Bacteriophage adhering to mucus provide a non–host-derived immunity

Jeremy J. Barr1,a, Rita Auro6, Mike Furlan6, Katrine L. Whiteson6, Marcella L. Erb5, Joe Pogliano5, Aleksandr Stotland5, Roland Wolkowicz2, Andrew S. Cutting5, Kelly S. Doran6, Peter Salamon5, Merry Youle6, and Forest Rohwer5

1Department of Biology, San Diego State University, San Diego, CA 92182; 6Division of Biological Sciences, University of California, San Diego, CA 92093; 2Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182; and 5Rainbow Rock, Ocean View, HI 96777

Edited by Richard E. Lenski, Michigan State University, East Lansing, MI, and approved April 18, 2013 (received for review March 28, 2013)

Mucosal surfaces are the primary entry point for pathogens and the principal sites of defense against infection. Both bacteria and phage are associated with this mucus. Here we show that phage-to-bacteria ratios were increased, relative to the adjacent environment, on all mucosal surfaces sampled, ranging from cnidarians to humans. In vitro studies of tissue culture cells with and without surface mucus demonstrated that this increase in phage abundance is mucus dependent and protects the underlying epithelium from bacterial infection. Enrichment of phage in mucus occurs via binding interactions between mucin glycoproteins and Ig-like protein domains exposed on phage capsids. In particular, phage Ig-like domains bind variable glycan residues that coat the mucin glycoprotein component of mucus. Metagenomic analysis found these Ig-like proteins present in the phages sampled from many environments, particularly from locations adjacent to mucosal surfaces. Based on these observations, we present the bacteriophage adherence to mucus model that provides a ubiquitous, but non–host-derived, immunity applicable to mucosal surfaces. The model suggests that metazoan mucosal surfaces and phage co-evolve to maintain phage adherence. This benefits the metazoan host by limiting mucosal bacterial, and benefits the phage through more frequent interactions with bacterial hosts. The relationships shown here suggest a symbiotic relationship between phage and metazoan hosts that provides a previously unrecognized antimicrobial defense that actively protects mucosal surfaces.

symbiosis | host-pathogen | virus | immunoglobulin | immune system

Within the mucus, the predominant macromolecules are the large (up to 109 Da) mucin glycoproteins. The amino acid backbone of these proteins incorporates tandem repeats of exposed hydrophobic regions alternating with blocks bearing extensive O-linked glycosylation (17). Hundreds of variable, branched, negatively charged glycan chains extend 0.5–5 nm from the peptide core outward into the surrounding environment (17, 18). Other proteins, DNA, and cellular debris also are present. Continual secretion and shedding of mucins maintain a protective mucus layer from 10–70 μm thick depending on species and body location (19–22).

By offering both structure and nutrients, mucus layers commonly support higher bacterial concentrations than the surrounding environment (11, 23). Of necessity, hosts use a variety of mechanisms to limit microbial colonization (24–27). Secretions produced by the underlying epithelium influence the composition of this microbiota (12, 27, 28). When invaded by pathogens, the epithelium may respond by increased production of antimicrobial agents, hypersecretion of mucin, or alteration of mucin glycosylation patterns to subvert microbial attachment (29–31).

Also present in the mucus environment are bacteriophage (phage), the most common and diverse biological entities. As specific bacterial predators, they increase microbial diversity through Red Queen/kill-the-winner dynamics (32, 33). Many phages establish conditional symbiotic relationships with their bacterial hosts through lysogeny. As integrated prophages, they often express genes that increase host fitness or virulence (34–36) and protect their host from lysis by related phages. As free phage, they aid their host strain by killing related competing strains (37–39). Phages participate, along with their bacterial hosts, in tripartite symbioses with metazoans that affect metazoan fitness (40–43). However, no direct symbiotic interactions between phage and metazoans are known.

Recently, Minot et al. (44) showed that phages in the human gut encode a population of hypervariable proteins. For 29 hypervariable regions, evidence indicated that hypervariability was conferred by targeted mutagenesis through a reverse transcription mechanism (44, 45). Approximately half of these encoded proteins possessed the C-type lectin fold previously found in the major tropism determinant protein at the tip of the Bonnetella phage BFP-1 tail fibers (46); six others contained Ig-like domains. These Ig-like proteins, similar to antibodies and T-cell receptors, can accommodate large sequence variation (>1013 potential alternatives) (47). Ig-like domains also are displayed in the structural proteins of many phage (48, 49). That most of these displayed Ig-like domains are dispensable for phage growth in the laboratory (45, 49) led to the hypothesis that they aid adsorption to their bacterial prey under environmental conditions (49). The possible role and function of these hypervariable proteins remain to be clarified.

Here, we show that phage adhere to mucus and that this association reduces microbial colonization and pathology. In vitro studies demonstrated that this adherence was mediated by the interaction between displayed Ig-like domains of phage capsid proteins and glycan residues, such as those in mucin glycoproteins. Homologs of these Ig-like domains are encoded by phages from many environments, particularly those adjacent to mucosal surfaces. We propose the bacteriophage adherence to mucus (BAM) model whereby phages provide a non–host-derived antimicrobial defense on the mucosal surfaces of diverse metazoan hosts.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. Freely available online through the PNAS open access option.

Data deposition: Raw glycan array data are available from the Consortium for Functional Glycomics (accession no. 2621).

1To whom correspondence should be addressed. E-mail: jeremybarr85@gmail.com.

This article contains supporting information online at www.pnas.orglookup/suppl/doi:10.1073/pnas.1305923110/-/DCSupplemental.
Results

Phage Adhere to Mucus. Our preliminary investigations of mucosal surfaces suggested that phage concentrations in the mucus layer were elevated compared with the surrounding environment. Here, we used epifluorescence microscopy to count the phage and bacteria in mucus sampled from a diverse range of mucosal surfaces (e.g., sea anemones, fish, human gum), and in each adjacent environment (SI Materials and Methods and Fig. S1). Comparing the calculated phage-to-bacteria ratios (PBRs) showed that PBRs in metazoan-associated mucus layers were on average 4.4-fold higher than those in the respective adjacent environment (Fig. L4). The PBRs on these mucus surfaces ranged from 21:1 to 87:1 (average, 39:1), compared with 3:1 to 20:1 for the surrounding milieus (average, 9:1; *n* = 9, *t* = 4.719; ***P* = 0.0002). Earlier investigations of phage abundance in marine environments reported that phage typically outnumber bacteria by an order of magnitude (50–52), but here we demonstrate that this margin was significantly larger in metazoan-associated mucus surface layers.

To determine whether this enrichment was dependent on the presence of mucus rather than some general properties of the cell surface (e.g., charge), phage adherence was tested with tissue culture (TC) cells with and without surface mucus (SI Materials and Methods). In these assays, T4 phage were washed across confluent cell monolayers for 30 min, after which nonadherent phage were removed by repeated washings and the adherent phage quantified by epifluorescence microscopy. Two mucus-producing cell lines were used: T84 (human colon epithelial cells) and A549 (human lung epithelial cells). For these cells, mucin secretion was stimulated by pretreatment with phorbol 12-myristate 13-acetate (53, 54). Comparison of the T84 cells with the non–mucus-producing Huh-7 human hepatocyte cell line showed that T4 phage adhered significantly more to the mucus-producing T84 cells (Fig. 1B; *n* = 18, *t* = 8.566; ***P* < 0.0001). To demonstrate the mucus dependence of this adherence, the mucus layer was chemically removed from A549 cells by N-acetyl-L-cysteine (NAC) treatment (55) (Fig. S2). This significantly reduced the number of adherent phage to levels similar to those observed with non–mucus-producing cell lines (Fig. 1B; *n* > 40, *t* = 9.561; ***P* < 0.0001). We also created an A549 shRNA mucus knockdown cell line (MUC’), reducing mucus production in A549, and a nonsense shRNA control (shControl; Figs. S3 and S4). Again, T4 phage adhered significantly more to the mucus-producing cells (Fig. 1B; *n* > 37, *t* = 7.673; ***P* < 0.0001).

Although mucin glycoproteins are the predominant component of mucus, other macromolecular components also are present, any of which might be involved in the observed phage adherence. We developed a modified top agar assay to determine whether phage adhered to a specific macromolecular component of mucus. Plain agar plates and agar plates coated with 1% (wt/vol) mucin, DNA, or protein were prepared. That concentration was chosen because it is at the low end of the range of physiological mucin concentrations (56). T4 phage suspensions were incubated on the plates for 30 min, after which the phage suspension was decanted to remove unbound particles. The plates then were overlaid with a top agar containing Escherichia coli hosts and incubated overnight. The number of adherent phage was calculated from the number of plaque-forming units (pfu) observed. Significantly more T4 phage adhered to the 1% mucin-coated agar surface (Fig. 1C; *n* = 12, *t* = 5.306; ***P* < 0.0001). Combined, these three assays show that phage adhere to mucin glycoproteins.

Phage Adherence and Bacterial Infection. The mucus layer is an optimal environment for microbial growth, providing structure as well as nutrients in the form of diverse, mucin-associated glycans. To limit this growth, the metazoan host retards microbial colonization by diverse antimicrobial mechanisms (24–27). Does the increased number of adherent phage found on mucosal surfaces also reduce microbial colonization? To answer this, bacterial attachment to mucus-producing and non–mucus-producing TC cells was assayed both with and without pretreatment of the cells with the mucus-adherent phage. T4. Here confluent monolayers of TC cells were overlaid with T4 phage for 30 min, washed to remove the nonadherent phage, and then incubated with *E. coli* for 4 h. Cells then were scraped from the plates and the attached bacteria were fluoroescence stained and counted by epifluorescence microscopy. Phage pretreatment of mucus-producing TC cell lines (T84, A549) significantly decreased subsequent bacterial attachment (Fig. 2A; T84; *n* > 30, *t* = 32.05, ***P* < 0.0001; A549; *n* > 30, *t* = 36.85, ***P* < 0.0001). Phage pretreatment of non–mucus-producing cells (Huh-7; MUC’), an A549 mucus knockdown strain had a much smaller effect on bacterial attachment.

To determine whether this reduced bacterial attachment depended on bacterial lysis and the production of progeny viruses, we repeated these experiments using an amber mutant T4 phage (T4 am4344·f). When infecting wild-type *E. coli*, this phage produces no infective progeny virions, but infection of the *E. coli* amber suppressor strain SupD yields infective virions. For these experiments, mucus-producing A549 cells were pretreated with amber mutant T4 am4344·f phage and then incubated with either wild-type or the amber suppressor strain *E. coli* (Fig. 2B). Bacterial attachment was reduced by more than four orders of magnitude when phage could replicate and thereby increase the number of infective virions within the mucus (*n* = 8, ***P* < 0.0001). Comparatively, when no phage replication occurred in the mucus, there was no observable change in bacterial colonization and fewer phages were detected (*n* = 8, *P* = 0.0227). These results show that pretreatment of a mucosal surface with phage reduces adherence of a bacterial pathogen and that this protection is mediated by continued phage replication in the mucus.

To test whether the observed reduced bacterial adherence was accompanied by reduced pathology of the underlying TC cells, mucus-producing A549 and non–mucus-producing MUC’ TC cells were exposed to *E. coli* overnight, either with or without a 30-min pretreatment with T4 phage. Infection was quantified as the percentage of cell death. Adherence of phage effectively protected the mucus-producing cells against the subsequent bacterial challenge (Fig. 2C; *n* = 12, ***P* < 0.0001). Phage pretreatment showed a reduced protection to the non–mucus-producing MUC’
cells, decreasing cell death only twofold. Evaluating the importance of mucin production for effective protection, we found that phage pretreatment of mucin-producing A549 cells resulted in a 3.6-fold greater reduction in cell death (n = 12, *P = 0.0181) than the same pretreatment of the mucin knockdown MUC− cells.

Role of Capsid Ig-Like Domains in Phage Adherence. Minot et al. (44) recently reported that phage communities associated with the human gut encode a diverse array of hypervariable proteins, including some with hypervariable Ig-like domains. Four Ig-like domains are found in highly antigenic outer capsid protein (Hoc), a T4 phage structural protein of which 155 copies are displayed on the capsid surface (57, 58). Based on this, and given that most Ig-like domains function in recognition and adhesion processes, we hypothesized that the T4 Hoc protein might mediate the adherence of T4 phage to mucus. To test this, we performed three experiments. First, we compared the adherence of hoc+ T4 phage and a hoc− mutant to mucin, DNA, and protein-coated agar plates to an uncoated agar control using the modified top agar assay (see above). Relative to plain agar, the adherence of hoc+ T4 phage increased 4.1-fold for mucin-coated agar (n = 11, t = 3.977, ***P = 0.0007), whereas adherence increased only slightly for agar coated with DNA (1.1-fold) or protein (1.2-fold; Fig. 3A). Unlike the hoc+ T4 phage, the hoc− phage did not adhere preferentially to the mucin-coated agar, but instead showed 1.2-, 1.2-, and 1.1-fold increased adherence for mucin, DNA, and protein coatings, respectively. To ensure that none of the macromolecules directly affected phage infectivity, hoc+ and hoc− T4 phage were incubated in 1% (wt/vol) solutions of mucin, DNA, or protein. Phage suspensions were combined with E. coli top agar as described above and layered over uncoated agar plates. The results confirmed that the macromolecules did not alter phage infectivity (Fig. S5). To provide further evidence that the mucin adherence was dependent on the capsid displayed Ig-like domains rather than some other property of T4 phage, we repeated the modified top agar assay using IgG and IgG+ T3 phage. As with T4, the Ig-like domains of T3 are displayed on the surface of the major capsid protein (49). Results indicated a similar increase in adherence to mucin for the Ig+, but not the Ig−, T3 phage (Fig. S6). Thus, adherence of these phage to mucus requires the Ig-like protein domains.

Second, a competition assay using hoc+ and hoc− T4 phage and mucin-producing TC cells was performed to demonstrate the role of mucin in phage adherence. Phage suspended in mucin solutions ranging from 0% to 5% (wt/vol) were washed over confluent layers of mucin-producing A549 TC cells; phage adherence then was assayed as above. Adherence of hoc+ T4 phage, but not of hoc− T4 phage, was reduced by mucin competition in a concentration-dependent manner (Fig. 3B).

Third, interaction of the Hoc protein domains displayed on the capsid surface with mucin glycoproteins was hypothesized to affect the rate of diffusion of T4 virions in mucus. To evaluate this, we used multiple-particle tracking (MPT) to quantify transport rates of phage particles in buffer and in mucin suspensions. The ensemble average effective diffusivity (Doeff) calculated at a time scale of 1 s for both hoc+ and hoc− T4 phage in buffer was compared against that in 1% (wt/vol) mucin suspensions (SI Materials and Methods). Both hoc+ and hoc− phage diffuse rapidly through buffer (Fig. 3C). Whereas hoc− phage diffused in 1% mucin at the same rate as in buffer, the mucin decreased the diffusion rate for hoc+ phage particles eightfold. Thus, all three of these experimental approaches supported our hypothesis that...
the Hoc proteins displayed on the T4 phage capsid interact with mucin.

Phage Capsid Ig-like Domains Interact with Glycans. It is known that ~25% of sequenced tailed dsDNA phages (Caudovirales) encode structural proteins with predicted Ig-like domains (48). A search of publicly available viral metagenomes for homologs of the Ig-like domains of the T4 Hoc protein yielded numerous viral Ig-like domains from a variety of environments (Fig. 4A). These domains were more likely to be found in samples collected directly from mucus (e.g., sputum samples) or from an environment adjacent to a mucosal surface (e.g., intestinal lumen, oral cavity). All homologs displayed high structural homology (Phyre2 confidence score average, 96 ± 5%) with a plant-sugar binding motif for its promiscuous carbohydrate binding specificity (SI Materials and Methods and Table S1), suggesting an interaction between these Ig-like domains and glycans.

Mucins are complex glycoproteins with highly variable glycan groups exposed to the environment. To investigate whether Hoc interacts with glycans and, if so, to determine whether it interacts with a specific glycan or with a diverse array of glycans, we assayed phage adherence to microarrays printed with 610 mammalian glycans. The hoc+ T4 phage adhered to many diverse glycans and showed a preference for the O-linked glycan residues typically found in mucin glycoproteins (Fig. 4B, SI Materials and Methods, and Table S2). The hoc– T4 phage exhibited significantly lower affinity for all tested glycans. This indicates that Hoc mediates interactions between T4 phage and varied glycan residues.

Discussion

In diverse metazoans, body surfaces that interact with the environment are covered by a protective layer of mucus. Because these mucus layers provide favorable habitats for bacteria, they serve as the point of entry for many pathogens and support large populations of microbial symbionts. Also present are diverse phages that prey on specific bacterial hosts. Moreover, phage concentrations in mucus are elevated relative to the surrounding environment (an average 4.4-fold increase for a diverse sample of invertebrate and vertebrate metazoans; Fig. 4A). The increased concentration of lytic phage on mucosal surfaces provides a previously unrecognized metazoan immune defense affected by phage lysis of incoming bacteria.

Working with a model system using T4 phage and various TC cell lines, we demonstrated that the increased concentration of phage on mucosal surfaces is mediated by weak binding interactions between the variable Ig-like domains on the T4 phage capsid and mucin-displayed glycans. The Ig protein fold is well known for its varied but essential roles in the vertebrate immune response and cell adhesion. Ig-like domains also are present in approximately one quarter of the sequenced genomes of tailed DNA phages, the Caudovirales (48). Notably, these domains were found only in virion structural proteins and typically are displayed on the virion surface. Thus, they were postulated to bind to bacterial surface carbohydrates during infection (48, 49). However, mucin glycoproteins, the predominant macromolecular constituent of mucus, display hundreds of variable glycan chains to the environment that offer potential sites for binding by phage Ig-like proteins. Furthermore, we speculate that phage use the variability of the Ig-like protein scaffold (supporting >10^3 potential alternatives) to adapt to the host’s ever-changing pathogen–mucin glycan landscape.

The presence of an Ig-like protein (Hoc) displayed on the capsid of T4 phage significantly slowed the diffusion of the phage in mucin solutions. In vivo, similar phage binding to mucin glycans would increase phage residence time in mucus layers. Because bacterial concentrations typically are enriched in mucus (Fig. S1), we predict that mucus-adherent phage are more likely to encounter bacteria, potentially increasing their replicative success. If so, phage Ig-like domains that bind effectively to the mucus layer would be under positive selection. Likely, Hoc and other phage proteins with Ig-like domains interact with other glycans with different nutritional cycles, as well (49, 58).

Previous metagenomic studies documented the ubiquity and diversity of bacteria and phage within mucus-associated environments (e.g., human gut, human respiratory tract, corals) (52, 59–64). Known also were some of the essential but adaptable services provided by symbiotic bacteria in these environments (65). However, only recently have efforts been made to investigate the dynamic influences of phage within host-associated ecosystems (37, 44, 66). In this work, we used an in vitro model system to demonstrate a mechanism of phage adherence to the mucus layers that shield metazoan cells from the environment. Furthermore, adherent phage protected the underlying epithelial cells from bacterial infection. Based on these observations and previous research, we proposed the BAM model of immunity, in which the adherence of phage to mucosal surfaces yields a non-host-derived, antimicrobial defense. According to this model (summarized in Fig. 5), the mucus layer, already considered part of the innate immune system and known to provide physical and biochemical antimicrobial defenses (18, 27, 67), also accommodates phage.

The model system we used involved a single lytic phage and host bacterium; the situation in vivo undoubtedly is more complex. Within the mucosal layer reside diverse bacterial lineages and predictably an even greater diversity of phage strains, both enmeshed within complex phage–bacterial infection networks and engaged in a dynamic arms race (68, 69). These and other factors lower the probability that any given phage–bacterium encounter will result in a successful infection. The time dimension adds further complexity. The mucus layer is dynamic. Mucins are secreted continually by the underlying epithelium while mucus is sloughed continually from the outer surface. As a result, there is an ongoing turnover of both the bacterial and phage populations in the mucus layer. Driven by kill-the-winner dynamics, the population of phage types that can infect the dominant bacterial types present will cycle along with the populations of their hosts. Through such mechanisms, we envision that adherent lytic phages provide a dynamic and adaptable defense for their metazoan hosts—a unique example of a metazoan–phage symbiosis.

We posit that BAM immunity reduces bacterial pathogenesis and provides a previously unrecognized, mucosal immunity. This has far-reaching implications for numerous fields, such as human immunity, gastroenterology, coral disease, and phage therapy. Meanwhile, key questions remain. For instance, what role do temperate phages play in the dynamics of BAM immunity? When integrated into the bacterial chromosome as prophages,
they protect their bacterial hosts from infection by related phages: as free phages, they infect and kill sensitive related bacterial strains that compete with their bacterial hosts (37–39). Both mechanisms may benefit their metazoan host by contributing to the maintenance of a selected commensal mucus microbiota. These possibilities remain to be investigated. Likewise, in vivo investigations are needed to characterize the bacterial and phage diversity present and the consequent effects on BAM immunity. As of now, the relationships shown here open an arena for immunological study, introduce a phage–metazoan symbiosis, and recognize the key role of the world’s most abundant biological entities in the metazoan immune system.

Materials and Methods

Bacterial Strains, Phage Stocks, TC Cell Lines, and Growth Conditions. E. coli 1024 strain was used for all E. coli experiments and was grown in LB (10 g tryptone, 5 g yeast extract, 10 g NaCl, in 1 L dH₂O) at 37 °C overnight. E. coli amber-suppressor strain SupD strain CR63 was used as a host for amber mutant phage and grown as above. Bacteriophage T4 was used at ∼10⁷ pfu mL⁻¹. Hoc T4 phage were kindly supplied by Prof. Venigalla Rao (58), The Catholic University of America, Washington, D.C. T3 am10 Ig– amber mutant phage were kindly supplied by Prof. Ian J. Molineux (70), University of Texas, Austin, TX. T4 replication-negative 43⁻ (amE4332: DNA polymerase) 44⁻ (amN82: subunit of polymerase clamp holder) amber mutant phage were kindly supplied by Prof. Kenneth Kreuzer (71), Duke University School of Medicine, Durham, NC. The human tumorigenic colon epithelial cell line, T84, was obtained from the American Type Culture Collection (ATCC) and cultured in DMEM/F12-K media with 5% FBS and 100 µg mL⁻¹ penicillin-streptomycin (PS). The human tumorigenic lung epithelial cell line A549 was kindly supplied by Prof. Kelly Doran, San Diego State University, San Diego, CA and cultured in F12-K media with 10% FBS, 100 µg mL⁻¹ PS. All TC cell lines initially were grown in 50 mL Primaria Tissue Culture Flasks (Becton Dickinson) at 37 °C and 5% CO₂.

Phage Adherence to Mucus-Associated Macromolecules. LB agar plates were coated with 1 mL of 1% (wt/vol) of one of the following in 1× PBS: type III porcine stomach mucin, DNA from salmon testes, or BSA (all three from Sigma-Aldrich) and then allowed to dry. Stocks of hoc⁺ and hoc⁻ T4 phage (10⁷ pfu mL⁻¹) were serially diluted to 1 × 10⁻⁷ and 1 × 10⁻⁸ per milliliter in LB, and a 5-mL aliquot of each dilution was washed across the plates for 30 min at 37 °C on an orbital shaker. After the phage suspensions were decanted from the plates, the plates were shaken twice to remove excess liquid and dried. Each plate then was layered with 1 mL of overnight E. coli culture (10⁹ mL⁻¹) in 3 mL of molten top agar and incubated overnight at 37 °C. The number of adherent phage was calculated from the number of plaque-forming units observed multiplied by the initial phage dilution. To determine whether mucus macromolecules directly affected phage infectivity, hoc⁺ and hoc⁻ T4 phage (10⁷ pfu mL⁻¹) were serially diluted as described above into 1 mL LB solutions containing 1% (wt/vol) mucin, DNA, or BSA. After incubation for 30 min at 37 °C, the phage suspensions were combined with E. coli top agar as described above and layered on uncoated agar plates (Fig. S5).

Phage Treatment of TC Cells. TC cells were washed twice with 5 mL of serum-free media to remove residual antibiotics, layered with 2 mL of serum-free media containing T4 phage (10⁷ or 10⁶ mL⁻¹), and incubated at 37 °C and 5% CO₂ for 30 min. Cells then were washed five times with 5 mL of serum-free media to remove nonadherent phage.

Phage Adherence to TC Cells. TC cells were treated with phage (10⁹ mL⁻¹; see above), then scraped from plates using Corning Cell Scrappers (Sigma-Aldrich). Adherent phage were counted by epifluorescence microscopy as described above.

Bacterial Adherence to TC Cells With/Without Phage Pretreatment. TC cells with or without pretreatment with T4 phage (10⁹ mL⁻¹) were layered with 2 mL serum-free media containing E. coli (10⁹ mL⁻¹), incubated at 37 °C and 5% CO₂ for 4 h, and then washed five times with 5 mL serum-free medium to remove nonadherent phage and bacteria. Cells were scraped from plates, and adherent phage and bacteria were counted by either epifluorescence microscopy, as described above, or colony-forming and plaque-forming units. Then, 100 µL of a relevant dilution was spread onto an agar plate and incubated overnight at 37 °C, and the number of adherent bacteria was calculated from the colony-forming units observed multiplied by the initial dilution. Plaque-forming units were counted by a top agar assay as described above.

TC Cell Death from Bacterial Infection. Mucus-producing A549 and MUC5A49 TC cells were grown to confluence. T4 phage were cleaned using Amicon 50-kDa centrifugal filters (Millipore) and saline magnesium buffer (SM) to remove bacterial lysis products. Cells, with or without T4 phage pretreatment (10⁹ mL⁻¹), were incubated with E. coli (10⁹ mL⁻¹) overnight. Afterward, TC cells were recovered from the plates by trypsin/EDTA solution (Invitrogen). Cells were pelleted by centrifugation and resuspended in 1× PBS. Dead cells were identified by staining with 1 mg/mL of propidium iodide (Invitrogen). Samples then were analyzed on a FACSCanto II flow cytometer (BD Biosciences) with excitation at 488 nm and emission detected through a 670 long pass filter. The forward scatter threshold was set at 5,000, and a total of 10,000 events were collected for each sample.

Mucin Competition Assay. Mucus-producing A549 TC cells were grown to confluence. Hoc⁺ and hoc⁻ T4 phage (10⁹ mL⁻¹) were diluted into mucin solutions ranging between 0% and 5% (wt/vol) in 1× PBS then washed over TC cells for 30 min at 37 °C and 5% CO₂. Cells were washed five times with 5 mL serum-free media to remove nonadherent phage, scraped from plates, and adherent phage were quantified as described above.

Graphing and Statistics. Graphing and statistical analyses were performed using GraphPad Prism 6 (GraphPad Software). All error bars represent 5–95% confidence intervals. The midline represents the median and the mean for box plots and bar plots, respectively.
ACKNOWLEDGMENTS. This work was supported by National Institutes of Health Grant GM095384, GM53988, and R21 AI084534 from the National Institute of General Medical Sciences. The authors thank the Protein-Glycan Interaction Resource at Emory University School of Medicine, Atlanta, GA (funded by NIH Grant GM89719), for support of the glycan purification effort. The authors acknowledge the San Diego State University (SDSU) Flow Cytometry Core Facility and the State Electronic Microscopy Facility for assistance with sample analysis.

Supporting Information

Barr et al. 10.1073/pnas.1305923110

SI Materials and Methods

Mucus Sample Collection. Mucus samples were collected directly from the surface of organisms using a syringe, swab, or custom suction device. Environmental samples were collected as close to the mucus sample as possible, typically within 30-50 cm of the mucosal surface. Specific organism details are as follows:

Sea anemones were sampled from tidal rock pools at Ocean Beach, San Diego, CA. Surface mucus was collected by a custom suction device that dislodges surface mucus using a stream of 0.02-μm filtered seawater; the environmental sample was seawater collected directly above the anemone.

Hard corals were sampled at the Birch Aquarium, San Diego, CA. Surface mucus was collected by syringe directly from coral surfaces; environmental water samples were collected directly above the coral.

The polychaete, along with surrounding water, was collected at Scripps Pier, San Diego, CA, and carefully transported to the laboratory in a container. Surface mucus was collected via syringe, and the environmental sample was seawater from the container.

Teleost surface mucus was sampled at the Birch Aquarium, San Diego, CA. Surface mucus was collected by custom suction device; the environmental water sample was collected directly above the teleost within its tank.

Human gum mucus was sampled from a male subject with no current pathology/disease. Surface mucus was collected by swab; the environmental sample was expectorated saliva. Consent was obtained for all human samples collected under the San Diego State University Institutional Review Board #1212.

Mouse intestine was excised from a healthy mouse. Surface mucus was collected by cutting open the intestine, washing the mucosal surface with 0.02-μm filtered PBS buffer, then scraping off the mucus layer; the environmental sample was collected from the intestinal lumen directly adjacent to the sampled mucosa. All animal experiments were approved by the Committee on the Use and Care of Animals (SDSU, APF #10-08-024D) and performed using accepted veterinary standards.

Bacterial and Phage Counts from Mucus and Environmental Samples. Samples of mucus and the adjacent environment were collected directly from nine evolutionarily diverse mucosal surfaces (Fig. S1). Samples were transported and maintained on ice until processed. All samples were fixed overnight in 0.5% glutaraldehyde at 4 °C, then incubated in 6.5 mM DTT at 37 °C for 1 h to assist mucus degradation. A 1–100-μL aliquot was diluted with 2 mL of 0.02-μm SM buffer (100 mM NaCl, 8 mM MgSO₄, 50 mM Tris·Cl, in dH₂O), briefly mixed, then filtered onto a 0.02-μm Anodisc polycarbonate filter (Whatman). Filters were stained with 10× SYBR Gold, washed, and visualized on a Zeiss epi-fluorescence microscope. For each sample, 20–30 images were taken for both bacteria and virus-like particles. Images were analyzed using Image-Pro Plus 5.1 software (MediaCybernetics). Counts of bacteria and virus-like particles (referred to as “phage” throughout the text) per milliliter were made as previously described (1).

Tissue Culture Cells and Mucus Reduction. Monolayers of various mucus-producing and non–mucus-producing tissue culture (TC) cells were grown to confluence in six-well Multitwell tissue culture plates (Becton Dickinson). (i) Mucus-producing TC cells were exposed to 1 μg/mL of a phorbol ester, phorbol-12-myristate 13-acetate (Sigma–Aldrich) in the culture media overnight to stimulate the mucin secretory response (2). (ii) The mucolytic agent N-acetyl-l-cysteine (NAC; Sigma–Aldrich) was used to chemically remove mucus from A549 TC cells (60 mM NAC in serum-free media for 1 h with agitation) (3). Mucus depletion was confirmed using periodic acid-Schiff–Alcian blue (PAS/AB) (Fig. S2). (iii) A mucus-knockdown (MUC-) A549 cell line was produced by transduction of A549 cells with GIPZ Lentiviral Human MUC1 shRNA and TRIPZ Inducible Lentiviral Human MUC5AC shRNA targets; an shControl A549 cell line was produced using the GIPZ Nonsilencing Lentiviral shRNA Control as a control vector (Thermo Scientific). Knockdown of mucus production in the MUC- cell line was confirmed by Western blot analysis and PAS/AB (Sigma–Aldrich; Figs. S3 and S4).

Transfection and Selection of A549 TC Mucus-Negative Clones. A549 cells were transduced with GIPZ Lentiviral Human MUC1 shRNA and TRIPZ Inducible Lentiviral Human MUC5AC shRNA as target vectors or GIPZ Nonsilencing Lentiviral shRNA Control as a control vector (Thermo Scientific) according to the manufacturer’s instructions. Viral particles were produced by transfecting HEK 293T cells with a combination of plasmids containing 2 μg of packaging vector pCMV d8.2 containing the gag-pol proteins of HIV-1, 3 μg of the transfer vectors containing the LTRs of HIV-1, 3 μg of vesicular stomatitis virus envelope glycoprotein plasmid, and 1.5 μg of psi-HIV-1 viral protein R accessory protein plasmid. Growth medium was replaced 24 h post transfection, and viral supernatant was collected 48 and 72 h after transfection and then filtered through 0.45-μm polycarbonate filters and grown to ~70% confluence. The cells then were washed twice in serum-free media before being incubated overnight in 1 mL of growth media and 1 mL of virus-containing media containing 5 μg/mL of polybrene. The transduced cells subsequently were washed and cultured for 24 h in complete medium with 2 μg/mL of doxycycline to induce expression of shRNA. Cells then were sorted using a BD FACSAria (BD Biosciences) at the San Diego State University Flow Cytometry Facility. A 100-μm nozzle was used at a sheath pressure of 20 psi. Excitation source was a 488-nm laser and emissions were collected using 530/50 band pass (BP) and 585/42 BP filters for GFP and red fluorescent protein, respectively. Between 10,000 and 300,000 cells were sorted for each population and collected in a 5-mL tube with 250 μL of FBS. The efficiency of MUC1-MUC5AC knockdown was confirmed by Western blot analysis and PAS/AB (Sigma–Aldrich), a stain for mucus-like substances.

Western Blot Analysis. Expression of MUC1 (a membrane-tethered mucin) and MUC5AC (a secreted gel-forming mucin) was examined by Western blot analysis. MUC-, shControl, and native A549 cell lines were grown to confluence and then lysed using radio-immunoprecipitation assay (RIPA) buffer (Thermo Scientific) containing 2 mM Na₂VO₄, 100 mM NaF, 10 mM sodium pyrophosphate, 1 mM PMSF, and protease inhibitor mixture (Millipore). Aliquots containing 50 μg of total protein were subjected to SDS/PAGE, and the protein bands were transferred to a polyvinylidene difluoride membrane (Sigma–Aldrich). Membranes were blocked with 5% nonfat milk in Tris-buffered saline containing 0.05% Tween 20 at room temperature for 1 h and then incubated overnight at 4 °C with mouse anti-human MUC1 monoclonal antibody (clone S.854.6; Thermo Scientific), mouse anti-human MUC5AC monoclonal antibody (clone 2H7; Sigma–Aldrich), and rabbit anti-human GAPDH antibody (Millipore). After three washes, membranes were incubated for 1 h at room temperature with horseradish peroxidase-conjugated secondary antibodies (Sigma–Aldrich) and visualized with enhanced chemiluminescence (Amersham). Membranes were washed again and exposed to X-Omat AR film (Kodak) for 5 days before development.
Multiple Particle Tracking. Assays were performed in plastic well chambers mounted on glass slides that had been coated with poly(dimethylsiloxane) to prevent phage adherence. Five microliters of 10^9 mL^-1 SYBR Gold-labeled phage suspensions was added to 50 μL of 1% (wt/vol) mucin solution in 1x PBS buffer. Trajectories of fluorescently labeled phage were observed using a DeltaVision Spectris Model DV4 deconvolution microscope (Applied Precision) equipped with a 100x Olympus PlanApo 1.4 lens. Movies were captured using SoftWoRx 5.0.0 (Applied Precision): 100-ms temporal resolution for 30 s, 10 analyses per sample, n > 100 particle trajectories per analysis. Trajectories were analyzed with the ParticleTracker plugin for ImageJ (4). The coordinates of phage particle centroids were transformed into time-averaged mean square displacements: \(\langle \Delta r^2(\tau) \rangle = \langle \Delta x^2 + \Delta y^2 \rangle \), from which effective diffusivities \(\langle D_{eff} \rangle \) were calculated; \(D_{eff} = \langle \Delta r^2(\tau) \rangle / (4\tau) \) (5, 6).

Glycan Microarray. Phage binding to glycans was assayed using printed mammalian glycan microarrays (version 5.1, Consortium for Functional Glycomics Core) containing 610 glycan targets. Samples of highly antigenic outer capsid protein (hoc^+) T4 phage, hoc^+ T4 phage, and buffer controls were applied to separate glycan microarray slides. Each slide received 35 μL of sample, 35 μL of binding buffer (Tris saline with 2 mM Ca^{2+}, 2 mM Mg^{2+}, 1% bovine serum albumin (BSA), and 0.05% Tween 20), and a coverslip. Slides first were incubated for 1 h at room temperature and washed with binding buffer. Slides then were incubated in SYBR Gold fluorescence dye (diluted 1:10,000 in binding buffer) for 1 h under a coverslip at room temperature, washed, dried, and immediately scanned in a PerkinElmer fluorescence microscopy with SYBR Green I.

Phylogenetic Analysis of Ig-Like Domains. The SEED database (www.theseed.org) collection of Ig-like polycystic kidney disease (PKD) protein families (Pfam) (PF00801) and the T4 Hoc sequence were searched against the 124 viral metagenomic datasets contained in the My Metagenome (MyMg) database (http://edwards.sdsu.edu/cgi-bin/myngsdb/show.cgi) using tBLASTn (PubMed accession numbers: 16336043, 17620602, 19156205, 19816605, 20547834, 17912724, 18441115, 19892985, 19555373, 20573248, 20631792, 21167942.79, 21193730.87, 21219518.96, 21245307.04, 21271095.12, 21296883.2, 21322671.29, 21348459.37, 21374247.45, 21400035.53; MG-Rast IDs: 21167942.79, 21193730.87, 21219518.96, 21245307.04, 21271095.12, 21296883.2, 21322671.29, 21348459.37, 21374247.45, 21400035.53). Sequences with an e value of less than 1e-5 to Ig-like domains were retrieved. ORFs were called from the metagenome reads using Artemis (Wellcome Trust Sanger Institute); their position in the FASTA file is shown in Table S2. ORFs that were 60 bp long with 40% tBLASTn identity to T4 Hoc or a member of the PKD Ig Pfam were retained. The six contigs containing Ig-like hypervariable domains from the published study by Minot et al. (7) were downloaded from the National Center for Biotechnology Information (NCBI). Identical sequences were collapsed using the Trie clustering method implemented in Qiime (8). The resulting unique sequences were mapped to the position-specific scoring matrix for the PKD Ig Pfam (PF00801) using hmmalign (9). The hmmalign trimming function was used; sequences that were dominated by gaps after alignment were removed. A maximum likelihood tree was generated from the aligned unique sequences using FastTree version 2.1.1 SSE3 and viewed in MEGA 5. Environmental data for the metagenomes were obtained from the MyMg database. In a separate analysis, structural homology of these same sequences to a carbohydrate-binding protein (10) was determined using the Phyre2 structural homology prediction pipeline (www.sbg.bio.ic.ac.uk/phyre2/html/help.cgi).

Fig. S1. Epifluorescence counts of phage and bacteria from diverse environments and mucosa. (Left to right) Invertebrates: Actiniaria sp., Acropora sp., Echinopora sp., Oxypora sp., Cappella sp., and Phylloco sp. Vertebrates: Paralichthy sp., Homo sapiens, and Mus musculus. Error bars represent ±SD with n > 25.

Fig. S2. Mucolytic treatment of mucus-producing A549 cells. Mucus removal from A549 lung epithelial cells by NAC treatment was assessed by PAS/AB stain, which stains mucus-like substances pink/purple. Scale bars represent 100 μm.

Fig. S3. Growth and mucus production of A549 and siRNA knockdown cell lines. Shown are mucus-producing A549 lung epithelial TC cells, mucus-producing nonsense shRNA control A549 cell line (shControl), and non–mucus-producing MUC1 and MUC5AC shRNA knockdown A549 cell line (MUC) after 2 and 4 d in culture. Mucus production was assessed on day 5 by PAS/AB stain, which stains mucus-like substances pink/purple. Scale bars represent 100 μm.
Fig. S4. Western blot analysis of MUC1 and MUC5AC in total cell lysates of A549 lung epithelial cell knockdowns. Lysates of confluent cell layers were separated by SDS/PAGE and then immunoblotted with anti-MUC1 and anti-MUC5AC antibodies. Shown are the MUC− knockdown cell line, the nonsilencing shControl control cell line, and native A549 cells. GAPDH was used as an intracellular protein control.

Fig. S5. Surface-free control for the assay of phage adherence to mucus-associated macromolecules. Both hoc+ and hoc− T4 phage (10⁹ pfu mL⁻¹) were serially diluted to 1 × 10⁻⁷ and 1 × 10⁻⁸, and then incubated in 1% (wt/vol) solutions of mucin, DNA, or protein in 1 mL LB for 30 min at 37 °C. Each incubation mixture was then mixed with Escherichia coli top agar and layered over plain agar plates. Resulting plaque-forming unit (PFU) counts showed that infectivity of hoc+ and hoc− T4 phage was not significantly altered in the presence of the macromolecules used in the phage adherence assays (mucin, DNA, and BSA protein).

Fig. S6. Adherence of Ig⁺ and Ig⁻ T3 phage to mucin. Phage adherence assays to mucin-coated agar plates were performed as described in SI Materials and Methods, except that the Ig⁺ and Ig⁻ T3 phage (10¹¹ pfu mL⁻¹) were serially diluted to 1 × 10⁻⁹ and 1 × 10⁻¹⁰ pfu mL⁻¹. The resultant PFU counts of adherent phage showed that Ig⁺ T3 phage adhered to mucin-coated agar plates significantly more than to the plain agar control plates (n = 6, t = 4.443, **P = 0.0012, unpaired t test), whereas there was no significant increase in adherence for the Ig⁻ T3 phage. ns, not significant.
Table S1. Phyre2 structural homology of Ig-like proteins encoded by viral metagenomes

<table>
<thead>
<tr>
<th>No.</th>
<th>Environment</th>
<th>PDB ID</th>
<th>Confidence, %</th>
<th>Identity, %</th>
<th>Start</th>
<th>Stop</th>
<th>Length</th>
<th>Database</th>
<th>Sequence identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sputum</td>
<td>2C26-A</td>
<td>99.8</td>
<td>29</td>
<td>29</td>
<td>277</td>
<td>248</td>
<td>MyMg</td>
<td>d7c74d66ea493c01fca41f718d22125_16271_279</td>
</tr>
<tr>
<td>2</td>
<td>Sputum</td>
<td>2C26-A</td>
<td>99.9</td>
<td>36</td>
<td>280</td>
<td>555</td>
<td>275</td>
<td>MyMg</td>
<td>d7c74d66ea493c01fca41f718d22125_64742_278</td>
</tr>
<tr>
<td>3</td>
<td>Sputum</td>
<td>2C26-A</td>
<td>99.7</td>
<td>32</td>
<td>837</td>
<td>1,066</td>
<td>229</td>
<td>MyMg</td>
<td>03ca0e6ad90102ab264cf521ed58209e_112029_232</td>
</tr>
<tr>
<td>4</td>
<td>Sputum</td>
<td>2C26-A</td>
<td>99.7</td>
<td>26</td>
<td>2,951</td>
<td>3,184</td>
<td>233</td>
<td>MyMg</td>
<td>03ca0e6ad90102ab264cf521ed58209e_52923_234</td>
</tr>
<tr>
<td>5</td>
<td>Sputum</td>
<td>2C26-A</td>
<td>99.7</td>
<td>32</td>
<td>3,417</td>
<td>3,654</td>
<td>237</td>
<td>MyMg</td>
<td>2da3ea31d1b30a11b0f080a5b91b9df2_256934_240</td>
</tr>
<tr>
<td>6</td>
<td>Sputum</td>
<td>2C26-A</td>
<td>99.7</td>
<td>31</td>
<td>4,189</td>
<td>4,416</td>
<td>227</td>
<td>MyMg</td>
<td>03ca0e6ad90102ab264cf521ed58209e_134692_228</td>
</tr>
<tr>
<td>7</td>
<td>Freshwater</td>
<td>2C26-A</td>
<td>99.8</td>
<td>29</td>
<td>3,935</td>
<td>4,188</td>
<td>253</td>
<td>MyMg</td>
<td>6f8c77f72920950139dc6b3520cf86b7_69438_254</td>
</tr>
<tr>
<td>8</td>
<td>Oral</td>
<td>2C26-A</td>
<td>99.8</td>
<td>29</td>
<td>2,437</td>
<td>2,715</td>
<td>278</td>
<td>MyMg</td>
<td>f44d959b723905a049b0334f19668e5c_48421_279</td>
</tr>
<tr>
<td>9</td>
<td>Sputum</td>
<td>2C26-A</td>
<td>99.8</td>
<td>30</td>
<td>2,716</td>
<td>2,949</td>
<td>233</td>
<td>MyMg</td>
<td>875f1f1d8745609c9d3e12c5b3b5636a_66237_235</td>
</tr>
<tr>
<td>10</td>
<td>Sputum</td>
<td>2C26-A</td>
<td>99.9</td>
<td>30</td>
<td>16,236</td>
<td>16,491</td>
<td>255</td>
<td>MyMg</td>
<td>8f61453e560016a0ae2a238351d7292b_109758_257</td>
</tr>
<tr>
<td>11</td>
<td>Sputum</td>
<td>2C26-A</td>
<td>99.9</td>
<td>29</td>
<td>15,508</td>
<td>15,766</td>
<td>258</td>
<td>MyMg</td>
<td>ebdff0605a03616ab168eddf68ca506e1_121095_259</td>
</tr>
<tr>
<td>12</td>
<td>Marine*</td>
<td>1E07-A</td>
<td>99.8</td>
<td>13</td>
<td>3</td>
<td>800</td>
<td>797</td>
<td>MyMg</td>
<td>05d2b5884d248d570fe8a2c0d390c97c_3911_800</td>
</tr>
<tr>
<td>13</td>
<td>Human feces</td>
<td>2C26-A</td>
<td>88.8</td>
<td>23</td>
<td>1</td>
<td>246</td>
<td>245</td>
<td>MyMg</td>
<td>f58ff76a10b64283989e0e1a30514_10941_246</td>
</tr>
<tr>
<td>14</td>
<td>Human feces</td>
<td>2C26-A</td>
<td>94.7</td>
<td>31</td>
<td>248</td>
<td>484</td>
<td>236</td>
<td>MyMg</td>
<td>f58ff76a10b64283989e0e1a30514_22104_238</td>
</tr>
<tr>
<td>15</td>
<td>Human feces</td>
<td>2C26-A</td>
<td>86.8</td>
<td>22</td>
<td>720</td>
<td>960</td>
<td>240</td>
<td>MyMg</td>
<td>f58ff76a10b64283989e0e1a30514_10554_243</td>
</tr>
<tr>
<td>16</td>
<td>Human feces</td>
<td>2C26-A</td>
<td>86</td>
<td>29</td>
<td>1,445</td>
<td>1,682</td>
<td>237</td>
<td>MyMg</td>
<td>f58ff76a10b64283989e0e1a30514_32210_238</td>
</tr>
<tr>
<td>17</td>
<td>Human feces</td>
<td>2C26-A</td>
<td>85.5</td>
<td>32</td>
<td>2,400</td>
<td>2,637</td>
<td>237</td>
<td>MyMg</td>
<td>f58ff76a10b64283989e0e1a30514_22379_238</td>
</tr>
<tr>
<td>18</td>
<td>Human feces</td>
<td>2C26-A</td>
<td>90.1</td>
<td>26</td>
<td>3,122</td>
<td>3,361</td>
<td>239</td>
<td>MyMg</td>
<td>f58ff76a10b64283989e0e1a30514_6620_240</td>
</tr>
<tr>
<td>19</td>
<td>Human feces</td>
<td>2C26-A</td>
<td>98.1</td>
<td>11</td>
<td>574</td>
<td></td>
<td></td>
<td>NCBI</td>
<td>gi 377806168 gb AF875876.1</td>
</tr>
<tr>
<td>20</td>
<td>Human feces</td>
<td>2C26-A</td>
<td>99</td>
<td>15</td>
<td>429</td>
<td></td>
<td></td>
<td>NCBI</td>
<td>gi 377806248 gb AF875953.1</td>
</tr>
<tr>
<td>21</td>
<td>Human feces</td>
<td>2C26-A</td>
<td>99.6</td>
<td>18</td>
<td>529</td>
<td></td>
<td></td>
<td>NCBI</td>
<td>gi 377806350 gb AF876049.1</td>
</tr>
</tbody>
</table>

All Ig-like domain homologs shown in Fig. 4A displayed high structural homology with a promiscuous carbohydrate-binding domain [Protein Data Bank (PDB) 2C26]. The Hoc homolog from a marine sample (no. 12, column 1) displayed high structural homology with 1E07-A as well as several other immune proteins. bp, base pairs.

*Hoc homolog.
Table S2. Glycan microarray analysis of T4 and hoc phage displayed in Fig. 4A

<table>
<thead>
<tr>
<th>Glycan no.</th>
<th>Structure</th>
<th>Linkage</th>
<th>T4 RFU</th>
<th>T4 %CV</th>
<th>hoc RFU</th>
<th>hoc %CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>609</td>
<td>GlcNAcb1-3Fuca</td>
<td>-N(CH3)-O-(CH2)2-NH2</td>
<td>4,921</td>
<td>3</td>
<td>394</td>
<td>16</td>
</tr>
<tr>
<td>610</td>
<td>Galb1-3GlcNAbc1-4(NeuS5Aca2-8 NeuS5Aca2-8 NeuS5Aca2-3)</td>
<td>-N(CH3)-O-(CH2)2-NH2</td>
<td>4,685</td>
<td>11</td>
<td>472</td>
<td>13</td>
</tr>
<tr>
<td>573</td>
<td>NeuS5Aca2-8 NeuS5Aca2-3 Galb1-4Glc</td>
<td>-N(CH3)-O-(CH2)2-NH2</td>
<td>4,161</td>
<td>1</td>
<td>316</td>
<td>11</td>
</tr>
<tr>
<td>608</td>
<td>NeuS5Aca2-6 Galb1-4GlcNAbc1</td>
<td>-2ManA1-6 NeuS5Aca2-6 Galb1-4GlcNAbc1</td>
<td>4,316</td>
<td>1</td>
<td>316</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asparagine</td>
<td>4,685</td>
<td>4</td>
<td>497</td>
<td>17</td>
</tr>
<tr>
<td>145</td>
<td>Galb1-3GlcNAbc1-6 Galb1-4Glc</td>
<td>CH2CH2CH2NH2</td>
<td>5,823</td>
<td>3</td>
<td>565</td>
<td>7</td>
</tr>
<tr>
<td>195</td>
<td>Galb1-4Glc</td>
<td>CH2CH2CH2NH2</td>
<td>5,845</td>
<td>1</td>
<td>544</td>
<td>3</td>
</tr>
<tr>
<td>514</td>
<td>Galb1-4(6S)GlcNAc</td>
<td>CH2CH2CH2NH2</td>
<td>4,518</td>
<td>6</td>
<td>568</td>
<td>17</td>
</tr>
<tr>
<td>287</td>
<td>Neu5GcA</td>
<td>CH2CH2CH2NH2</td>
<td>4,182</td>
<td>3</td>
<td>356</td>
<td>9</td>
</tr>
<tr>
<td>119</td>
<td>Galb1-4(Fuca1-2)Galb1-4GlcNAbc1</td>
<td>CH2CH2CH2NH2</td>
<td>4,157</td>
<td>3</td>
<td>331</td>
<td>8</td>
</tr>
<tr>
<td>336</td>
<td>GalNAca1-3(Fuca1-2)Galb1-4GlcNAbc1-3 Galb1-4GlcNAbc1-3 Galb1-4GlcNAbc1-3</td>
<td>CH2CH2CH2NH2</td>
<td>7,670</td>
<td>31</td>
<td>472</td>
<td>51</td>
</tr>
<tr>
<td>217</td>
<td>Manb1-4GlcNAbc1</td>
<td>CH2CH2CH2NH2</td>
<td>4,766</td>
<td>3</td>
<td>647</td>
<td>24</td>
</tr>
<tr>
<td>144</td>
<td>Galb1-3GlcNAbc1-4(NeuS5Aca2-3) Galb1-4Glc</td>
<td>CH2CH2CH2NH2</td>
<td>4,797</td>
<td>4</td>
<td>589</td>
<td>26</td>
</tr>
<tr>
<td>517</td>
<td>Galb1-4(6P)GlcNAbc1</td>
<td>CH2CH2CH2NH2</td>
<td>4,751</td>
<td>11</td>
<td>526</td>
<td>20</td>
</tr>
<tr>
<td>218</td>
<td>Neu5S5Aca2-3 Galb1-4GlcNAbc1-3 Galb1-4(Fuca1-3) GlcNAbc1</td>
<td>CH2CH2CH2NH2</td>
<td>4,737</td>
<td>3</td>
<td>322</td>
<td>10</td>
</tr>
<tr>
<td>334</td>
<td>Galb1-3 Galb1-4 Galb1-4GlcNAbc1-3 Galb1-4GlcNAbc1-3</td>
<td>CH2CH2CH2NH2</td>
<td>4,261</td>
<td>4</td>
<td>499</td>
<td>8</td>
</tr>
<tr>
<td>143</td>
<td>Galb1-3GlcNAbc1-3 Galb1-4Galb1-4Glc</td>
<td>CH2CH2CH2NH2</td>
<td>4,236</td>
<td>1</td>
<td>451</td>
<td>13</td>
</tr>
<tr>
<td>581</td>
<td>Galb1-4GlcNAbc1-3 Galb1-4GlcNAbc1-3 Galb1-4GlcNAbc1-3 Galb1-4GlcNAbc1-3</td>
<td>CH2CH2CH2NH2</td>
<td>4,236</td>
<td>1</td>
<td>451</td>
<td>13</td>
</tr>
<tr>
<td>360</td>
<td>Fuca1-2 Galb1-3GlcNAbc1-2 ManA1-6(Fuca1-2 Galb1-3GlcNAbc1-2 ManA1-3) Manb1-4GlcNAbc1-4(Fuca1-6) GlcNAbc</td>
<td>GENR</td>
<td>4,914</td>
<td>2</td>
<td>482</td>
<td>12</td>
</tr>
<tr>
<td>588</td>
<td>Galb1-4GlcNAbc1-3 Galb1-4GlcNAbc1-3 Galb1-4GlcNAbc1-3 Galb1-4GlcNAbc1-3</td>
<td>KVANKT</td>
<td>3,926</td>
<td>2</td>
<td>154</td>
<td>5</td>
</tr>
<tr>
<td>470</td>
<td>GlcNAcb1-4Glc1-4Glc</td>
<td>NHCOCH2NH</td>
<td>7,521</td>
<td>10</td>
<td>1,288</td>
<td>17</td>
</tr>
<tr>
<td>516</td>
<td>(4S)GalNAc</td>
<td>NHCOCH2NH</td>
<td>6,148</td>
<td>17</td>
<td>464</td>
<td>3</td>
</tr>
<tr>
<td>359</td>
<td>KDNa2-3 Galb1-3GalNAca</td>
<td>Threonine (O-linked glycan)</td>
<td>7,484</td>
<td>17</td>
<td>1,080</td>
<td>24</td>
</tr>
<tr>
<td>471</td>
<td>Neu5S5Aca2-3 Galb1-4GlcNAbc1-6 (NeuS5Aca2-3 Galb1-4GlcNAbc1-3)</td>
<td>Threonine (O-linked glycan)</td>
<td>5,877</td>
<td>6</td>
<td>585</td>
<td>2</td>
</tr>
<tr>
<td>491</td>
<td>Neu5S5Aca2-3 Galb1-3GlcNAbc1-6 GalNAca</td>
<td>Threonine (O-linked glycan)</td>
<td>4,755</td>
<td>2</td>
<td>394</td>
<td>8</td>
</tr>
<tr>
<td>596</td>
<td>Neu5S5Aca2-3 Galb1-4GlcNAbc1-3 Galb1-4GlcNAbc1-6 (NeuS5Aca2-3 Galb1-4GlcNAbc1-3)</td>
<td>Threonine (O-linked glycan)</td>
<td>4,703</td>
<td>14</td>
<td>242</td>
<td>7</td>
</tr>
<tr>
<td>595</td>
<td>GlcNAbc1-3 Galb1-4GlcNAbc1-6 (GlcNAbc1-3 Galb1-4GlcNAbc1-3)</td>
<td>Threonine (O-linked glycan)</td>
<td>4,653</td>
<td>1</td>
<td>392</td>
<td>9</td>
</tr>
<tr>
<td>605</td>
<td>Neu5S5Aca2-6 Galb1-4GlcNAbc1-3 Galb1-4GlcNAbc1-6 (NeuS5Aca2-6 Galb1-4GlcNAbc1-3)</td>
<td>Threonine (O-linked glycan)</td>
<td>4,078</td>
<td>1</td>
<td>410</td>
<td>10</td>
</tr>
<tr>
<td>480</td>
<td>Neu5S5Aca2-6 Galb1-4GlcNAbc1-3 Galb1-4GlcNAbc1-3</td>
<td>Threonine (O-linked glycan)</td>
<td>4,143</td>
<td>5</td>
<td>301</td>
<td>20</td>
</tr>
<tr>
<td>592</td>
<td>Neu5S5Aca2-6 Galb1-4GlcNAbc1-3 Galb1-4GlcNAbc1-3</td>
<td>Threonine (O-linked glycan)</td>
<td>4,200</td>
<td>11</td>
<td>266</td>
<td>11</td>
</tr>
</tbody>
</table>

“Glycan no.” indicates the glycan ID number used on the Consortium for Functional Glycomics Version 5.1 microarray. “Linkage” denotes the chemical linkage joining the glycan to the macromolecule. Bold threonine linkages represent O-linked glycan residues likely to be associated with mucin glycoproteins.