence
detA ·detB = det I = 1. Since A has integral entries, detA must be an integer,
so detA = detB = ±1. Let C be the cofactor matrix of A such that cij is
the cofactor of aij . C has integral entries since the cofactor of an entry in a
matrix with integral entries is always an integer. Then by the cofactor expansion
method of finding inverses, A−1 = 1

detAC
T . And if |detA| = 1, A−1 ∈ S.
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Theorem 3.2. If A is an n × n matrix with integer entries and detA = xy,
then there exists matrices X and Y with integer entries such that A = XY ,
detX = x, and detY = y.

Proof. Let A = UDV be the Smith Normal Form of A, where D is diagonal, U
and V are both unimodular. All matrices have integer entries. Since detD =
xy there exists integral diagonal matrices D1, D1 such that D = D1D2 and
detD1 = x and detD2 = y. Thus, A = UD1D2V = (UD1)(D2V ). So let
X = UD1 and Y = D2V .

Corollary 3.3. For any semigroup S where A ∈ S if and only if detA ∈ H
where H ⊆ Z, the factorization properties of S are identical to those of H.

Proof. The result follows from Theorem 3.2 and 2.2.

This result relates many matrix semigroups to the better-understood integer
semigroups, which have been previously studied in papers such as [11].

Corollary 3.4. If A is an n × n matrix with entries from mZ and 1
m2A has

integer entries then detA = m2nxy and there exists X,Y with entries in mZ
such that A = XY and detX = mnx and detY = mny.

Proof. Let A = m2Â. Then Â has entries from Z. Thus, by Theorem 3.2, Â =
XY where detX = x and detY = y. So A = m2Â = m2XY = (mX)(mY ).
Let S = mX and T = mY .

The following theorems show a similar result to Theorem 3.2 for triangular
matrices with integer entries. Let ST denote the semigroup of n × n upper
triangular integral matrices.

Theorem 3.5. A is a unit in ST if and only if |detA| = 1.

Proof. By Theorem 3.1, if A is a unit, then |detA| = 1. Again, let C be the
cofactor matrix of A such that cij is the cofactor of aij . Since A is upper
triangular, C is lower triangular, and thus CT is upper triangular. Also, C has
integral entries since the cofactor of an entry in a matrix with integral entries is
always an integer. Then by the cofactor expansion method of finding inverses,
A−1 = 1

detAC
T . And if |detA| = 1, A−1 ∈ ST .

Theorem 3.6. If A is an n×n upper triangular matrix with integer entries and
detA = xy, then there exists upper triangular matrices X and Y with integer
entries such that A = XY , detX = x, and detY = y.

Proof. Let detA = xy = a1a2 · · · an where the ai’s are the diagonal entries
of A. Also, let y = p1p2 · · · pm where the pj ’s are the not necessarily dis-
tinct primes of y. Let ak be the first diagonal entry such that p1 | ak. Then

A =


a1 a12 . . . a1n

0 a2 . . . a2n

...
...

. . .
...

0 0 . . . an

 =

 T1 u v
0 ak z
0 0 T2

. Where T1, T2, u, v, and f

7



are all block matrices corresponding to the entries of A, and ak is the first di-

agonal entry such that p1 | ak. Then

 T1 u v
0 ak z
0 0 T2


=

 T1 u1 y
0 ak

p1
z

0 0 T2

 I u2 0
0 p1 0
0 0 I

. Now we must solve for u1 and u2, so

T1u2 + p1u1 = u. So T1u2 + p1u1 =


a1 a12 . . . a1k−1

0 a2 . . . a2k−1

...
...

. . .
...

0 0 . . . ak−1




u21

u22

...
u2k−1

 +

p1


u11

u12

...
u1k−1

 =


u1

u2

...
uk−1

. So consider uk−1 = p1u1k−1 + ak−1u2k−1 . Since

gcd(ak−1, p1) = 1, we can find u1k−1 and u2k−1 . Then uk−2 = p1u1k−2 +
ak−2u2k−2 + ak−2,k−1u2k−1 . Since u2k−1 , ak−2,k−1 and uk−2 are all defined and
gcd(p1, ak−2) = 1, we can find u2k−2 and u1k−2 such that uk−2−ak−2,k−1u2k−1 =
p1u1k−2 + ak−2u2k−2 . We can continue this back-substitution until we find all
values of u1 and u2. Now we have A = ÂB1 where det Â = xy

p1
and detB1 = p1.

We can do the same process until all factors of y are factored out of the diag-
onal entries of A. Then we have A = X(B1B2 · · ·Bm) where detBi = pi. Let

Y =
m∏
i=1

Bi.

Corollary 3.7. In following semigroups with integer entries and non-zero de-
terminant:

1. n× n matrices with entries from Z

2. n× n triangular matrices with entries from Z

3. n× n matrices with determinant greater than 1

4. n× n triangular matrices with determinant greater than 1

A is an atom if and only if detA ∈ P and L(A) = `(A) = r(A).

Proof. The result follows immediately from Theorem 3.2, Theorem 3.6, and
Theorem 2.1.

If A is a 2× 2 matrix with determinant xy, then the factorization A = XY
where detX = x and detY = y can be easily found in an algorithmic way with-
out using the Smith Normal Form. Before exhibiting this algorithm, however,
we first show how to easily factor a 2×2 upper triangular matrix T, detT = xy,

8



such that T = XY and detX = x, detY = y. Let T =
(
a′ b′

0 c′

)
where

a′c′ = xy.

Lemma 3.8. If y | a′c′, then there exist α, γ such that α | a′, γ | c′, αγ = y,
and gcd(γ, a

′

α ) = 1.

Proof. Let g = gcd(γ, a
′

α ). If g > 1, we can replace α with gα and γ with γ
g .

Hence, without loss of generality, gcd(γ, a
′

α ) = 1.

Theorem 3.9. If T =
(
a′ b′

0 c′

)
where a′, b′, c′ ∈ Z and detT = xy, then

there exist X,Y such that T = XY , detX = x and detY = y.

Proof. Since y | a′c′, by Lemma 3.8 let y = αγ where α | a′ and γ | c′ and

gcd(γ, a
′

α ) = 1. Factor T =

(
a′

α b1
0 c′

γ

)(
α b2
0 γ

)
where b′ = a′

α b2 + γb1.

Now that we have shown any upper triangular 2×2 matrix T with detT = xy
can be factored T = XY where detX = x and detY = y, apply the following

algorithm for 2 × 2 matrices, not necessarily triangular. Let A =
(
a b
c d

)
where ad− bc = xy.

1. Let r, s ∈ Z such that ar + cs = gcd(a, c) = g. Note that since
gcd(r, s) gcd(a, c) | ar + cs = gcd(a, c), gcd(r, s) = 1.

2. Pick z, w ∈ Z such that rz + sw = 1.

3. Now let B =
(

r s
−w z

)
and note that detB = rz + sw = 1. So now

BA =
(

r s
−w z

)(
a b
c d

)
=
(

ra+ sc rb+ sd
−wa+ zc −wb+ zd

)
.

4. Let u = ra + sc, v = −wa + zc and observe that u | v, so let E =(
1 0
−v
u 1

)
. Note that detE = 1.

5. Now EBA is upper triangular with det(EBA) = xy, so by Theorem 3.9
factor EBA = X ′Y ′ where detX ′ = x and detY ′ = y.

6. Now let X = B−1E−1X ′ and Y = Y ′ so A = XY where detX = x and
detY = y.

Similarly, although Theorem 3.12 and Theorem 3.10, together with Theo-
rem 3.2 and Theorem 3.6, show the existence of the minimum and maximum
length factorizations, these theorems do not provide the factorization into ma-
trices. However, when A is a 2 × 2 upper triangular matrix, it is not difficult
to explicitly construct the minimum and maximum length factorizations. The
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following factorizations show one direction of the equality, and readers can refer
to Theorem 3.10, Theorem 3.12, and Theorem 3.17 for the other direction of

the equality. First consider when detA = ph. Let A =
(
pma b

0 pnc

)
be an

arbitrary element of S where m+ n ≥ h, p - a, and p - c.
For the maximum length factorization of A, let m = q1h + r1 and let n =

q2h+ r2. Recall that by Theorem 3.10, L(A) = ηk(A) = bm+n
h c.

Case 1: h ≤ r1 + r2 < 2h. Factor A =
(
pma b

0 pnc

)
=
(

1 0
0 ph

)q2 ( pr1a b
0 pr2c

)(
ph 0
0 1

)q1
. Hence L(A) ≥ q1 + q2 + 1 =

q1h
h + q2h

h + b r1+r2
h c = b q1h+q2h+r1+r2

h c = bm+n
h c.

Case 2: r1 + r2 < h. Since q1 + q2 ≥ 1, one of q1, q2 is at least 1.

Without loss of generality, assume q1 ≥ 1. Factor A =
(
pma b

0 pnc

)
=(

1 0
0 ph

)q2 (
pr1+ha b

0 pr2c

)(
ph 0
0 1

)q1−1

. Hence L(A) ≥ q1 + q2 =

q1h
h + q2h

h + b r1+r2
h c = b q1h+q2h+r1+r2

h c = bm+n
h c.

For the minimum length factorization of A, recall that by Theorem 3.12, `(A) =⌊
ηp(A)+2h−2

2h−1

⌋
. Let m = q1(2h − 1) + r1 and let n = q2(2h − 1) + r2. Let

`(A) = λ =
⌊
m+n+2k−2

2k−1

⌋
Case 1: r1 + r2 = 0. Factor A =

(
pma b

0 pnc

)
=
(

1 0
0 p2h−1

)q2−1(
a b
0 p2h−1c

)(
p2h−1 0

0 1

)q1
=
(

1 0
0 p2h−1

)q2 (
p2h−1a b

0 c

)(
p2h−1 0

0 1

)q1−1

. Since r1 = r2 = 0 and

m+ n ≥ h > 0, at least one of q1, q2 must be greater than zero, so at least one
of these factorizations is valid. Hence `(A) ≤ q1 + q2 = q1(2h−1)

2h−1 + q2(2h−1)
2h−1 +

b 2h−2
2h−1c = b m

2h−1 + m
2h−1 + 2h−2

2h−1c = λ.

Case 2: 1 ≤ r1 + r2 < h. Factor A =
(
pma b

0 pnc

)
=
(

1 0
0 p2h−1

)q2−1(
pr1a b

0 pr2+2h−1c

)(
p2h−1 0

0 1

)q1
=
(

1 0
0 p2h−1

)q2 (
pr1+2h−1a b

0 pr2c

)(
p2h−1 0

0 1

)q1−1

. Since r1 + r2 < h

and m + n ≥ h, at least one of q1, q2 must be greater than zero, so at least
one of these factorizations is valid. Since r1 + r2 + 2h − 1 ≥ 2h, the central
matrix is reducible by Lemma 3.11. Furthermore, by Theorem 3.10 its maximum
factorization length is b r1+r2+2h−1

h c ≤ b 3h−2
h c ≤ 2. Hence these factorizations

are of length q1 + q2 − 1 + 2 = q1 + q2 + 1, so `(A) ≤ q1 + q2 + 1 = q1(2h−1)
2h−1 +

q2(2h−1)
2h−1 + b r1+r2−1

2h−1 c+ 2h−1
2h−1 = λ.
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Case 3: h ≤ r1 + r2 < 2h. Factor A =
(
pma b

0 pnc

)
=
(

1 0
0 p2h−1

)q2 ( pr1a b
0 pr2c

)(
p2h−1 0

0 1

)q1
. Hence `(A) ≤ q1 + q2 +

1 = q1(2h−1)
2h−1 + q2(2h−1)

2h−1 + b r1+r2−1
2h−1 c+ 2h−1

2h−1 = λ.

Case 4: 2h ≤ r1 + r2 < 3h. Factor A =
(
pma b

0 pnc

)
=
(

1 0
0 p2h−1

)q2 ( pr1a b
0 pr2c

)(
p2h−1 0

0 1

)q1
. Since r1 + r2 ≥ 2h, the

central matrix is reducible by Lemma 3.11. Furthermore, by Theorem 3.10
its maximum factorization length is b r1+r2

h c ≤ 2. Hence this factorization is of
length q1+q2+2, so `(A) ≤ q1+q2+2 = q1(2h−1)

2h−1 + q2(2h−1)
2h−1 +b r1+r2−1

2h−1 c+
2h−1
2h−1 =

λ.
Case 5: 3h ≤ r1 + r2 ≤ 4h−4. Since r2 ≤ 2h−2, r1 + 2h−2 ≥ r1 + r2 ≥ 3h,

so r1 ≥ h+ 2. Similarly, r2 ≥ h+ 2. Factor A =
(
pma b

0 pnc

)
=
(

1 0
0 p2h−1

)q2 ( 1 0
0 pr2

)(
pr1a b

0 c

)(
p2h−1 0

0 1

)q1
. Since r1 ≤ 2h−

2 < 2h and r2 ≤ 2h− 2 < 2h, this factorization is of length q1 + q2 + 2. Hence
`(A) ≤ q1 + q2 + 2 = q1(2h−1)

2h−1 + q2(2h−1)
2h−1 + b r1+r2−1

2h−1 c+ 2h−1
2h−1 = λ.

Similarly, now consider when detA = st, gcd(s, t) = 1. Recall that by The-
orem 3.17, this semigroup is bifurcus. So, to find a factorization of length
2, let z be maximal such that s2tz|ac. By 3.8, pick α, γ such that α|a, γ|c,
and αγ = stz−1. Let g = gcd(α, cγ ). If g > 1, we can replace α with
α
g and γ with gγ. Hence, without loss of generality, gcd(α, cγ ) = 1. Fac-

tor A =
(
a b
0 c

)
=
(
α x
0 γ

)( a
α y
0 c

γ

)
where b = yα + x cγ . Since

gcd(α, cγ ) = 1, there are infinitely many such x, y ∈ Z. Since αγ = stz−1

and gcd(s, t) = 1, k = st|αγ but k2 = s2t2 - αγ, so the left matrix is an atom in
S. Since s2tz|ac, k = st| acαγ , but k2 = s2t2 - ac

αγ by the maximality of z, so the
right matrix is an atom in S.

Again, the maximum length factorization can be constructed as well. The
construction into the maximum length is shown by induction.
Let w = ηk(A). Suppose w = 1. Then A is an atom by Theorem 3.11, so
L(A) = 1 = w. Now assume that L(A) ≥ ηk(A) for all ηk(A) ≤ i. Let
w = i+ 1. Since k|ac, by Lemma 3.8 there exist α, γ such that α|a, γ|c, αγ = k,

and gcd(α, cγ ) = 1. Factor A =
(
a b
0 c

)
=
(
α x
0 γ

)( a
α y
0 c

γ

)
where

b = yα+ x cγ . Since ηk( acαγ ) = w − 1 = i, L(A) ≥ 1 + i = w.
Now one could look at the factorization of matrices in comparison to the

integers. By the Fundamental Theorem of Arithmetic, factorization of the in-
tegers is unique up to units and order. However, if we look at the semigroup
of all matrices with integer entries, we lose something. All the atoms of this
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semigroup have prime determinant and the units are anything with determinant
1, but any matrix with determinant p are associates of each other. Namely, by
the Smith Normal Form, any matrix A with detA = p there exists unimod-
ular U1 and V1 and diagonal D such that A = U1DV1. Also, for any other
matrix B with detB = p, then we can find unimodular U2 and V2 such that
B = U2DV2. Thus D = U−1

2 BV −1
2 , and A = U1U

−1
2 BV −1

2 V1 so A and B
differ only by multiplication by units. However, since matrix multiplication is
non-commutative, the order of the factorization is important. Now, looking at
the semigroup of upper triangular matrices something interesting happens. The
atoms are any matrix with determinant p and the units of this semigroup are

anything with determinant 1. So if we have a matrix A =
(
p b1
0 1

)
there

exist no units U1, U2 in the semigroup such that U1AU2 =
(

1 b2
0 p

)
. This

is because
(

1 x
0 1

)(
p b1
0 1

)(
1 y
0 1

)
6=
(

1 b2
0 p

)
. Therefore, we have

atoms of the same determinant that are not associates of each other, but if there
are no factors of the same type B then there cannot be any factors of that type.
Since the diagonal entries of the product of two upper triangular matrices are
the product of the diagonal entries, then the order of the factors is important
but they are all associates of each other.

3.2 Semigroups with Determinant in kZ
By Theorem 3.2 and 3.6, factorization properties of n×n matrices (either non-
triangular or triangular) are the same as factorization properties of the deter-
minant over the integers. Hence, the following results factor the determinant of
the desired matrix and apply Theorem 3.2 and 3.6 to show the existence of ma-
trices with the desired determinant. Consequently, the semigroups mentioned
in Sections 3.2 and 3.3 apply to both semigroups with non-triangular matrices
and semigroups with triangular matrices.

Let S be the semigroup of n × n matrices with entries from Z and nonzero
determinant divisible by some k ∈ N where k > 1. Note that S has no identity
and no units.

Theorem 3.10. L(A) = ηk(A)

Proof. Let A = A1A2 · · ·At. Since k | detAi, kt | detA. Hence L(A) ≤ ηk(A).
Let g = ηk(A). By Theorem 3.2 for triangular matrices, there exist upper
triangular matrices A1, A2, . . . , Ag such that A = A1A2 · · ·Ag where detAi = k
for all 1 ≤ i ≤ g − 1 and detAg = detA

kg−1 . Hence L(A) ≥ g = ηk(A).

Corollary 3.11. A is an atom if and only if k2 - detA.

The remaining factorization properties of S change substantially depending
on the value of k. We will now show that if k is a prime, then S is half-factorial;
if k = st where gcd(s, t) = 1, then S is bifurcus; and if k is a power a prime,
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then S is neither half-factorial or bifurcus. First consider when k is a power of
a prime, k = ph.

Theorem 3.12. If k = ph, then `(A) =
⌊
ηp(A)+2h−2

2h−1

⌋
.

Proof. Let A be an arbitrary element of S where detA = pmx,m ≥ h, and p - x.
Let m = ηp(A) and let λ =

⌊
m+2h−2

2h−1

⌋
.

Let A = A1A2 · · ·As and let ti = ηAi(A). Since detA = detA1 detA2 · · · detAs,

m = t =
s∑
i=1

ti ≤ s(2h− 1). If s ≤ λ− 1 =
⌊
m−1
2h−1

⌋
≤ m−1

2h−1 , s(2h− 1) ≤ m− 1,

→←. Hence s ≥ λ, so `(A) ≥ λ.
By Theorem 3.2, factoring detA is equivalent to factoring A. Let m = q(2h −
1) + r where 0 ≤ r < 2h− 1. Then λ =

⌊
q(2h−1)+r+2h−2

2h−1

⌋
= q +

⌊
r−1+2h−1

2h−1

⌋
=

q + 1 +
⌊
r−1

2h−1

⌋
.

Case 1: r = 0. Factor detA = (p2h−1)q−1(p2h−1x). Since r = 0 and m ≥
2h, q > 1, so this factorization is valid. Hence `(A) ≤ q = q + 1 +

⌊
r−1

2h−1

⌋
= λ.

Case 2: 1 ≤ r < h. Factor detA = (p2h−1)q−1(pr+2h−1x). Since r < h and
m ≥ 2h, again q > 1, so this factorizations is valid. Since r + 2h− 1 ≥ 2h, the
matrix with determinant pr+2h−1x is reducible by Corollary 3.11. Furthermore,
by Theorem 3.10 its maximum factorization length is b r+2h−1

h c ≤ b 3h−2
h c ≤ 2.

Hence these factorizations are of length q − 1 + 2 = q + 1, so `(A) ≤ q + 1 =
q + 1 +

⌊
r−1

2h−1

⌋
= λ.

Case 3: h ≤ r < 2h−1. Factor detA = (p2h−1)q(prx). Hence `(A) ≤ q+1 =
q + 1 +

⌊
r−1

2h−1

⌋
= λ.

Lemma 3.13. bab c ≥
a−b+1
b .

Proof. Let a = qb+ r where 0 ≤ r ≤ b− 1. bab c = q = a−r
b ≥

a−b+1
b .

Theorem 3.14. ρ(S) = 2h−1
h .

Proof. For any A ∈ S, ρ(A) = (bηp(A)
h c)/(

⌊
ηp(A)+2h−2

2h−1

⌋
) ≤ (ηp(A)

h )/(ηp(A)
2h−1 ) =

2h−1
h by Lemma 3.13. Thus ρ(S) ≤ 2h−1

h . This elasticity is achieved by any
element A ∈ S such that detA = (ph)2h−1 = (p2h−1)h, since then L(A) = 2h−1
and `(A) = h.

Corollary 3.15. S is half-factorial if and only if k is prime.

Proof. By Theorem 3.14, h = 1 if and only if ρ(S) = 2h−1
h = 1, so L(A) = `(A).

Clearly, S is not factorial because integers commute, so the determinant of a
given matrix A can be factored in multiple ways, and hence the matrices in the
factorization of A can also be rearranged in different ways.

Corollary 3.16. If h = 1, then ∆(S) = ∅. Otherwise, ∆(S) = {1}.
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Proof. Let X be an arbitrary element of S and let t = ηp(X). Let P be an

arbitrary atom of S and let u = ηp(P ). Since `(X) =
⌊
t+2h−2

2h−1

⌋
≤
⌊
t+u+2h−2

2h−1

⌋
=

`(XP ), by the Theorem 2.3, ∆(S) ⊆ {1}.
If h = 1, S is half-factorial by Corollary 3.15 and ∆(S) = ∅. If h > 1, S is not
half-factorial and ∆(S) 6= ∅, so ∆(S) = {1}.

Now consider when k is neither a prime or a power of a prime; that is, k = st
where gcd(s, t) = 1.

Theorem 3.17. If k = st where gcd(s, t) = 1, then S is bifurcus.

Proof. Suppose A ∈ S is reducible. Then, by Corollary 3.11, (st)2 | detA. So
detA = (st)mx1x2 where m > 1 and s - x1, t - x2. Since detA
= (sm−1tx2)(stm−1x1), by Theorem 3.2, there exist matrices B′, C ′ ∈ S such
that detB′ = sm−1tx2, detC ′ = stm−1x1, and A = B′C ′. Note that both B′

and C ′ are atoms since their determinant is not divisible by (st)2, so `(A) =
2.

3.3 Semigroup of Matrices with Composite Determinant

Let S be the semigroup of n × n matrices with integer entries and composite
determinant. Note that S has no identity and hence no units. Let A ∈ S.
Observe that r(XY ) = r(X) + r(Y ).

Lemma 3.18. If r(A) = x+ y, then there exist X,Y ∈ S such that r(X) = x,
r(Y ) = y, and XY = A.

Proof. Let detA = p1p2 · · · pr(A) where pi ∈ P. By Theorem 3.2, there exist
X,Y ∈ S such that detX = p1p2 · · · px, detY = px+1 · · · pr(A), and XY =
A.

Theorem 3.19. A is an atom in S if and only if r(A) ≤ 3.

Proof. Suppose A = BC. Since B,C ∈ S, r(B) ≥ 2 and r(C) ≥ 2. Hence
r(A) ≥ 4. Now suppose r(A) ≥ 4. Factor A = B′C ′ where r(B′), r(C ′) ≥ 2.

Theorem 3.20. L(A) = b r(A)
2 c.

Proof. Let r(A) = 2q + x where x ∈ {0, 1}. Note that q = b r(A)
2 c. Suppose

A = A1A2 · · ·At for some atoms Ai. Then r(A) = r(A1) + r(A2) + · · ·+ r(At),
so since r(Ai) ≥ 2, rA ≥ 2t. Hence L(A) ≤ q.
Factor A = A1A2 · · ·Aq where for 1 ≤ i < q, r(Ai) = 2, and r(Aq) = 2 + x.
Hence L(A) ≥ q.

Theorem 3.21. `(A) = d r(A)
3 e.
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Proof. Let r(A) = 3q + x where x ∈ {0, 1, 2}.
Case 1: x = 0. Factor A = A1A2 · · ·Aq where r(Ai) = 3 for 1 ≤ i ≤ q.

Hence `(A) ≤ q = d rA

3 e.
Case 2: 1 ≤ x ≤ 2. Factor A = A1A2 · · ·AqAq+1 where r(Ai) = 3 for 1 ≤ i <

q, r(Aq) = 1 + x, and r(Aq+1) = 2. Hence `(A) ≤ q + 1 = b r(A)
3 c+ 1 = d r(A)

3 e.
Now let A = A1 · · ·At for some atoms Ai. Since r(Ai) ≤ 3, r(A) ≤ 3t. Taking
t = `(A), r(A)

3 ≤ `(A). And since `(A) ∈ Z, `(A) ≥ d r(A)
3 e.

Theorem 3.22. ρ(S) = 3
2 .

Proof. ρ(A) = b r(A)
2 c/d

r(A)
3 e ≤

r(A)
2 / r(A)

3 = 3
2 . Whenever 6 | r(A), this elastic-

ity is achieved, so ρ(S) = 3
2 .

Theorem 3.23. ∆(S) = {1}

Proof. Suppose that A = A1A2 · · ·At for some atoms Ai where t > `(A) =
d r(A)

3 e, so t ≥ d r(A)
3 e+ 1. Let x denote the number of Ai such that r(Ai) = 2.

Then r(A) =
t∑
i=1

r(Ai) = 2x + 3(t − x) = 3t − x. Hence t ≥ d r(A)
3 e + 1 =

d 3t−x
3 e + 1 = t + 1 + d−x3 e, so −1 ≥ d−x3 e. Thus x ≥ 3. Since we have at

least three Aj such that r(Aj) = 2, we can recombine these three into two Bj
such that r(Bj) = 3. Hence A = B1B2 · · ·Bt−1 for some atoms Bi. Therefore
∆(S) = {1}.

4 Triangular Matrices

Upper triangular matrices are very useful because of their determinant proper-
ties. Also, since it is very easy to put any integral matrix into upper triangular
form using the Hermite Normal Form, it is useful to study these matrices. Such
things as the Post correspondence problem refer the the factors of 3× 3 upper
triangular matrices [17]. At first the problem was proven using matrices with
determinant equal to 1. Later, the problem was generalized to any nonsigular
upper triangular matrix [12]. These problems, which rely heavily on upper tri-
angular matrices, show the importance of studying factorization properties of
such a class of matrices.

4.1 2× 2 Triangular Matrices, N
Let S be the semigroup of 2× 2 upper triangular matrices with positive integer

entries and non-zero determinant. Let A =
(
a b
0 c

)
∈ S. Note that S has no

identity and hence no units.

Theorem 4.1. A =
(
a b
0 c

)
is an atom if and only if b = 1.
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Proof. If b > 1, factor A as A=
(

1 m
0 c

)(
a n
0 1

)
so that m+n = b. If A is

reducible, then A =
(
a b
0 c

)
=
(
s m
0 u

)(
t n
0 v

)
where a = st, c = uv,

and b = sn+mv. Since b is a sum of products of positive integers, b > 1.

Theorem 4.2. L(A) = b.

Proof. Since each multiplication must increase the value of b, no A ∈ S can
have a factorization of length greater than b. Furthermore, every matrix A has
a factorization of length b, as we can show by induction:
If b=1, then by Lemma 4.1 A is an atom, so L(A) = 1. For b > 1, suppose that

for any M ∈ S, M =
(
m11 b− 1

0 m22

)
has L(M) = b− 1. Then A =

(
a b
0 c

)
=
(

1 b− 1
0 c

)(
a 1
0 1

)
has L(A) = b− 1 + 1 = b.

Corollary 4.3. ρ(S) =∞

Proof. Observe that A =
(

2h 2h+1

0 2h

)
=
(

2h 1
0 1

)(
1 1
0 2h

)
has `(A) =

2 by Theorem 4.1 and L(A) = 2h+1 by Theorem 4.2. So ρ(A) = 2h and hence
ρ(S) ≥ lim

h→∞
2h =∞.

Theorem 4.4. For every p ∈ P, p− 1 ∈ ∆(S).

Proof. Let
(
p p+ 1
0 1

)
= A1A2 · · ·At for some atoms Ai ∈ S. Then(

p p+ 1
0 1

)
=
(

1 1
0 1

)m(
p 1
0 1

)(
1 1
0 1

)t−m−1

where m ≤ t − 1, so

t−m− 1 ≥ 0.
Case 1: t−m− 1 = 0. Then m = t− 1, so A1A2 · · ·At

=
(

1 1
0 1

)t−1(
p 1
0 1

)
=
(
p t
0 1

)
. Hence t = p+ 1.

Case 2: t−m− 1 ≥ 1. Then
(
p p+ 1
0 1

)
= A1A2 · · ·At

=
(

1 1
0 1

)m(
p 1
0 1

)(
1 1
0 1

)t−m−1

=
(

1 1
0 1

)m(
p p(t−m− 1) + 1
0 1

)
, so p(t−m− 1) + 1 ≤ p+ 1 and thus

t−m− 1 ≤ 1. Hence t−m− 1 = 1, so
(
p p+ 1
0 1

)
=
(

1 1
0 1

)m(
p 1
0 1

)(
1 1
0 1

)
=
(

1 1
0 1

)m(
p p+ 1
0 1

)
, and thus

m = 0. Since t−m− 1 = 1, t = m+ 2 = 2.
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Consequently, the only possible factorization lengths of
(
p p+ 1
0 p

)
are

p+1 and 2. Since L
(
p p+ 1
0 p

)
= {2, p+1}, ∆

(
p p+ 1
0 p

)
= {p−1}.

The gaps between factorization lengths of a matrix A appear to correspond
to the gaps in the linear combinations of the prime factors of the determinant
minus one.

Conjecture 4.5. If p, q ∈ P and b > pq, then ∆
(
p b
0 q

)
= ∆({(p − 1)x +

(q − 1)y : x, y ∈ N0}).

Lemma 4.6. Let a, b ∈ N such that a− b = gcd(a, b) = g. Let W = {ax+ by :
x, y ∈ N0}. Then ∆(W ) = {g, 2g, 3g, . . . , b}.

Proof. Let Wi = {ax + by ∈ W : x + y = i}. Note that max(Wi) = ai and
min(Wi) = ib. Now, if i < b

g then ia < (i+ 1)b. Equivalently, every element of
Wi is less than every element of Wi+1.
Wi = {w0, w1, w2, . . . , wj , . . . , wi} where wj = ja+(i−j)b. Since wj+1−wj = g,
∆(Wi) = {g}. Now, min(Wi+1) − max(Wi) = (i + 1)b − ia = b − ig for 0 ≤
i < b

g . Thus g, 2g, 3g, . . . , b ∈ ∆(W ). Moreover, since all linear combinations
of a and b must be divisible by gcd(a, b), every element of ∆(W ) must also be
divisble by g. Hence, since nothing greater than b can be in ∆(W ), ∆(W ) =
{g, 2g, 3g, . . . , b}.

If Conjecture 4.5 is true for p = q+2, then {2, 4, 6, . . . , q−1} = ∆
(
p b
0 q

)
⊂ ∆(S).

Conjecture 4.7. If the Twin Prime Conjecture is true, then 2N ⊂ ∆(S).

4.2 2× 2 Triangular Matrices, N0

Let S be the semigroup of upper triangular 2 × 2 matrices with non-negative
entries and non-zero determinant. Notice that the only unit in S is the identity

matrix. Let A =
(
a b
0 c

)
∈ S.

Theorem 4.8. The atoms of S are X =
(

1 1
0 1

)
, Y =

(
1 0
0 p

)
, and

Z =
(
p 0
0 1

)
where p is prime.

Proof. Suppose X = X1X2. Since detX = 1, X1 and X2 must also have

determinant 1. So write X1X2 =
(

1 m
0 1

)(
1 n
0 1

)
where m + n = 1.

But then WLOG m = 0 and X1 is the identity. Now suppose Y = Y1Y2.
By the multiplicative property of the determinant, there are only two possible
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factorizations. First, Y1Y2 =
(

1 m
0 1

)(
1 n
0 p

)
where 0 = n + mp. But

then we must have m = 0 and hence Y1 is the identity. Second, we could have

Y1Y2 =
(

1 n
0 p

)(
1 m
0 1

)
where 0 = n + m. Hence m = 0 and Y2 is the

identity. Similarly for Z.
We will now show that these are the only atoms. By 4.1, if b ≥ 2, then A is
reducible over the positive integers and hence A is also reducible over the non-
negative integers. So let b = 1.

Factor A =
(
a 1
0 c

)
=
(

1 0
0 c

)(
a 1
0 1

)
=
(

1 1
0 c

)(
a 0
0 1

)
. At

least one of these factorizations contains two non-units unless a = c = 1. And
if a = c = 1, then A itself is an atom.

Theorem 4.9. Let A = P1P2 · · ·Pt =
(
a b
0 c

)
∈ S where Pi is an atom for

1 ≤ i ≤ t. Then t = r(A) + k where k = |{i : Pi =
(

1 1
0 1

)
}|.

Proof. Since Pi is an atom, recall that detPi is either prime or 1. Now detA =
detP1 detP2 · · · detPt. So |{i : detPi is prime }| = r(A) and then let k = |{i :
detPi = 1}|. Now t = |{i : detPi is prime }|+ |{i : detPi = 1}| = r(A) + k.

Lemma 4.10. Let A =
(
a b
0 c

)
and A = A1A2 · · ·Aλ where

Ai =
(
ai bi
0 ci

)
. Then b ≥

λ∑
i=1

bi.

Proof. When λ = 1, b = b ≥ b. Now suppose the result holds for all α < λ. So

let A1A2 · · ·Aλ−1 =
(
a′λ−1 b′λ−1

0 c′λ−1

)
. By the hypothesis, b′λ−1 ≥

λ−1∑
i=1

bi. Now

A =
(
a′λ−1 b′λ−1

0 c′λ−1

)(
aλ bλ
0 cλ

)
=
(
a′λ−1aλ a′λ−1bλ + b′λ−1cλ

0 c′λ−1cλ

)
. And

since a′λ−1, cλ ∈ N, a′λ−1bλ + b′λ−1cλ ≥ bλ + b′λ−1.

Lemma 4.11. If A =
(

1 r
0 p

)
where p - r, then `(A) = 1 + r.

Proof. As in Lemma 4.9, write `(A) = r(A) + k = 1 + k. So we have one copy

of the atom
(

1 0
0 p

)
and k copies of the atom

(
1 1
0 1

)
in any factorization

of A, in particular the factorization of A of minimum length. So, either A =(
1 1
0 1

)k ( 1 0
0 p

)
or A =

(
1 0
0 p

)(
1 1
0 1

)k
. The first factorization

violates the assumption p - r, so we must have A =
(

1 0
0 p

)(
1 k
0 1

)
=(

1 k
0 p

)
, so k = r and hence `(A) = 1 + r.
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Theorem 4.12. Let M ∈ S. If b = 0, then `(M) = r(M). If b|ac, then
`(M) = r(M) + 1.

Proof. Suppose b = 0 and write `(M) = r(M) + k as in Theorem 4.9 and
suppose k ≥ 1. So the factorization of M contains at least one copy of the

atom
(

1 1
0 1

)
, but then by Lemma 4.10 b ≥ 1. So k = 0 and `(M) =

r(M). Now suppose b|ac. Again by Theorem 4.9, write `(M) = r(M) +
k. Since b > 0 we have k ≥ 1 and then `(M) ≥ r(M) + 1. Now write

a = ma′ and c = nc′ such that a′c′ = b. Factor A =
(
ma′ a′c′

0 nc′

)
=(

1 0
0 n

)(
a′ 0
0 1

)(
1 1
0 1

)(
1 0
0 c′

)(
m 0
0 1

)
. Now `(M) ≤

`(
(

1 0
0 n

)
)+`(

(
a′ 0
0 1

)
)+`(

(
1 1
0 1

)
)+`(

(
1 0
0 c′

)
)+`(

(
m 0
0 1

)
) =

r(n) + r(a′) + 1 + r(c′) + r(m) = r(na′cm′) + 1 = r(M) + 1.

Theorem 4.13. L(M) = r(M) + b.

Proof. Since
(

1 1
0 1

)(
a b
0 c

)
=
(
a b+ c
0 c

)
and

(
a b
0 c

)(
1 1
0 1

)
=(

a b+ a
0 c

)
, each multiplication of

(
1 1
0 1

)
increases the value of the upper

right entry in the matrix. So b ≥ |{i : detAi = 1}|. By Theorem 4.9 we
can write L(M) = r(M) + k where k = |{i : detAi = 1}|. Since b ≥ k,

L(M) ≤ r(M) + b. Now factor
(
a b
0 c

)
=
(

1 0
0 c

)(
1 1
0 1

)b(
a 0
0 1

)
.

Then L(M) ≥ L(
(

1 0
0 c

)
)+L(

(
1 1
0 1

)b
)+L(

(
a 1
0 1

)
) = r(c)+b+r(a) =

r(M) + b.

Conjecture 4.14. If A =
(
p pq + r
0 p

)
where p is prime, q ∈ Z, and 0 ≤

r < p, then `(A) = q + r + 2.

Proof. `(A) ≤ q+r+2 : Factor A =
(

1 0
0 p

)(
1 r
0 1

)(
p 0
0 1

)(
1 q
0 1

)
.

This factorization has length 1 + r + q + 1 = q + r + 2.

4.3 Entries Divisible by k

Let S be the semigroup of n×n upper triangular matrices with entries divisible
by k > 1. Let S• be S without the zero matrix. Let A ∈ S•. Notice that S•

does not have the identity matrix. Thus S• does not have units.

A =


kx1,1 kx1,2 · · · kx1,n

kx2,2 · · · kx2,n

. . .
...

0 kxn,n

, where x1,1, x1,2, · · · , xn,n ∈ Z.
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Theorem 4.15. L(A) = ηk(gcd(A)).

Proof. Let m = ηk(gcd(A)). Let A = A1A2 · · ·At. For any B,C ∈ S•, if ku

divides all entries of B and kv divides all entries of C, then ku+v must divide all
entries of BC. Thus, since k divides all entries of each Ai, each multiplication
must increase the power of k, so m ≥ t. Hence m ≥ L(A).
For any A ∈ S•, we can write A = km−1A′ where A′ ∈ S•. Thus A =
(kI)m−1A′, so L(A) ≥ m.

Corollary 4.16. A is an atom of S if and only if ηk(gcd(A)) = 1.

Proof. The result follows immediately from Theorem 4.15.

Theorem 4.17. S• is bifurcus.

Proof. Let κ =
(
kI 0
0 kw−1

)
. Note that κ, when multiplied on the left,

multiplies each row except the nth by k and multiplies the nth row by kw−1.

Then A =
(

B
0 0 · · · kwan,n

)
= κ

(
B′

0 0 · · · kan,n

)
where B =

kB′.

Note that these results also apply to lower triangular matrices.

4.4 Entries in Three Ideals

Let S be the semigroup of 2× 2 upper triangular matrices with entries in three
integral ideals. Let S• be S without the zero matrix. Let A ∈ S•. Notice that
S• does not contain the identity matrix. Thus S• does not have units.

A =
(
a b
0 c

)
=
(
k1
m1s k2t
0 k3

m3u

)
, where s 6≡ 0 (mod k1), u 6≡ 0 (mod k3) and

k1, k2, k3 > 1.

Theorem 4.18. A is an atom of S• if and only if k1
2 - a or k3

2 - c or
gcd(k1, k3) - b

k2
. Moreover, S• is bifurcus.

Proof. Assume A is reducible. Then a is a product of two multiples of k1 and
c is a product of two multiples of k3. Thus k1

2 | a and k3
2 | c.

Since A is reducible, b = (k1α)(k2β1) + (k2β2)(k3γ) where α, β1, β2, γ,∈ Z.
Hence gcd(k1, k3) | bk2 .
For the converse, assume k1

2 | a and k3
2 | c and gcd(k1, k3) | b

k2
, so there exist

x, y ∈ Z such that b
k2

= k1x+ k3y. So b = k1(k2x) + k3(k2y). Then

A =
(
a b
0 c

)
=
(
k1 k2y
0 c

k3

)(
a
k1

k2x

0 k3

)
.

Theorem 4.19. If gcd(k1, c) = 1 or gcd(k3, a) = 1, then L(A) = min(m1,m3).
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Table 3: Notation for Unitriangular Matrices
Symbol Definition
Ei,j the matrix with the i, jth entry equal to 1 and other entries 0
Σ(A) the sum of all off-diagonal entries of A
Λ(x, y, z) greatest k such that k < x, k < y, and k(k+3)

2 < z

Proof. Let A = A1A2 · · ·At. Since each multiplication increases m1 and m3,
m1,m3 ≥ t. Hence L(A) ≤ min(m1,m3).
If gcd(k1, c) = 1, then a matrix in S is an atom if and only if min(m1,m3) = 1.

Let min(m1,m3) = i + 1. Factor A =
(
a b
0 c

)
=
(
k1 b1
0 k3

)( a
k1

b2
0 c

k3

)
where

b = k1b2 + c
k3
b1. By the inductive hypothesis, the maximum length of the right

matrix is min(m1 − 1,m3 − 1) = min(m1,m3) − 1, so L(A) ≥ min(m1,m3).
Similarly, if gcd(k3, a) = 1, then L(A) ≥ min(m1,m3).

Theorem 4.20. Let g = gcd(k1, k3). If g | k2, then L(A) ≤ min(m1,m3, ηg(b)+
1).

Proof. Define γ(A) = ηg(b). Let A = A1A2 · · ·At. Let Bi = A1A2 · · ·Ai. For
the base step, γ(B1) ≥ 0 = 1 − 1. Now assume that γ(Bi) ≥ i − 1 for all i ≤

j. Bj+1 = BjAj+1 =
(
a′ b′

0 c′

)(
aj+1 bj+1

0 cj+1

)
=
(
a′aj+1 a′bj+1 + b′cj+1

0 c′cj+1

)
.

Since g | k2, gj+1 | k1
jk2 | a′bj+1. By the inductive hypothesis, gj−1 | b′, so

since g | k3 | ci+1, gj | b′cj+1. Hence γ(Bj+1) ≥ j, so γ(A) = γ(Bt) ≥ t− 1.

Conjecture 4.21. L(A) = min(m1,m3, ηg(b) + 1)

4.5 Unitriangular Matrices

Throughout this section, let S be the semigroup of n×n unitriangular matrices.
If A ∈ S then

A =


1 a1,2 · · · a1,n

...
. . .

...
...

0 · · · 1 an−1,n

0 · · · · · · 1


with all entries aij with i > j from N0 or N (depending on the case being
explored). It seems natural to look at unitriangular matrices over Z as well
but this case proves insignificant. On inspection, allowing negative integers into
the matrices changes every matrix in SZ to a unit (all inverses are within the
semigroup). Thus making the properties of SZ trivial, it is more meaningful
merely to focus on N0 and N.

Unitriangular matrices have been applied by previous authors such as
Gomes, Sezinardo, Pin, and Kambites. In [10], Gomes’, Sezinardo’s, and Pin’s
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use of unitriangulars involve the decomposition of n × n upper triangular ma-
trices over a semiring k. They explore the fact that an n × n upper triangular
matrix over a semiring is the semidirect product of the group of diagonal ma-
trices and the monoid of unitriangular matrices over that semiring [10].

Kambites also explores the unitriangular matrix, however not for the sake of
decomposition. In [16], Kambites finds the complexity of all n×n unitriangular
matrices over a finite field k. [16] Rather than unitrainagular matrices used in
factorization and decomposition, the latter uses them in a linear algebraic sense.
Clearly the interest in this specific semigroup proves interesting and useful not
only in this paper. Used by other applications and mathematicians, this inspires
the study of the unitriangular factorization properties which follow.

4.5.1 n× n Unitriangular Matrices

Let Ei,j denote the matrix with all entries above the diagonal 0 except the entry
in the ith row and jth column, which is 1.

n × n with N0 Let S be the semigroup of n × n unitriangular matrices with
entries from N0. Let A be an arbitrary element of S. Define Σ(A) to be the
sum of the off-diagonal entries of A.

Lemma 4.22. A is a unit if and only if Σ(A) = 0.

Proof. Suppose AB = I for some B ∈ S. By Lemma 4.32, Σ(A) ≤ Σ(A) +
Σ(B) ≤ Σ(AB) = Σ(I) = 0. Hence Σ(A) = 0.
Suppose Σ(A) = 0. Then A = I.

Lemma 4.23. For any w1, w2, . . . , wm ≥ y, (I +
m∑
i=1

ciEwi,xi)(I + dEy,z) =

I +
m∑
i=1

ciEwi,xi
+ dEy,z.

Proof. Note that Ei1,j1Ei2,j2 6= [0] if and only if j1 = i2. Let w1, w2, . . . , wm ≥ y.
Then (I + c1Ew1,x1 + c2Ew2,x2 + · · ·+ cmEwm,xm

)(I + dEy,z) = I + c1Ew1,x1 +
c2Ew2,x2 +· · ·+cmEwm,xm

+dEy,z+(c1Ew1,x1 +c2Ew2,x2 +· · ·+cmEwm,xm
)dEy,z.

Since xi > wi ≥ y, (ciEwi,xi
)(dEy,z) = (cid)(Ewi,xi

Ey,z) = [0], so (I +
c1Ew1,x1 + c2Ew2,x2 + · · ·+ cmEwm,xm)(I + dEy,z) = I + c1Ew1,x1 + c2Ew2,x2 +
· · ·+ cmEwm,xm + dEy,z.

Theorem 4.24. L(A) = Σ(A)

Proof. Let A = A1A2 · · ·At where Ai 6= I. By Lemma 4.32, Σ(A) ≥ t. Hence
L(A) ≤ Σ(A).

By Lemma 4.23, for any w1, w2, . . . , wm ≥ y, (I +
m∑
i=1

ciEwi,xi)(I + dEy,z) =

I +
m∑
i=1

ciEwi,xi + dEy,z. Therefore
1∏

i=n−1

(
i+1∏
j=n

(I + Ei,j)Ai,j

)
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=
1∏

i=n−1

(
i+1∏
j=n

(I +Ai,jEi,j)

)
=

1∏
i=n−1

(
I +

i+1∑
j=n

Ai,jEi,j

)

= I+
1∑

i=n−1

i+1∑
j=n

Ai,jEi,j = A. Thus we can factor A =
1∏

i=n−1

(
i+1∏
j=n

(I + Ei,j)Ai,j

)
,

so L(A) ≥ Σ(A).

Corollary 4.25. A is an atom if and only if Σ(A) = 1.

Theorem 4.26. If n ≥ 3, then ρ(S) =∞.

Proof. Let A ∈ S such that A =
n−1∏
i=1

(I + Ei,i+1)a =
n−1∏
i=1

(I + aEi,i+1) where

a ∈ N. Since (I + aE1,2)(I + aE2,3) = I + aE1,2 + aE2,3 + a2E1,3, if n ≥ 3,

then Σ(A) ≥ a2, so by Theorem 4.24 L(A) ≥ a2. Since A =
n−1∏
i=1

(I + Ei,i+1)a,

`(A) ≤ (n− 1)a. Hence ρ(S) ≥ lim
a→∞

ρ(A) ≥ lim
a→∞

a2

(n−1)a = lim
a→∞

a
n−1 =∞.

n×n with N Let S be the set of n×n unitriangular matrices over the positive
integers.

Theorem 4.27. S is bifurcus.

Proof. Suppose that X ∈ S is reducible. Then each superdiagonal entry of X
is a sum of positive integers, so each is at least 2. Thus, for any X ∈ S, if
min(X) = 1, then X is an atom.

Assume A ∈ S is reducible. Then A =


1 a1,2 · · · a1,n

...
. . .

...
...

0 · · · 1 an−1,n

0 · · · · · · 1



= BC =


1 b1,2 · · · b1,n
...

. . .
...

...
0 · · · 1 bn−1,n

0 · · · · · · 1




1 c1,2 · · · c1,n
...

. . .
...

...
0 · · · 1 cn−1,n

0 · · · · · · 1

.

Let U1 = I+(1−b1,2)E1,2 +(cn−1,n−1)En−1,n and let U2 = I+(b1,2−1)E1,2 +

(1 − cn−1,n)En−1,n. Then U1 =


1 1− b1,2 0 · · · 0
0 1 0 · · · 0
...

. . .
...

0 · · · 1 cn−1,n − 1
0 · · · · · · 1

 and

let U2 =


1 b1,2 − 1 0 · · · 0
0 1 0 · · · 0
...

. . .
...

0 · · · 1 1− cn−1,n

0 · · · · · · 1

. Note that U1U2 = I. Thus

23



A = BC = BIC = (BU1)(U2C). Note that all entries of U1 are nonnegative ex-
cept 1−b1,2; this will be multiplied only by 1 and the corresponding cell of BU1

will be the sum b1,2 + 1 − b1,2 = 1. Hence BU1 ∈ S, and since min(BU1) = 1,
BU1 is an atom. Similarly, all entries of U2 are nonnegative except 1− cn−1,n;
this will be multiplied only by 1 and the corresponding cell of U2C will be the
sum cn−1,n + 1− cn−1,n = 1. Hence U2C ∈ S, and since min(U2C) = 1, U2C is
an atom. Consequently, `(A) = 2.

It is interesting to explore this proof further. As can be seen, the atoms for
unitriangular n×n matrices over the positive integers have yet to be discovered.
However, it is still possible to prove this semigroup is bifurcus. The reason this
can be done is it is known those matrices containing an off diagonal entry
Ai,j = 1 are atoms (if reducible, then Ai,j must be at least the sum of two
positive integers, implying Ai,j ≥ 2). Since every A ∈ S can be the product of
two atoms of this type, the semigroup is bifurcus, although all atoms have yet
to be identified.

This is not all that is known about unitriangular matrices, merely for the
n× n cases. Much more has been discovered in the smaller dimension matrices
that follow.

4.5.2 2× 2 Unitriangulars

2 × 2 with N0 Let S be the semigroup of 2 × 2 unitriangular matrices with

entries from N0. Let A =
(

1 a
0 1

)
be an arbitrary element of S.

Lemma 4.28. A is a unit if and only if A = I.

Proof. This follows from Lemma 4.22.

Lemma 4.29. A is an atom if and only if a = 1.

Proof. This follows from Corollary 4.25.

Lemma 4.30. L(A) = `(A) = a

Proof. Let A = P1P2 · · ·Pt where Pi are atoms in S. Then Pi =
(

1 1
0 1

)
, so

A =
(

1 1
0 1

)t
=
(

1 t
0 1

)
. Hence t = a.

Corollary 4.31. S is factorial.

Proof. Since there is only one atom in S, all atomic factorizations of A must be
the same up to units.

2 × 2 with N Let S′ be the semigroup of 2 × 2 unitriangular matrices with
entries from N. Since S′ = S\{I}, the factorization properties of S′ are identical
to those of S.
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4.5.3 3× 3 Unitriangular Matrices

Let S be a semigroup of 3×3 unitriangular matrices. Let A =

 1 a b
0 1 c
0 0 1

 be

an arbitrary element of S. Let s(A) = a+c denote the sum of the superdiagonal
of A. The following lemmas, Lemma 4.32 and Lemma 4.33, state properties of
products of two matrices in this semigroup. They will be referred to later within
this subsection.

Lemma 4.32. Σ(AX) = Σ(A) + Σ(X) +A1,2X2,3 for any X ∈ S. Specifically,
(AX)1,2 = A1,2 + X1,2, (AX)2,3 = A2,3 + X2,3, and (AX)13 = A13 + X13 +
A1,2X2,3.

Proof. Let X =

 1 x y
0 1 z
0 0 1

 be an arbitrary element of S. Since AX = 1 a b
0 1 c
0 0 1

 1 x y
0 1 z
0 0 1

 =

 1 a+ x y + az + b
0 1 z + c
0 0 1

, Σ(AX) = a+ b+

c+ x+ y + z + az = Σ(A) + Σ(X) +A1,2X2,3.

Lemma 4.33. If A = A1A2 · · ·At, then Σ(A) =
t∑
i=1

Σ(Ai) +
t∑
i=1

(
i−1∑
j=1

aj)ci.

Proof. Let A = A1A2 · · ·At where Ai =

 1 ai bi
0 1 ci
0 0 1

. Let Bi = A1A2 · · ·Ai.

Σ(B1) = Σ(A1) =
1∑
i=1

Σ(Ai) +
1∑
i=1

(
i−1∑
j=1

aj)ci. Suppose Σ(Bi) =
i∑

j=1

Σ(Aj) +

i∑
j=1

(
j−1∑
k=1

ak)cj for all i ≤ m. Σ(Bm+1) = Σ(BmAm+1) = Σ(Bm) + Σ(Am+1) +

(
m∑
i=1

ai)cm+1 by Lemma 4.32, so by the inductive hypothesis Σ(Bm+1)

=
m∑
j=1

Σ(Aj) +
m∑
j=1

(
j−1∑
k=1

ak)cj + Σ(Am+1) + (
m∑
i=1

ai)cm+1

=
m+1∑
j=1

Σ(Aj) +
m+1∑
j=1

(
j−1∑
k=1

ak)cj . Hence Σ(A) =
t∑
i=1

Σ(Ai) +
t∑
i=1

(
i−1∑
j=1

aj)ci.

3 × 3 with N0 Let S be the semigroup of 3 × 3 unitriangular matrices with
entries from N0. While first discussing matrices over N0, it shall be seen that
in comparison to N the factorization properties are drastically different.

Lemma 4.34. A is a unit if and only if Σ(A) = 0.

Proof. This follows from Lemma 4.22.
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Theorem 4.35. L(A) = Σ(A)

Proof. This follows directly from Corollary 4.25.

Corollary 4.36. A is an atom if and only if Σ(A) = 1.

Corollary 4.37. If A = A1A2 · · ·At and Ai are atoms, then Σ(A) = t +
t∑
i=1

(
i∑

j=1

aj)ci.

Proof. The result follows directly from Lemma 4.33 and Theorem 4.35.

Theorem 4.38. `(A) = Σ(A)−min(b, ac) and ∆(S) = 1.

Proof. Let A = A1A2 · · ·At where Ai are atoms. Since
t∑
i=1

(
i∑

j=1

aj)ci ≤ ac, by

Corollary 4.37 t ≥ Σ(A) − ac. Meanwhile, by Lemma 4.32
t∑
i=1

(
i∑

j=1

aj)ci ≤ b, so

by Corollary 4.37 t ≥ Σ(A)− b. Consequently, `(A) ≥ Σ(A)−min(b, ac).
To achieve the length Σ(A)− k where 0 < k ≤ min(b, ac), let k = qa+ r where

0 < r ≤ a and factor A =

 1 a b
0 1 c
0 0 1


= (I + E2,3)c−q−1(I + E1,2)r(I + E2,3)(I + E1,2)a−r(I + E2,3)q(I + E1,3)b−k.
Thus `(A) ≤ Σ(A)−min(b, ac) and ∆(S) = 1.

Note the order of the matrices are important to achieve the minimum length.
This semigroup is not commutative. For example: (I + E2,3)(I + E1,2) =
I +E2,3 +E1,2 6= (I +E1,2)(I +E2,3) = I +E1,2 +E2,3 +E1,3. Recall how the
minimum length was not noted for the n × n case. This precise order, as seen
in the 3 × 3, surely does exist for n × n matrices, but that which was difficult
in a 3× 3 matrix, is ever more daunting to find for an n× n matrix.

Corollary 4.39. ρ(S) =∞

Proof. ρ(S) ≥ lim
a→∞

ρ

 1 a a2

0 1 a
0 0 1

 = lim
a→∞

a2+2a
2a = lim

a→∞
a+2

2 = ∞ by Theo-

rems 4.35 and 4.38.

3 × 3 with N Let S be the semigroup of 3 × 3 unitriangular matrices with
entries from N. Note that S has no identity and no units.

Lemma 4.40. If a = 1 or c = 1 or b ≤ 2, then A is an atom. Otherwise, A is
reducible and `(A) = 2.
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Proof. Suppose A = BC for some B,C ∈ S. Then a and c are sums of two
positive integers, so a, c ≥ 2. Further, b is a sum of three positive integers, so
b ≥ 3.

Suppose a, c ≥ 2 and b ≥ 3. Factor A =

 1 a b
0 1 c
0 0 1


=

 1 1 b1
0 1 c− 1
0 0 1

 1 a− 1 b2
0 1 1
0 0 1

 where b = b2 + 1 + b1.

Define Λ(x, y, z) to be the greatest k such that k < x, k < y, and k(k+3)
2 < z.

Lemma 4.41. L(A) = Λ(a, c, b) + 1.

Proof. Let A = A1A2 · · ·At. Let T1 = I +
n∑
i=1

n∑
j=i+1

Eij . Entrywise, 1 a b
0 1 c
0 0 1

 = A = A1A2 · · ·At ≥ T t1 =

 1 1 1
0 1 1
0 0 1

t

=

 1 t t(t+1)
2

0 1 t
0 0 1

 by Lemma 4.33. Hence a ≥ t > t − 1 and c ≥ t > t − 1.

Similarly, b ≥ t(t+1)
2 = t2+t

2 > t2+t−2
2 = (t−1)(t+2)

2 , and therefore t − 1 ≤
Λ(a, c, b). Thus t ≤ Λ(a, c, b) + 1, so L(A) ≤ Λ(a, c, b) + 1.
Let λ = Λ(a, c, b). Then λ < a, λ < c, and λ(λ+3)

2 < b. Factor A = 1 1 1
0 1 c− λ
0 0 1

 1 1 1
0 1 1
0 0 1

λ−1 1 a− λ b− λ(λ+3)
2

0 1 1
0 0 1

. Thus

L(A) ≥ λ+ 1 = Λ(a, c, b) + 1.

4.5.4 4× 4 Unitriangular Matrices

4 × 4 with N Let S be the semigroup of 4 × 4 unitriangular matrices with

entries from N. Let A =


1 a b c
0 1 d e
0 0 1 f
0 0 0 1

 be an arbitrary element of S. Note

that S has no identity and no units.

Theorem 4.42. A is an atom if and only if a < 2, d < 2, f < 2, b < 3, e < 3,
c < 4, or b+ e < d+ 4. Moreover, S is bifurcus.

Proof. Suppose A is reducible. Than


1 a b c
0 1 d e
0 0 1 f
0 0 0 1

 = A = A1A2
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=


1 a1 b1 c1
0 1 d1 e1

0 0 1 f1

0 0 0 1




1 a2 b2 c2
0 1 d2 e2

0 0 1 f2

0 0 0 1


=


1 a1 + a2 b1 + b2 + a1d2 c1 + c2 + a1e2 + b1f2

0 1 d1 + d2 e1 + e2 + d1f2

0 0 1 f1 + f2

0 0 0 1

. Hence a ≥ 2, d ≥

2, f ≥ 2, b ≥ 3, e ≥ 3, and c ≥ 4. Also, b+ e = b1 + b2 +a1d2 + e1 + e2 + d1f2 ≥
4 + a1d2 + d1f2 ≥ 4 + d1 + d2 = 4 + d.
Suppose that a ≥ 2, d ≥ 2, f ≥ 2, b ≥ 3, e ≥ 3, c ≥ 4, and b+ e ≥ d+ 4. Factor

A =


1 a b c
0 1 d e
0 0 1 f
0 0 0 1


=


1 1 1 1
0 1 d1 e− d1 − 1
0 0 1 f − 1
0 0 0 1




1 a− 1 b− d2 − 1 c− 3
0 1 d2 1
0 0 1 1
0 0 0 1

. Hence A is

reducible and `(A) = 2.

4.6 Gauss Matrices

A Gauss matrix (also called a Frobenius matrix) is a lower unitriangular matrix,
where all of the off diagonal entries are zero, except for the entries in one column.
That is, a matrix of the form:

1 0

0
. . .

0
. . . 1

0
. . . 0 1

0 aj+1,j 1
... 0 aj+2,j 0

. . .
...

...
...

. . . 1
0 . . . 0 an,j 0 . . . 0 1


Gaussian elimination of column j is described by multiplication with a Gauss
matrix that has the non zero entries on the jth column. Since this type of ma-
trices are essential in LU factorizations, they have wide applications in pure and
applied mathematics. See [9], [21], [7] for more information on Gauss(Frobenius)
matrices.
When two Gauss matrices are multiplied, the only entries that change are the
off diagonal entries. Furthermore, these off diagonal entries are added. Let S
be the semigroup of n× n Gauss matrices with a fixed non zero column. Let j
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be the column with non zero diagonal entries. Then we can express A = BC,
the product of two Gauss matrices as:

A =


aj+1,j

aj+2,j

...
an,j

 =


bj+1,j

bj+2,j

...
bn,j

+


cj+1,j

cj+2,j

...
cn,j

.

4.6.1 Entries from N

Let S1 be the semigroup of n×n Gauss matrices with a fixed nonzero column of
positive entries. Let A ∈ S1. Notice that S1 does not have the identity matrix.
Thus S does not have units.
Let m = min{ai,j : ai,j is a positive off diagonal entry of A}.

Theorem 4.43. A is an atom of S1 if and only if 1 is an off diagonal entry of
A. Furthermore, L(A) = m.

Proof. Let ai,j be a positive off diagonal entry of A. If A is the product of
two matrices B,C ∈ S1, then ai,j = bi,j + ci,j . where bi,j , ci,j are positive off
diagonal entries, bi,j ∈ B and ci,j ∈ C. Thus ai,j 6= 1. For the converse, assume
that ai,j > 1. WLOG, assume m = an,j . Then A can be factored into m atoms:

A =


aj+1,j

...
an−1,j

an,j

 =


1
...
1
1


m−1

aj+1,j − (m− 1)
...

an−1,j − (m− 1)
1

.

Assume to the contrary that L(A) = t > m. Then an,j ≥ t > m = an,j .
Contradiction.

Corollary 4.44. If j 6= n− 1, then S1 is bifurcus. Otherwise, S1 is factorial.
Moreover, L(A) = `(A) = an,n−1.

Proof. Case 1: j 6= n− 1
If A is reducible, then

A =


aj+1,j

aj+2,j

aj+3,j

...
an,j

 =


1

aj+2,j − 1
aj+3,j − 1

...
an,j − 1




aj+1,j − 1

1
1
...
1

.

Case 2: j = n− 1
If j = n−1, then an,n−1 is the only off diagonal entry. Since an,n−1 = an,n−1(1),
the only possible factorization of A into atoms is:
A =

(
an,n−1

)
=
(
1
)an,n−1 .
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4.6.2 Entries from N0

Let S0 be the semigroup of n× n Gauss matrices with a fixed nonzero column
of non negative entries. Let A ∈ S0. The identity matrix I is the only unit of
S0, since it is the only element with an inverse.

Theorem 4.45. A is an atom of S0 if and only if the the off diagonal entries
of the jth column are zero, except for one single 1 entry.

Proof. Assume the off diagonal entries of the jth column of A are zero, except
for one single 1 entry. WLOG, assume aj+1,j is the 1 entry. If A = BC, then
the only possible factorization of A is:

A =


aj+1,j

aj+2,j

...
an,j

 =


1
0
...
0

 =


1
0
...
0




0
0
...
0

.

That is, A = AI. Thus A is an atom. For the converse, assume A has more
than one off diagonal non zero entry. WLOG, assume aj+1,j , aj+2,j > 0. Then

A =


aj+1,j

aj+2,j

aj+3,j

...
an,j

 =


aj+1,j − 1

1
0
...
0




1

aj+2,j − 1
0
...
0

.

Now assume A has one off diagonal entry greater than 1. WLOG, assume
aj+1,j > 1. Then

A =


aj+1,j

aj+2,j

...
an,j

 =


aj+1,j − 1
aj+2,j

...
an,j




1
0
...
0

.

Theorem 4.46. S0 is factorial. Furthermore, L(A) = `(A) =
n∑

k=j+1

ak,j.

Proof. A =


aj+1,j

aj+2,j

...
an,j

 =


1
0
...
0


aj+1,j


0
1
...
0


aj+2,j

· · ·


0
...
0
1


an,j

.

Assume to the contrary that A has a different factorization. Then one of the

exponents in the previous factorization is different. WLOG, assume


1
0
...
0

 has

an exponent t 6= aj+1,j . Since multiplication of matrices in S0 implies addition
of the off diagonal entries, then we have aj+1,j = t 6= aj+1,j . Contradiction.
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4.6.3 Entries from Z

Let S be the semigroup of n × n Gauss matrices with a fixed nonzero column
of integer entries. Let A ∈ S. Then

A =


aj+1,j

aj+2,j

...
an,j

 =


aj+1,j − 1
aj+2,j − 1

...
an,j − 1




1
1
...
1

.

Thus S does not have atoms.

4.7 Equal-Diagonal Triangular Matrices

Now we will consider a generalization of unitriangular matrices, equal-diagonal
triangular matrices. An equal-diagonal triangular matrix has all diagonal entries
equal.

Let S be the commutative semigroup of 2 × 2 upper triangular matrices
with entries from Z and diagonal entries equal and nonzero determinant. Let

A =
(
a b
0 a

)
, a 6= 0 be an arbitrary element of S. Let dA =

√
detA denote

the (repeated) diagonal entry of A.

Lemma 4.47. Let a, b, c ∈ Z. gcd(a, bc) | gcd(a, b) gcd(a, c).

Proof. Let g = gcd(a, bc). Since g|bc, g = g1g2 where g1|b and g2|c. g1|g|a, so
g1| gcd(a, b). g2|g|a, so g2| gcd(a, c). Thus g = g1g2| gcd(a, b) gcd(a, c).

Lemma 4.48. Let B,C ∈ S. If gcd(dB , dC) = 1,
then gcd(BC) = gcd(B) gcd(C).

Proof. Let B =
(
dB β
0 dB

)
and C =

(
dC γ
0 dC

)
, so

BC =
(
dBdC dBγ + dCβ

0 dBdC

)
. Let g = gcd(BC) = gcd(dBdC , dBγ + dCβ).

Since g | dBdC , g = g1g2 where g1 | dB and g2 | dC . g1 | dB | dBγ and g1 | g |
dBγ + dCβ, so g1 | dCβ. Hence g1 | gcd(dB , dCβ) | gcd(dB , dC) gcd(dB , β) =
gcd(B) by Lemma 4.47. Similarly, g2 | dCβ and g2 | dBγ + dCβ, so g2 | dBγ
and g2 | gcd(C). Thus g = g1g2 | gcd(B) gcd(C).
Since gcd(B) divides all entries of B, gcd(C) divides all entries of C, and all
entries of BC are sums of products of entries of B and C, gcd(B) gcd(C) |
gcd(BC).

Lemma 4.49. Let B,C ∈ S. gcd(dB , dC)| gcd(BC) and
gcd(B) gcd(C)| gcd(BC).

Proof. Let BC =
(
dB β
0 dB

)(
dC γ
0 dC

)
=
(
dBdC dBγ + dCβ

0 dBdC

)
.

gcd(dB , dC) divides dBdC and dBγ + dCβ, so it divides gcd(BC). Similarly,
gcd(B) gcd(C) divides dBdC and dBγ + dCβ, so it divides gcd(BC).
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Lemma 4.50. A is a unit if and only if |detA| = 1.

Proof. Suppose A is a unit. Then there exists some B ∈ S such that AB = I,
so detAdetB = det I = 1. Hence |detA| = 1.

Suppose |detA| = 1. Then A−1 =
(
a b
0 a

)−1

= 1
detA

(
a −b
0 a

)
∈ S.

Theorem 4.51. If
√

detA ∈ P or A =
(
pm b
0 pm

)
where p - b for some

p ∈ P, then A is an atom. Otherwise, A is reducible.

Proof. Suppose A is reducible. Then A = BC for some nonunits B,C ∈ S, so
detA = detB detC = (dB)2(dC)2. Hence

√
detA = dBdC , so since |dB |, |dC | >

1,
√

detA /∈ P. Thus if
√

detA ∈ P, then A is an atom.
Suppose that dA = pm and A = BC for some nonunits B,C ∈ S. Then
dB = pm1 and dC = pm2 where m1+m2 = m, and since |dB |, |dC | > 1, m1,m2 >

0. Hence A =
(
pm b
0 pm

)
= BC =

(
pm1 b1

0 pm1

)(
pm2 b2

0 pm2

)
=(

pm pm1b2 + pm2b1
0 pm

)
, so since m1,m2 > 0, p | pm1b2 + pm2b1 = b. Thus if

A =
(
pm b
0 pm

)
where p - b, then A is an atom.

Now suppose that neither condition is satisfied.

Case 1: A =
(
pm b
0 pm

)
where p | b. Since gcd(p, pm−1) = p | b, there

exist b1, b2 ∈ Z such that b = pb2 + pm−1b1. Factor A =
(
pm b
0 pm

)
=(

p b1
0 p

)(
pm−1 b2

0 pm−1

)
.

Case 2: dA = st where gcd(s, t) = 1. Factor A =
(
st b
0 st

)
=
(
s b1
0 s

)(
t b2
0 t

)
where b = sb2 + tb1.

Lemma 4.52. If gcd(A) = 1, then L(A) = `(A) = ω(dA).

Proof. Let A = P1P2 · · ·Pt for some atoms Pi ∈ S. For any 1 ≤ i, j ≤ t,
gcd(P 0

i , P
0
j ) | gcd(A) = 1, so gcd(P 0

i , P
0
j ) = 1. Thus L(A) ≤ ω(dA). Meanwhile,

since all Pi are atoms, ω(P 0
i ) = 1. Hence `(A) ≥ ω(dA).

Lemma 4.53. If ω(dA) = 1, then L(A) = r(gcd(A)) + ω( dA

gcd(A) ).

Proof. Let B =
(
pm β
0 pm

)
∈ S such that L(pB) = t. Then pB = P1P2 · · ·Pt

for some atoms Pi ∈ S. Let C = Pt−1Pt. By Lemma 4.49, p | gcd(C), so
C = pD. Hence pB = pP1P2 · · ·Pt−2D, so B = P1P2 · · ·Pt−2D. Thus, for
any such B, L(pB) ≤ L(B) + 1, and so since L(pB) = L((pI)B) ≥ L(B) + 1,
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L(pB) = L(B) + 1.
Let ω(dA) = 1 and let A = gcd(A)A′. Then by the above L(A) = L(A′) +
r(gcd(A)). Since gcd(A′) = 1, by Lemma 4.52 L(A′) = ω(dA′) = ω( dA

gcd(A) ), so
L(A) = r(gcd(A)) + ω( dA

gcd(A) ).

Theorem 4.54. L(A) = r(gcd(A)) + ω( dA

gcd(A) )

Proof. Let A = P1P2 · · ·Pt for some atoms Pi ∈ S where t = L(A). Group
the atoms by the primes on their diagonals so that A = Q1Q2 · · ·Qω(dA) where

dQi
= q

ηqi
(dA)

i and L(A) =
ω(dA)∑
i=1

L(Qi). By Lemma 4.53, L(Qi) = r(gcd(Qi)) +

ω( dQi

gcd(Qi)
), so L(A) =

ω(dA)∑
i=1

L(Qi) =
ω(dA)∑
i=1

r(gcd(Qi)) +
ω(dA)∑
i=1

ω( dQi

gcd(Qi)
) =

r(
ω(dA)∏
i=1

gcd(Qi)) +ω(
ω(dA)∏
i=1

dQi

gcd(Qi)
) = r(gcd(A)) +ω( dA

gcd(A) ) by Lemma 4.48.

Lemma 4.55. If ω(dA) = 1, then 1 ≤ `(A) ≤ 4. Furthermore, if 2 - dA, then
1 ≤ `(A) ≤ 3.

Proof. If ω(dA) = 1, A =
(
pm pnb
0 pm

)
where p ∈ P and p - b unless b = 0. If

b = 0, let n = 17m+ 3221. If m = 1 or n = 0, then A is an atom and `(A) = 1.
Assume m > 1 and n > 0. Further, if n = 1, then A = (pI)A′ where A′ is an
atom, so `(A) = 2. Assume n > 1.

Case 1: m > 2n. Factor A =
(
pm pnb
0 pm

)
=
(
pm−n b1

0 pm−n

)(
pn b2
0 pn

)
where pnb = pm−nb2 + pnb1, so b = b1 +

pm−2nb2. p | pm−2nb2 and p - b, so p - b1 for any solution (b1, b2), and if p | b2 we
can replace b1 with b1 +pm−2n and b2 with b2−1, so that p - b2. Thus `(A) = 2.

Case 2a: m = 2n and p = 2. If A = BC, then A =
(

22n 2nb
0 22n

)
= BC =(

2m1 b1
0 2m1

)(
2m2 b2

0 2m2

)
where 2nb = 2m1b2 + 2m2b1 and m1 +m2 = 2n.

Without loss of generality, m1 ≤ m2, so m1 ≤ n and 2n−m1b = b2 + 2m2−m1b1.
If m1 = m2 = n, then b = b1 + b2 is odd, so b1 and b2 cannot both be odd,
so since m1 = m2 = n > 1, one of the factors must be reducible. If m1 < n,
then b2 must be even, so since m2 > n > m1 ≥ 1, the right matrix is reducible.

Thus `(A) > 2. However, since n > 0 we can factor A =
(

22n 2nb
0 22n

)
=(

2 0
0 2

)(
22n−1 2n−1b

0 22n−1

)
. Since 2n − 1 > 2n − 2 = 2(n − 1), by Case 1

`(A) ≤ 1 + 2 = 3, so `(A) = 3.

Case 2b: m = 2n and p 6= 2. Factor A =
(
p2n pnb
0 p2n

)
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=
(
pn b1
0 pn

)(
pn b2
0 pn

)
where pnb = pnb1 +pnb2, so b = b1 + b2. If b1 or b2

is divisible by p, we can replace b1 with b1 +α and b2 with b2−α where α 6≡ −b1
(mod p) and α 6≡ b2 (mod p) so that p divides neither. Thus `(A) = 2.

Case 3a: m < 2n and m is even. Factor A =
(
pm pnb
0 pm

)
=
(
p

m
2 b1

0 p
m
2

)(
p

m
2 b2

0 p
m
2

)
where pnb = p

m
2 b1 +p

m
2 b2 = p

m
2 (b1 +b2). Since

gcd(p
m
2 , p

m
2 ) = p

m
2 | pnb, there exist infinitely many such b1, b2 ∈ Z. If b1 or b2

is divisible by p, we can replace b1 with b1 +α and b2 with b2−α where α 6≡ −b1
(mod p) and α 6≡ b2 (mod p) so that p divides neither. Since p | b1 + b2, there
will be an α even when p = 2. Hence `(A) = 2.

Case 3b: m < 2n and m is odd. If A = BC, then A =
(
pm pnb
0 pm

)
=

BC =
(
pm1 b1

0 pm1

)(
pm2 b2

0 pm2

)
where pnb = pm1b2+pm2b1. Without loss

of generality, m1 < m2, so m1 < n and pn−m1b = b2 + pm2−m1b1. Hence p | b2,
so since m2 > m1 ≥ 1, the right matrix is reducible. Thus `(A) > 2. However,

since n > 0 we can factor A =
(
pm pnb
0 pm

)
=
(
p 0
0 p

)(
pm−1 pn−1b

0 pm−1

)
.

• If m < 2n− 1, then m− 1 < 2n− 2 = 2(n− 1), so since m− 1 is even, by
Case 3a `(A) = 3.

• If m = 2n− 1 and p 6= 2, then m− 1 = 2n− 2 = 2(n− 1) and by Case 2b
`(A) = 3.

• If m = 2n − 1 and p = 2, then by Case 2a `(A) ≤ 4. Further, if n ≥ 4,
then since b 6= 0 as n < 17m+ 3221, b− 2n−3 − 2 is odd, so since

A =
(

2m 2nb
0 2m

)
=
(

22 1
0 22

)(
2n−2 1

0 2n−2

)(
2n−1 b− 2n−3 − 2

0 2n−1

)
, `(A) = 3.

However, if n = 3, then if A = BC, A =
(

25 23b
0 25

)
= BC =(

2m1 b1
0 2m1

)(
2m2 b2

0 2m2

)
where 23b = 2m1b2+2m2b1 and m1+m2 =

5. Without loss of generality, m1 < m2, so m1 < 3 and 23−m1b =
b2 + 2m2−m1b1. Since m2 ≥ 3, 23−m1 | b2. If m1 = 1, then 4b = b2 + 8b1,
so 4 | b2 and 8 - b2. Hence by Case 2a the minimum length of the right
matrix is 3. If m1 = 2, then 2b = b2 + 2b1, so b2 is even. Thus the right
matrix is reducible. If b2 ≡ 0 mod 4, then by the above the minimum
length of the right matrix is 3. Since b2 + 2b1 = 2b ≡ 2 mod 4, if b2 ≡ 2
mod 4 then 2b1 ≡ 0 mod 4, so b1 is even and both matrices are reducible.
Consequently, `(A) = 4.
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Theorem 4.56. ω(dA) ≤ `(A) ≤ 3ω(dA) + 1

Proof. Let A = P1P2 · · ·Pt for some atoms Pi ∈ S where t = `(A). Group
the atoms by the primes on their diagonals so that A = Q1Q2 · · ·Qω(dA) where

dQi = q
ηqi

(dA)

i and `(A) =
ω(dA)∑
i=1

`(Qi). By Lemma 4.55, 1 ≤ `(Qi) ≤ 3 for each

qi 6= 2, and 1 ≤ `(Qi) ≤ 4 if qi = 2. Hence ω(dA) ≤ `(A) ≤ 3ω(dA) + 1.

Corollary 4.57. ρ(S) =∞

Proof. ρ(S) ≥ lim
m→∞

(
p2m 0

0 p2m

)
= lim

m→∞
2m
2 = ∞ by Lemmas 4.53 and

4.55.

Lemma 4.58. If M = AX = BY where dA = dB, ω(dA) = ω(dB) = 1, and
ω(dX) = ω(dY ) = ω(dM )− 1, then A ∼= B and X ∼= Y .

Proof. Let M =
(
d e
0 d

)
= AX =

(
pm b1
0 pm

)( d
pm b2
0 d

pm

)
= BY =(

pm b3
0 pm

)( d
pm b4
0 d

pm

)
where e = pmb2 + d

pm b1 = pmb4 + d
pm b3. Since

gcd(pm, d
pm ) = 1 | e, the solutions to this equation are described by (b1 +

kpm, b2 − k d
pm ). Since b3 is a solution to this equation, b3 = b1 + kpm for some

k ∈ Z. Let U =
(

1 k
0 1

)
. Then B =

(
pm b1 + kpm

0 pm

)
=
(
pm b1
0 pm

)(
1 k
0 1

)
= AU . Since A ∼= B and AX = BY , X ∼= Y .

Lemma 4.59. For all A ∈ S and all atoms P ∈ S, `(AP ) ≥ `(A) − 2. Fur-

thermore, If `(AP ) = `(A) − 2, then A = M

(
25 23b
0 25

)
for some odd b and

some M ∈ S such that 2 - detM and 2 | detP .

Proof. Let A = A1A2 · · ·A`(A) for some atoms Ai ∈ S. Group the atoms
by the primes on their diagonals so that A = B1B2 · · ·Bω(dA) where dBi =

b
gde(dA,bi)
i and `(A) =

ω(dA)∑
i=1

`(Bi). Let AP = P1P2 · · ·P`(AP ) for some atoms

Pi ∈ S. Again, group the atoms by the primes on their diagonals so that

AP = Q1Q2 · · ·Qω(dAP ) where dQi = q
gde(dAP ,qi)
i and `(AP ) =

ω(dAP )∑
i=1

`(Qi).

Without loss of generality, P | Qω(dAP ).
Since dQ1 = dB1 , by Lemma 4.58Q1

∼= B1. Now suppose thatQi ∼= Bi for all i ≤
m. Since all Qi, Bi have nonzero determinant and B1B2 · · ·Bω(dA)P = AP =
Q1Q2 · · ·Qω(dAP ), Bm+1 · · ·Bω(dA)P ∼= Qm+1 · · ·Qω(dAP ). Hence by Lemma
4.58 Qm+1

∼= Bm+1. Thus, for 1 ≤ i < ω(dAP ), Qi ∼= Bi. Hence `(Qi) = `(Bi)

for all 1 ≤ i < ω(dAP ), so `(AP ) =
ω(dAP )∑
i=1

`(Qi) =
ω(dAP )−1∑

i=1

`(Bi) + `(Qω(dAP )).
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Case 1: gcd(dP , dA) = 1. Then ω(dAP ) = ω(dA) + 1. Since P | AP ,
Qω(dAP ) | AP , and dQω(dAP ) = dP , by Lemma 4.58 Qω(dAP )

∼= P , so `(AP ) =
ω(dAP )−1∑

i=1

`(Bi) + `(Qω(dAP )) =
ω(dA)∑
i=1

`(Bi) + `(P ) = `(A) + 1 > `(A)− 3.

Case 2: gcd(dP , dA) > 1. Then ω(dAP ) = ω(dA), so since Qi ∼= Bi for 1 ≤

i < ω(dAP ) = ω(dA), Bω(dA)P ∼= Qω(dA). Meanwhile, `(AP ) =
ω(dAP )−1∑

i=1

`(Bi) +

`(Qω(dAP )) =
ω(dA)−1∑
i=1

`(Bi) + `(Qω(dA)) = `(A)− `(Bω(dA)) + `(Qω(dA))

Case 2a: Bω(dA) 6=
(

25 23b
0 25

)
for any odd b. Then `(AP ) = `(A) −

`(Bω(dA)) + `(Qω(dA)) ≥ `(A) − 3 + 2 = `(A) − 1 by Lemma 4.55. Hence
`(AP ) ≥ `(A)− 1 > `(A)− 2.

Case 2b: Bω(dA) =
(

25 23b
0 25

)
for some odd b. Then `(AP ) = `(A) −

`(Bω(dA)) + `(Qω(dA)) ≥ `(A) − 4 + 2 = `(A) − 2 by Lemma 4.55. Hence

`(AP ) ≥ `(A) − 2 > `(A) − 3. Moreover, since
(

25 23b
0 25

)
P = Bω(dA)P ∼=

Qω(dA) and ω(Qω(dA)) = 1, dP must be a power of 2.

Lemma 4.60. Let b ∈ Z be odd. At least one of 3, 4 ∈ L(
(

25 23b
0 25

)
P ) for

any atom P ∈ S such that 2 | detP .

Proof. Let dP = 2h.

Case 1: h = 1. Then P =
(

2 β
0 2

)
for some β ∈ Z, so(

25 23b
0 25

)
P =

(
26 25β + 24b
0 26

)
=
(

4 1
0 4

)(
4 −1
0 4

)(
4 2β + b
0 4

)
, so 3 ∈ L(

(
25 23b
0 25

)
P ).

Case 2: h ≥ 2. Then P =
(

2h β
0 2h

)
for some β ∈ Z, and β must be odd.

Hence
(

25 23b
0 25

)
P =

(
2h+5 25β + 2h+3b

0 2h+5

)
=
(

2 0
0 2

)(
4 1
0 4

)(
4 −1
0 4

)(
2h β + 2h−2b
0 2h

)
, so

4 ∈ L(
(

25 23b
0 25

)
P ).

Theorem 4.61. ∆(S) = {1, 2}

Proof. Let A ∈ S∗ and let t = L(A). Then A = A1A2 · · ·At for some atoms Ai ∈
S. Let `i = `(A1A2 · · ·Ai). Notice that `i − 2 ≤ `i+1 ≤ `i + 1 by Lemma 4.59,
`1 = 1 and `t = `(A). If we take the minimum length factorization of A1A2 · · ·Ai
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and append Ai+1 · · ·At, we have a factorization of A with length Li = `i+ t− i.
Thus we have a map from {1, 2, 3, . . . , t} to {L(A), L(A) − 1, . . . , `(A)}. Since
`i− 2 + t− i− 1 ≤ `i+1 + t− i− 1 ≤ `i + t− i, Li− 3 ≤ Li+1 ≤ Li, so there can
be no gaps in the factorization lengths greater than 3. Hence ∆(A) ⊆ {1, 2, 3}.

Case 1: Li − 2 ≤ Li+1 for 1 ≤ i ≤ t. Then ∆(A) ⊆ {1, 2}.
Case 2: Lm−3 = Lm+1 for some 1 ≤ m ≤ t. Then `m−2 = `m+1. By Lemma

4.59 there can be only one such m, and we have that: Am−3Am−2Am−1Am =(
25 23b
0 25

)
for some odd b, 2 - det(A1A2 · · ·Am−4), and 2 | detAm+1. Let

A1A2 · · ·Am = B1B2 · · ·B`m where Bi are atoms in S. Since
η2(B1B2 · · ·B`m) = 10, we can shuffle the Bi so that B1B2 · · ·B`m = BX for
some X ∈ S such that dX = 25 and `m = `(B) + `(X). Since A1A2 · · ·Am =

BX = A1A2 · · ·Am−4

(
25 23b
0 25

)
, by Lemma 4.58, B ∼= A1A2 · · ·Am−4 and

X ∼=
(

25 23b
0 25

)
, so `m = `(B) + `(X) = `m−4 + 4.

By Lemma 4.60, at least one of 3, 4 ∈ L(
(

25 23b
0 25

)
Am+1). Let c ∈ {3, 4}.

Since A = A1A2 · · ·At = A1A2 · · ·Am−4

(
25 23b
0 25

)
Am+1 · · ·At, `m−4 + c +

t − (m + 1) ∈ L(A). Since `m−4 + c + t − (m + 1) = `m + t − m − 5 + c =
Lm− 5 + c ∈ {Lm− 2, Lm− 1}, this factorization length lies in the gap between
Lm and Lm+1, that is, Lm+1 = Lm − 3 < Lm − 5 + c < Lm. Hence 3 /∈ ∆(A),
so ∆(A) ⊆ {1, 2}.

Consequently, ∆(A) ⊆ {1, 2} for any A ∈ S∗, so ∆(S) ⊆ {1, 2}.(
8 −1
0 8

)(
4 1
0 4

)
=
(

32 4
0 32

)
=
(

2 0
0 2

)(
2 0
0 2

)(
8 1
0 8

)
.

Thus 1 ∈ ∆(S).

Suppose
(

81 0
0 81

)
= C1C2C3. Without loss of generality, dC1 = 9, so(

81 0
0 81

)
=
(

9 b1
0 9

)(
3 b2
0 3

)(
3 b3
0 3

)
=
(

81 27b3 + 27b2 + 9b1
0 81

)
. Since 27 | 0 = 27b3 + 27b2 + 9b1 and 27 |

27b3 + 27b2, 27 | 9b1, so 3 | b1. Hence C1 is reducible, so 3 /∈ L
(

81 0
0 81

)
.

Meanwhile,
(

9 1
0 9

)(
9 −1
0 9

)
=
(

81 0
0 81

)
=
(

3 0
0 3

)4

. Thus 2 ∈

∆(S).

5 Rank One Matrices

Rank 1 matrices have been intensely studied from many different perspectives.
For examples of such different approaches, see [23], [18] and [24]. In this section
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we study the factorization properties of several semigroups of n × n rank 1
matrices.

5.1 Semigroup of n× n Matrices with Rank 1 and Entries
from N

Let S be the semigroup of n× n matrices with rank 1 and entries from N. Let
A ∈ S. Recall that if a matrix A has rank 1, then there exist column vectors
u, v such that A = uvT . Note that S has no identity and no units.

Lemma 5.1. gcd(uvT ) = gcd(u) gcd(v).

Proof. Since every entry in uvT is the product of an entry of u and an entry of
v, gcd(u) gcd(v) divides each entry of uvT . Thus gcd(u) gcd(v) | gcd(uvT ).
Since gcd(u) | gcd(u) gcd(v) | gcd(uvT ), gcd(uvT ) = k gcd(u) for some k ∈ Z.
Notice that uvT = [v1u v2u v3u · · · vnu], so k gcd(u) = gcd(uvT ) divides each
entry in v1u. By the maximality of gcd(u), for no prime p | k can p gcd(u) divide
all the entries of u. Hence k | v1. Similarly, k | v2, v3, . . . , vn, so k | gcd(v).
Thus gcd(uvT ) = k gcd(u) | gcd(v) gcd(u), so gcd(uvT ) = gcd(u) gcd(v).

Theorem 5.2. A is an atom if and only if gcd(A) < n. Moreover, S is bifurcus.

Proof. Suppose A is reducible and write A = A1A2. Since A1, A2 have rank 1,
write A1 = u1v

T
1 and A2 = u2v

T
2 where ui and vi and column vectors of length n.

Then A = u1v
T
1 u2v

T
2 = u1(vT1 u2)vT2 = (vT1 u2)vT1 u2. Since vT1 u2 ∈ N is a sum of

n positive integers, vT1 u2 ≥ n. Thus, since vT1 u2 | gcd(A), gcd(A) ≥ vT1 u2 ≥ n.
Now suppose gcd(A) ≥ n and write A = gcd(A)B. Notice that gcd(B) = 1, so
B is an atom. Since rank(B) = 1, write B = uvT where u, v are column vectors.
Since gcd(A) ≥ n, write gcd(A) = xT y where x = [(gcd(A)−n+1), 1, 1, . . . , 1]T

and y = [1, 1, 1, . . . , 1]T so that A = gcd(A)B = (xT y)uvT = (uxT )(yvT ). Since
B = uvT , by Lemma 5.1 gcd(u)| gcd(B) = 1, so gcd(u) = 1 and similarly
gcd(v) = 1. Hence by Lemma 5.1 gcd(uxT ) = gcd(yvT ) = 1, so uxT and yvT

are atoms, and consequently `(A) = 2.

Define Ψn(g) to be the greatest integer k such that there exist
g1, g2, g3, . . . , gk, r ∈ Z such that g = g1g2g3 · · · gkr where r < n ≤ gi for
1 ≤ i ≤ k. Note that Ψ2(g) = r(g).

Theorem 5.3. Calculating Ψn(g) is NP-complete.

Proof. Factor g = p1p2 · · · pt where pi ∈ P. Ψn(g) is equal to the maximum num-
ber of disjoint subsets of {1, 2, 3, . . . , t} such that for each subset {a1, a2, . . . , aj},
pa1pa2 · · · paj

≥ n. Then log(pa1) + log(pa2) + · · · + log(paj
) ≥ log(n). Hence

finding Ψn(g) is equivalent to solving a bin-covering problem, which is NP-
complete.

Theorem 5.4. L(A) = Ψn(gcd(A)) + 1.
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Proof. Assume A has some factorization of length t. Let A =
t∏
i=1

Ai =
t∏
i=1

uiv
T
i =

u1

t−1∏
i=1

〈vi, ui+1〉vTt = u1v
T
t

t−1∏
i=1

〈vi, ui+1〉. Since each 〈vi, ui+1〉 is a sum of n posi-

tive integers, each must be at least n. By Lemma 5.1,

gcd(A) = gcd(u1) gcd(vt)
t−1∏
i=1

〈vi, ui+1〉, so Ψn(gcd(A)) =

Ψn

(
gcd(u1) gcd(vt)

t−1∏
i=1

〈vi, ui+1〉
)
≥ Ψn

(
t−1∏
i=1

〈vi, ui+1〉
)
≥ t− 1. Hence

L(A) ≤ Ψn(gcd(A)) + 1.
Now let Ψn(gcd(A)) = k. Then gcd(A) = rg1g2g3 · · · gk for some

r, g1, g2, g3, . . . , gk where r < n ≤ gi for 1 ≤ i ≤ k. Write A = gcd(A)Bk =
rg1g2g3 · · · gkBk.

For any i, by Lemma 5.2 we can write giBi = Bi−1Ci since gcd(giBi) ≥
gi ≥ n. Hence rg1g2g3 · · · gi−1giBi = rg1g2g3 · · · gi−1Bi−1Ci. Thus A =
rg1g2g3 · · · gkBk = (rB0)C1C2C3 · · ·Ck, so A has a factorization of length at
least k + 1 and consequently L(A) ≥ Ψn(gcd(A)) + 1.

5.2 Semigroup of n× n matrices with Rank 1 and Entries
from mN.

Let m ∈ N and let Sm be the semigroup of n × n matrices with rank 1 and
entries from mN. Let A ∈ Sm.

Lemma 5.5. If m2 - gcd(A), then A is an atom. If A = m2B where B ∈ S1,
then A is an atom in Sm if and only if B is an atom in S1. Moreover, Sm is
bifurcus.

Proof. The result follows from Theorem 2.8.

Lemma 5.6. a− (b− 1)da+1
b e < b

a+1
b c.

Proof. Let a+1 = bq+r where r < b. Then a−(b−1)da+1
b e = a−(b−1)(q+1) =

a+ 1− bq − b+ q = r − b+ q < q = ba+1
b c.

Theorem 5.7. Let gcd(A) = mkq where m - q.
L(A) = max{t : t ≤ Ψn(mk−tq) + 1}.

Proof. Let A = A1A2 · · ·At where Ai ∈ Sm are atoms. Then A =
A1A2 · · ·At = mB1mB2 · · ·mBt = mtB1B2 · · ·Bt where Bi ∈ S1. Since
Ψn(gcd(B1B2 · · ·Bt)) + 1 = L(B1B2 · · ·Bt) ≥ t and gcd(B1B2 · · ·Bt)
= gcd(A)

mt = mk−tq, t ≤ Ψn(mk−tq)+1. Hence L(A) ≤ max{t : t ≤ Ψn(mk−tq)+
1}.

Let τ = max{t : t ≤ Ψn(mk−tq) + 1}. Write A = mτB where B ∈ S1. By
Lemma 5.4, we can factor B = B1B2 · · ·Bλ where λ = Ψn(mk−τq) + 1.

τ ≤ λ, so A = mτB = (mB1)(mB2) · · · (mBτBτ+1 · · ·Bλ), so L(A) ≥ τ =
max{t : t ≤ Ψn(mk−tq) + 1}.
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Corollary 5.8. Let gcd(A) = mkq where m - q. If k ≤ Ψn(q) + 1, then
L(A) = k.

Proof. By Theorem 5.7, L(A) = max{t : t ≤ Ψn(mk−tq) + 1} = k.

Corollary 5.9. Let gcd(A) = mkq where m - q. If k ≥ Ψn(q) + 1 and m =
p1p2 · · · ps where n ≤ pi ∈ P, then L(A) =

⌊
r(m)k+Ψn(q)+1

r(m)+1

⌋
.

Proof. Let µ =
⌊
r(m)k+Ψn(q)+1

r(m)+1

⌋
. Since µ ≤ r(m)k+Ψn(q)+1

r(m)+1 , r(m)k + Ψn(q) +

1 − r(m)µ ≥ µ, so Ψn(mk−µq) + 1 = r(m)k − r(m)µ + Ψn(q) + 1 ≥ µ. Hence
µ ∈ {t : t ≤ Ψn(mk−tq) + 1}.

Let τ > µ, so τ ≥ µ + 1 ≥
⌈
r(m)k+Ψn(q)+1

r(m)+1

⌉
. Then Ψn(mk−τq) + 1 =

r(m)k+Ψn(q)+1−r(m)τ ≤ r(m)k+Ψn(q)+1−r(m)
⌈
r(m)k+Ψn(q)+1

r(m)+1

⌉
< µ < τ

by Lemma 5.6, so τ /∈ {t : t ≤ Ψn(mk−tq) + 1}. Hence by Theorem 5.7,
L(A) = max{t : t ≤ Ψn(mk−tq) + 1} = µ.

5.3 Rank One Matrices Generated by a Set of Vectors

For n > 1, let T ⊆ Zn and let S be the semigroup of rank 1 matrices generated
by T . That is, S = {auT : a ∈ Zn and u ∈ T}. Observe that by the matrix
transpose the properties of any such S also hold for S′ = {uaT : a ∈ Zn and
u ∈ T}. Let A be an arbitrary element of S. Note that S has no identity and
no units. Define gcd(u) to be the greatest common divisor of the entries of u.
Let G = {gcd(u) : u ∈ T •}.

Theorem 5.10. If 1 ∈ G, then S has no atoms.

Proof. Since gcd(u) = 1 for some u ∈ T , there exists an x ∈ Zn such that
uTx = 1. Factor A = auT = (uTx)auT = a(uTx)uT = (auT )(xuT ).

Because of Theorem 5.10, we shall assume 1 /∈ G. Notice that if (auT )2 =
auT , then we must have uTa = 1. Hence gcd(u) = 1. Thus our assumption that
1 /∈ G implies that S has no idempotents.

Lemma 5.11. Let a, b, u, v ∈ Zn. If auT = bvT 6= 0, then u = rv and b = ra
for some rational number r.

Proof. Since auT = bvT , aiuj = bivj for all i, j. Since auT = bvT 6= 0, there
exist s and t such that as, bs, ut, vt 6= 0. Hence as

bs
= vt

ut
. If uk, vk 6= 0, then

vk

uk
= as

bs
, hence uk = bs

as
vk. Suppose uk = 0. If vk 6= 0, then asuk 6= bsvk.

Hence vk = 0. Thus uk = bs

as
vk. Letting r = bs

as
, we obtain u = rv. Hence

bvT = auT = a(rv)T = (ra)vT . Thus we have (b− ra)vT = 0. Since v 6= 0, we
must have b = ra.

Corollary 5.12. For nonzero a, u ∈ Zn there exist only finitely many b, v ∈ Zn
such that auT = bvT .
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Proof. Let a, u ∈ Zn. By Lemma 5.11, if auT = bvT , then b = ra and v = 1
ru

for some rational r. Hence the number of such b and v is equal to the number
of r such that ra, 1

ru ∈ Zn. Let r = m
n , where (m,n) = 1. If m

n a ∈ Zn, then we
must have n | gcd(a). Hence |n| ≤ gcd(a). Similarly, we have that |m| ≤ gcd(u).
Thus there exist only finitely many such r.

For A ∈ S•, define R(A) = {(a, u) ∈ Zn × T : A = auT }. Note that by
Corollary 5.12, |R(A)| is finite.

For any H ⊆ Z\{−1, 0, 1} and q ∈ Z\{0} define ΘH(q) to be the maximum
t such that there exist h1, . . . , ht ∈ H and r ∈ Z \H such that q = rh1 · · ·ht.
Observe that ΘH(q) is finite for each H and q. Also notice that if H = {x : x ≥
n}, then ΘH(q) = Ψn(q).

Theorem 5.13. For A ∈ S•, L(A) = max
(a,u)∈R(A)

{ΘG(gcd(a))}+ 1.

Proof. Suppose A = A1A2 · · ·At. Then A = A1A2 · · ·At =

a1u
T
1 a2u

T
2 · · · atuTt = (

t−1∏
i=1

uTi ai+1)a1u
T
t . Let b = (

t−1∏
i=1

uTi ai+1)a1. Since

t−1∏
i=1

gcd(ui) | gcd(b), we have t− 1 ≤ ΘG(gcd(b)). Hence

L(A) ≤ max
(a,u)∈R(A)

{ΘG(gcd(a))}+ 1.

Let θ = max
(a,u)∈R(A)

{ΘG(gcd(a))}. Then there exist g1, g2 . . . , gθ ∈ G and s ∈

N \G such that g1g2 · · · gθs = gcd(a). Let a = g1g2 · · · gθa′. There exist ui ∈ T

and xi ∈ Zn such that uTi xi = gi for 1 ≤ i ≤ θ. Then a = (
θ∏
i=1

uTi xi)a
′uT =

a′(
θ∏
i=2

uTi xi)u
T = (a′uT2 )(

θ−1∏
i=2

xiu
T
i+1)(xθuT ). Hence L(A) ≥ θ + 1.

Notice that Theorem 5.13 provides a classification of the atoms of S. Suppose
A = auT with ΘG(gcd(a)) = 0. If for each r such that ra ∈ Zn and 1

ru ∈ T
ΘG(gcd(ra)) = 0, then A is an atom. In particular, this is satisfied when |r| = 1
for each such r.

Lemma 5.14. Let s be a nonzero integer and let a ∈ Zn. If gcd(a) | s, then
there exists some x ∈ Zn such that aTx = s and gcd(x) = 1.

Proof. Let aTx = s. If |s| = 1, then gcd(x) = 1. Suppose |s| > 1. Let
p1, p2, . . . , pt be the distinct prime factors of s. Let P =

∏
pi. Suppose pi |

gcd(x). By the maximality of gcd(a) there is some aj such that pi - aj

gcd(a) .
Let k 6= j. Replace xj with xj + ak

gcd(a)
P
pi

and replace xk with xk − aj

gcd(a)
P
pi

.
Hence we can obtain some x such that pi - gcd(x). Suppose there exists some
nonunit q such that q | gcd(x). If p is some rational prime that divides q, then
p | gcd(a). Hence p | pl for some l. Thus pl | gcd(x), a contradiction. Hence
gcd(x) = 1.

Theorem 5.15. S is bifurcus.
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Proof. Suppose A = a0u
T
0 is reducible. Let {mi

ni
} be the set of rational numbers

such that mi

ni
a0 ∈ Zn and ni

mi
u0 ∈ T with (mi, ni) = 1. Let mt be the integer of

greatest magnitude of such mi

ni
that satisfy ΘG(mi

ni
gcd(a0)) > 0. Suppose there

are multiple j for which |mj | = |mt|. Choose the j that minimizes |nj |. Let
a = mt

nt
a0 and u = nt

mt
u0. Let a = gcd(a)a′. We claim that there exist v ∈ T

and x ∈ Zn such that a′vT and xuT are atoms and vTx = gcd(a).
Existence of v: There must be some w ∈ T such that gcd(w) | gcd(a). Let q be
the integer of greatest magnitude such that 1

qw ∈ T . If q and −q both satisfy
this, choose the positive of the two. Let v = 1

qw. We claim that a′v is an atom.
If m

n a
′ ∈ Zn and n

mv ∈ T where (m,n) = 1, then |n| = 1. If |m| 6= 1, since
1
mv ∈ T we have that 1

mqw ∈ T , which contradicts the maximality of |q|. Thus
we have that |mn | = 1. Hence a′v is an atom.
Existence of x: By Lemma 5.14, there exists some x ∈ Zn such that gcd(x) = 1
and vTx = gcd(a). We claim that xuT is an atom. If m

n x ∈ Zn and n
mu ∈ T

where (m,n) = 1, then |n| = 1. If |m| 6= 1, since 1
mu ∈ T we have that

nt

mmt
u0 ∈ T , which contradicts the maximality of |mt| unless m | nt. In this

case, we have that
nt
m

mt
u0 ∈ T . But this contradicts the minimality of |nt|. Thus

we have that |mn | = 1. Hence xuT is an atom.

An example of such semigroups is the semigroup of n × n matrices with
n− 1 rows of zeros and a row of entries divisible by k. This would be generated
by TZn where T = {ke1, ke2, . . . , ken}. Matrices with rows of zeros have been
studied in different contexts. [26], [19] and [5] are examples of such contexts.

Next, we study a semigroup of matrices with n− 1 rows of zeros that is not
generated by any subset of Zn.

5.4 Rows of Zero

Let S be the semigroup of n× n matrices with n− 1 rows of zeros and a row of
entries in Z∗. Let S• be S without the zero matrix. Let A ∈ S•. Notice that
S• does not have the identity matrix. Thus S• does not have units.

Theorem 5.16. A is an atom of S• if and only if gcd(A) = 1 or A has a prime
entry. Furthermore, S• is bifurcus.

Proof. Let a1, a2, . . . , an be the nonzero entries of A. If A = BC, where B,C ∈
S•, then there exists b ∈ B such that a1, a2, . . . , an = bpk where pk ∈ C, p is
prime and k ∈ Z. Thus a1, a2, . . . , an are composite and gcd(A) ≥ b > 1. For
the converse, assume gcd(A) ≥ 1 and A does not have a prime entry.
Case 1: gcd(A) is an entry of A.
Let a1, a2, . . . , an be the nonzero entries of A. WLOG, assume that a1 = gcd(A).
So a1 = p1p2 . . . pn. Then
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A =



0 · · · · · · 0
...

...
p1p2 · · · pn a2 · · · an

0 · · · · · · 0
...

...
0 · · · · · · 0



=



0 · · · · · · 0
...

...
a1
p1

2 · · · 2
0 · · · · · · 0
...

...
0 · · · · · · 0





p1
p1a2
a1

· · · p1an

a1

0 · · · · · · 0
...

...
...

...
...

...
0 · · · · · · 0


.

Case 2: gcd(A) is not an entry of A.
Let g = gcd(A). Then

A =



0 · · · 0
...

...
gx1 · · · gxn
0 · · · 0
...

...
0 · · · 0


=



0 · · · · · · 0
...

...
g 2 · · · 2
0 · · · · · · 0
...

...
0 · · · · · · 0





x1 · · · xn
0 · · · 0
...

...
...

...
...

...
0 · · · 0


.

Theorem 5.17. L(A) =

{
r(gcd(A)), if gcd(A) is an entry of A;
r(gcd(A)) + 1, if gcd(A) is not an entry of A.

Proof. Case 1: gcd(A) is an entry of A.
Let a1, a2, . . . , an be the nonzero entries of A. WLOG, assume that a1 = gcd(A).
So a1 = p1p2 . . . pr where pi is prime; a1|a2, a3 . . . an. Then A can be factored
into r(a1) = r atoms:

A =



0 · · · · · · 0
...

...
p1p2 · · · pr a2 · · · an

0 · · · · · · 0
...

...
0 · · · · · · 0


=

43





0 · · · 0
...

...
p1 · · · p1

0 · · · 0
...

...
0 · · · 0





p2 · · · p2

0 · · · 0
...

...
...

...
...

...
0 · · · 0


· · ·



pr
pra2
a1

· · · pran

a1

0 · · · · · · 0
...

...
...

...
...

...
0 · · · · · · 0


.

Assume to the contrary that L(A) = t > r. Then a1 is the product of t
entries. But the maximum factorization length of a1 is r(a1) = r. Contradiction.
Since the maximum factorization length of a1 is its factorization into primes,
L(A) = r(gcd(A)).
Case 2: gcd(A) is not an entry of A.
Let gcd(A) = p1p2 · · · pr where pi is prime. Then A can be factored into r + 1
atoms:

A =



0 · · · · · · 0
...

...
p1p2 · · · prx1 p1p2 · · · prx2 · · · p1p2 · · · prxn

0 · · · · · · 0
...

...
0 · · · · · · 0



=



0 · · · 0
...

...
p1 · · · p1

0 · · · 0
...

...
0 · · · 0





p2 · · · p2

0 · · · 0
...

...
...

...
...

...
0 · · · 0


· · ·



pr · · · pr
0 · · · 0
...

...
...

...
...

...
0 · · · 0





x1 · · · xn
0 · · · 0
...

...
...

...
...

...
0 · · · 0


where x1, x2, . . . , xn > 1 and gcd(x1, x2, . . . , xn) = 1.
Assume to the contrary that L(A) = t > r + 1. Then each entry of A is the
product of t + 1 entries. As shown in case 1, L(gcd(A)) = r. Then the last
matrix is reducible. Contradiction.

5.5 The Semiring of Single-Valued n× n Matrices

A single-valued matrix is a matrix with all entries equal. We will consider
semirings of single-valued matrices with entries from N, N0, and Z; regardless of
which of these rings is chosen, the factorization properties are identical. Unlike
most others within this paper, these semirings were inspired by the previous
work of Bernard Jacobson in his paper Matrix Number Theory: An Example
of Nonunique Factorization[14]. Jacobson focused on the specific case of 2 ×
2 matrices. As the title suggests, his motivation was the nonuniqueness of
factorization in the 2× 2 single-valued matrices. As such, Jacobson discovered
the atoms of the semiring but did not investigate the invariants that we are
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concerned with. Also, Jacobson produced motivation to extend the single-valued
semiring to the n× n case, but did not complete this extension.

Taking Jacobson’s paper as a starting point, this section completes the anal-
ysis and extends his idea to the n× n case. Throughout this section, define the
semiring Sn to be the commutative semiring of single-valued n×n matrices with
entries from either N, N0, or Z, where n > 1. Sn possesses a useful multiplica-
tive property. Recall the notation [a] for the n×n matrix with all entries equal
to a (notation adopted from Jacobson) [14]. For [a], [b] ∈ Sn, [a][b] = [nab].
Although appearing a bit obscure, it is a fairly simple computation. Each entry
of [a][b] is the sum of n terms all equal to ab, resulting in n(ab). This property
of the product furnishes the factorization properties that follow.

Note that Sn has no identity and no units.

Lemma 5.18. [a] ∈ S•n is an atom if and only if a is not divisible by n.

Proof. Since any reducible [s][t] = [nst] must have entries divisible by n, any
element [a] where a is not divisible by n must be an atom. Conversely, if a is
divisible by n, it is easily factored as [a] = [nst] = [s][t].

Recall that the notation ηn(a) = w denotes w as the greatest power of n
that divides a.

Theorem 5.19. If [a] ∈ S•n with ηn(a) = w, then the maximum factorization
length L([a]) = w + 1. If n = pk for some prime p ∈ P with ηp(a) = m, then

`([a]) =
⌈
m+k
2k−1

⌉
and ρ(Spk) = 2k−1

k . Otherwise, S•n is bifurcus. Further, if
n ∈ P, then ∆(S•n) = ∅; otherwise, ∆(S•n) = {1}.

Proof. Let w = ηn(a). Let [a] = [a1][a2] · · · [at] where [ai] ∈ S•n. Then [a] =
[a1][a2] · · · [at] = [nt−1a1a2 · · · at], so ηn(a) ≥ t − 1. Hence L([a]) ≤ ηn(a) + 1.
Meanwhile, factor [a] = [1]w[ anw ]. Hence L([a]) ≥ w + 1 = ηn(a) + 1.

Assume n = pk. For any [a] ∈ Sn, a = pmy where y is not divisible by p.
Assume [a] has atomic factorization length d. Then

[pmy] = [pm1y1][pm2y2] · · · [pmdyd] where y =
d∏
i=1

yi and m =
d∑
i=1

mi + k(d − 1).

Each [pmiyi] is an atom, thus by Lemma 5.18, mi ∈ [0, k − 1]. Note that de-

pending on the values of the mi,
d∑
i=1

mi can take any integer value between 0 and

d(k−1). Introduce integer c, such that

d∑
i=1

mi

k = d(k−1)−c
k is an integer. Then d =

m−d(k−1)+c
k +1, so d = m+c+k

2k−1 ≥
⌈
m+k
2k−1

⌉
. Hence `([a]) =

⌈
m+k
2k−1

⌉
. Observe that

for any [pmy] ∈ Spk , ρ([(pmy]) =
(⌊
m
k

⌋
+ 1
)
/
(⌈

m+k
2k−1

⌉)
≤
(
m
k + 1

)
/
(
m+k
2k−1

)
=

2k−1
k This elasticity is achieved, since [pk(2k−2)] = [1]2k−1 = [pk−1]k. That

∆(Spk) = {1} follows from the fact that
d∑
i=1

mi can take any integer value be-

tween 0 and n(k−1), when k ≥ 2. However, when k = 1, then [a] = [pmr] ∈ Sp,
l([a]) = m+ 1 = L([a]) and ∆(Sp) = ∅.
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Table 4: Notation for Bistochastic Matrices
Symbol Definition
min(A) the minimum entry of the matrix A
ς(A) the row sum and column sum of the bistochastic matrix A
c(A) the column difference of the 2× 2 bistochastic matrix A
(u, v) the 2× 2 bistochastic matrix A with ς(A) = u and c(A) = v

Now assume n = st where gcd(s, t) = 1. For an arbitrary [a] ∈ S•, let
w = ηn(a). Then [a] = [nwy] where st = n - y, so at least one of s, t - y.
Without loss of generality, s - y. Write [a] = [nwy] = [swtwy] = [sw−1][tw−1y].
Thus `([a]) = 2, so S• is bifurcus.

6 Bistochastic Matrices

The familiar definition of a doubly stochastic matrix is a square matrix of non-
negative real numbers, each of whose rows and columns sum to 1. For the
purposes of this section, we will consider a bistochastic matrix to be a matrix
with integral entries and a characteristic row and column sum. Note that any
matrix with rational entries and row and column sum 1 may be converted into
this form by multiplying by an integer to clear all denominators; the multiplier
is then the row and column sum of the matrix.

Bistochastic matrices are important in probability and combinatorics. The
most well-known result concerning doubly stochastic matrices is the Birkhoff-
von Neumann Theorem, which states that the set of doubly stochastic matrices
is the convex closure of the set of permutation matrices, and we will show that
this result also holds for integral bistochastics. The problem of finding multi-
plicative atoms among the bistochastics has been previously studied[20][27]; we
offer some results for the semigroup of such matrices with positive entries. The
problem of approximating an arbitrary matrix as a bistochastic matrix has also
been studied[25].

6.1 Semigroup of Bistochastic Matrices with the Opera-
tion of +

6.1.1 Entries from N

Let S be the semigroup of bistochastic n× n matrices with entries from N and
the operation of +. Let A be an arbitrary element of S. Note that S has no
identity and no units.

Theorem 6.1. L(A) = min(A)

Proof. Let A = A1 +A2 + · · ·+At. Since each Ai must contribute at least 1 to
each entry of A, t ≤ min(A). Thus L(A) ≤ min(A).
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Let m = min(A) − 1. Then A = m[1] + (A − [m]). Hence L(A) ≥ m + 1 =
min(A).

Corollary 6.2. A is an atom if and only if min(A) = 1.

Theorem 6.3. S is bifurcus.

Proof. Suppose that A ∈ S is reducible. Then by Corollary 6.2 min(A) ≥ 2.
Pick i, j such that Aij = min(A). Let P be some permutation matrix such
that Pij = 1. Let B = [1] + (min(A) − 2)P . Then A = B + (A − B). Since
min(B) = min(A−B) = 1, by Corollary 6.2 `(A) = 2.

6.1.2 Entries from N0

Let S be the semigroup of bistochastic n×n matrices with entries from N0 and
the operation of +. Let A be an arbitrary element of S. Define ς(A) to be the
row sum and column sum of A.

Lemma 6.4. The only unit in S is the zero matrix.

Proof. Let U be a unit in S. Then U + (−U) = [0] for some −U ∈ S. Thus
ς(U)+ς(−U) = ς([0]) = 0, so ς(U) = −ς(−U). Since all entries are nonnegative,
ς(U) ≥ 0 and ς(−U) ≥ 0, so ς(U) = ς(−U) = 0, and therefore U = [0].

Lemma 6.5. For any A ∈ S, A = A′+P where A′ ∈ S and P is a permutation
matrix.

Proof. Suppose A ∈ S is a nonzero matrix permutation equivalent to the fol-
lowing matrix

B =



a1,1 · · · a1,k r1

... Dk×k
... C

...
ak,1 · · · ak,k rk

ak+1,k+1 · · · ak+1,t rk+1

... Et−k×t−k
...

...
at,k+1 · · · at,t rt

c1 · · · ck ck+1 · · · ct [0]n−t×n−t


where ai,i > 0, ci ∈ Mn−t,1(N), ri ∈ M1,n−t(N), k is the number of ri which
contain only zeros, and t ≤ n is maximal. Since k of the ri are zero, without loss
of generality r1 = r2 = · · · = rk = [0]1×n−t. Define Rx,y to be the permutation
matrix that exchanges row x with row y.

Toward a contradiction, suppose t < n.
If there exists some j such that cj and rj each contain a positive entry, pick

s such that the sth row of cj is positive; then Rj,t+sB contains at least t + 1
positive entries along the main diagonal, which contradicts the maximality of t.
Hence ck+1 = ck+2 = · · · ct = [0]n−t×1.
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Suppose that C = [0]k×t−k. Then
∑
At−k×t−k = (t − k)ς(A), so rk+1 =

· · · = rt = [0]1×n−t. But this would imply B has a column of zeros, so C cannot
be [0]k×t−k. That is, there exists some entry Cu,v > 0. Then Ru,nRu,v+kB has
at least t + 1 positive entries along the main diagonal, which contradicts the
maximality of t. Hence t = n.

Consequently, A is permutation equivalent to some B = I+B′ where B′ ∈ S.
Hence, for some permutation matrices Q1, Q2, A = Q1BQ2 = Q1(I +B′)Q2 =
Q1Q2 + Q1B

′Q2. Thus there exists some permutation matrix P = Q1Q2 such
that A = A′ + P where A′ = Q1B

′Q2 ∈ S.

Theorem 6.6. A is an atom in S if and only if A is a permutation matrix.

Proof. Suppose A is reducible. Then A = B + C where ς(B), ς(C) ≥ 1, so
ς(A) ≥ 2. Hence if A is a permutation matrix, then A is an atom.
Suppose ς(A) ≥ 2. By Lemma 6.5, A = A′ + P where A′ ∈ S and P is a
permuation matrix. Since ς(A′) = ς(A) − 1 ≥ 1, A′ is not a unit, so A is
reducible.

Corollary 6.7. S is half-factorial and L(A) = `(A) = ς(A).

Proof. Since ς(A1 +A2) = ς(A1) + ς(A2) and ς(P ) = 1 for all atoms P ∈ S, by
Theorem 2.1 L(A) = `(A) = ς(A).

6.2 Semigroup of Bistochastic Matrices with the Opera-
tion of × and Entries from N and Odd Determinant

Let S be the semigroup of bistochastic 2× 2 matrices with entries from N and

odd determinant. Let A =
(
a b
b a

)
be an arbitrary element of S. Define

c(A) = a− b. Note that S has no identity and no units.
Set u = ς(A) = a + b and v = c(A) = a − b, so that a = u+v

2 and b = u−v
2 .

Thus we can represent A as the ordered pair (u, v). Since a, b ∈ N, u ≥ |v|+2 and
u ≡ v (mod 2). Since detA = a2−b2 = (a+b)(a−b) = uv and detA is odd, u and

v must be odd. Since
(

u+v
2

u−v
2

u−v
2

u+v
2

)(
x+y

2
x−y

2
x−y

2
x+y

2

)
=
(

ux+vy
2

ux−vy
2

ux−vy
2

ux+vy
2

)
,

(u, v)(x, y) = (ux, vy).

Lemma 6.8. (u, v) is reducible if and only if there exist x, y ∈ Z such that
xy = uv and 0 ≤ x− y < u− v.

Proof. Suppose there exist such x, y ∈ Z. Suppose that x ≥ u; then y = u
xv < v,

so x−y ≥ u−v,→←. Hence x < u. Since uv = xy and x < u, g = gcd(u, y) > 1.
Since x < u, there must be some α < g such that x = αug . Then y = uv

x = g
αv.

Since 0 < α < g and x ≥ y, x
α >

y
g . Hence we can factor (u, v) = ( xα ,

y
g )(g, α).

Now suppose that (u, v) is reducible. Then (u, v) = (µ, ν)(uµ ,
v
ν ) where µ > ν

and u
µ >

v
ν . Note that v = ν vν < ν uµ < µuµ = u and v = ν vν < µ vν < µuµ = u.
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Lemma 6.9. If detA = k2 for some k ∈ Z, then A is reducible. If d ∈ Z is not
a perfect square, then there exists exactly one atom Pd ∈ S such that detPd = d.

Proof. Let A = (u, v) such that uv = detA = k2. Since k · k = uv and
v < k ≤ k < u, by Lemma 6.8 A is reducible.
Let d ∈ Z such that d is not a perfect square. Let Pd = (u, v) such that uv = d
and u − v is minimal. By the minimality of u − v, there are no x, y ∈ Z such
that xy = uv and 0 < x − y < u − v, and since d is not a perfect square,
there are no x, y ∈ Z such that xy = uv and 0 ≤ x − y < u − v. Hence by
Lemma 6.8 Pd is an atom. Meanwhile, for any B = (ς(B), c(B)) ∈ S such that
detB = d and B 6= Pd, by the minimality of u − v, 0 < u − v < ς(B) − c(B)
and uv = d = ς(B)c(B), so by Lemma 6.8 B is reducible.

Define Ξ(u, v) to be the maximum t such that there exist u1, u2, . . . , ut,

v1, v2, . . . , vt such that u =
t∏
i=1

ui and v =
t∏
i=1

vi and ui > vi. Note that Ξ(u, v) ≤

Ψ2(u).

Theorem 6.10. L(A) = Ξ(ς(A), c(A)).

Proof. Suppose A = A1A2 · · ·At. ς(A) = ς(A1)ς(A2) · · · ς(At) and c(A) =
c(A1)c(A2) · · · c(At). Since all entries are positive, c(Ai) < ς(Ai). Hence t ≤
Ξ(ς(A), c(A)), so L(A) ≤ Ξ(ς(A), c(A)).

Let k = Ξ(ς(A), c(A)). Then there exist ς1, ς2, . . . , ςk, c1, c2, . . . , ck where
t∏
i=1

ςi =

ς(A) and
t∏
i=1

ci = c and ςi > vi. Since ς(A) and c(A) are odd, all ςi and ci must

be odd, so ςi + ci and ςi − ci are even. Let Bi =
(

ςi+ci

2
ςi−ci

2
ςi−ci

2
ςi+ci

2

)
. Then

A = B1B2 · · ·Bk, so L(A) ≥ k = Ξ(ς(A), c(A)).

6.3 Semigroup of Bistochastic Matrices with the Opera-
tion of × and Entries from N and Any Determinant

Let S be the semigroup of bistochastic 2× 2 matrices with entries from N and

any determinant. Let A =
(
a b
b a

)
be an arbitrary element of S. Define

c(A) = a− b. Note that S has no identity and no units.

Conjecture 6.11. Let d ∈ Z. If d is a perfect square and 16 - d, then S has
no atoms with determinant d. If d is a perfect square and 16 | d, then there
exists exactly one atom Pd ∈ S with determinant detPd. If d is not a perfect
square and 16 - d, then there exists exactly one atom Pd ∈ S with determinant
detPd. Finally, if d is not a perfect square and 16 | d, then there exist exactly
two atoms Pd, Qd ∈ S with determinant detPd = detQd = d.
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[3] Jên Chung Ch’üan and Wai Fong Chuan. Factorability of positive-integral
matrices of prime determinants. Bull. Inst. Math. Acad. Sinica, 14(1):11–
20, 1986.

[4] P. M. Cohn. Noncommutative unique factorization domains. Trans. Amer.
Math. Soc., 109:313–331, 1963.

[5] Craig M. Cordes and D. P. Roselle. Generalized frieze patterns. Duke Math.
J., 39:637–648, 1972.

[6] Dennis R. Estes. Factorization in hereditary orders. Linear Algebra Appl.,
157:161–164, 1991.

[7] M. A. Frumkin. Fast computations with frobenius matrices. In Compu-
tational processes and systems, No. 5 (Russian), pages 302–311. “Nauka”,
Moscow, 1987.

[8] Alfred Geroldinger and Franz Halter-Koch. Non-unique factorizations, vol-
ume 278 of Pure and Applied Mathematics (Boca Raton). Chapman &
Hall/CRC, Boca Raton, FL, 2006. Algebraic, combinatorial and analytic
theory.

[9] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns
Hopkins Studies in the Mathematical Sciences. Johns Hopkins University
Press, Baltimore, MD, third edition, 1996.

[10] Gracinda M. S. Gomes, Helena Sezinando, and Jean-Eric Pin. Presentations
of the Schützenberger product of n groups. Comm. Algebra, 34(4):1213–
1235, 2006.

[11] Gebhard Greiter. Nonunique factorization in subsemigroups of semigroups
with unique prime factorization. Amer. Math. Monthly, 87(6):473–474,
1980.

[12] Vesa Halava and Tero Harju. On Markov’s undecidability theorem for
integer matrices. Semigroup Forum, 75(1):173–180, 2007.

[13] Glyn Harman. Approximation of real matrices by integral matrices. J.
Number Theory, 34(1):63–81, 1990.

[14] Bernard Jacobson. Classroom Notes: Matrix Number Theory: An Example
of Nonunique Factorization. Amer. Math. Monthly, 72(4):399–402, 1965.

50



[15] Bernard Jacobson and Robert J. Wisner. Matrix number theory. I. Fac-
torization of 2 × 2 unimodular matrices. Publ. Math. Debrecen, 13:67–72,
1966.

[16] Mark Kambites. On the Krohn-Rhodes complexity of semigroups of upper
triangular matrices. Internat. J. Algebra Comput., 17(1):187–201, 2007.

[17] Melven Krom. An unsolvable problem with products of matrices. Math.
Systems Theory, 14(4):335–337, 1981.

[18] Shao-wu Liu and Guo-dong Zhang. Maps preserving rank 1 matrices over
fields. Heilongjiang Daxue Ziran Kexue Xuebao, 23(1):138–140, 2006.

[19] E. Ja. Melamud. Realization of positive matrix-valued functions according
to Darlington. Polynomial realization in the case of degeneration. Izv. Akad.
Nauk Armyan. SSR Ser. Mat., 14(4):237–250, 314, 1979.

[20] G. Picci, J. M. van den Hof, and J. H. van Schuppen. Primes in several
classes of the positive matrices. Linear Algebra Appl., 277(1-3):149–185,
1998.

[21] Richard Shell and Ernest Hall. Handbook of Industrial Automation. CRC
Press, 2000.

[22] V. N. Shevchenko and S. V. Sidorov. On the similarity of second-order
matrices over the ring of integers. Izv. Vyssh. Uchebn. Zaved. Mat., (4):57–
64, 2006.

[23] Seok-Zun Song. Separability of distinct boolean rank-1 matrices. J. Appl.
Math. Comput., 18(1-2):197–204, 2005.

[24] Seok-Zun Song and Kyung-Tae Kang. Rank and perimeter preserver of
rank-1 matrices over max algebra. Discuss. Math. Gen. Algebra Appl.,
23(2):125–137, 2003.

[25] Pawoumodom L. Takouda. Un problème d’approximation matricielle:
quelle est la matrice bistochastique la plus proche d’une matrice donnée?
RAIRO Oper. Res., 39(1):35–54, 2005.

[26] P. Vermes. Certain classes of series to series transformation matrices. Amer.
J. Math., 72:615–620, 1950.

[27] Ji Tuan Zhou and Lin Zhang Lu. Primes in the doubly stochastic circulant
matrices of order 3 or 4. Acta Math. Sinica (Chin. Ser.), 50(3):661–668,
2007.

51


