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Abstract

We consider two populations co-evolving with fitness defined by the payoff in a two-

person zero-sum game. We show that such situations lead to spontaneous and sustained

oscillations iff the optimal strategy of the game is mixed.
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Introduction

Consider two populations co-evolving in the following manner: each member of

population A={A} plays a certain 2-person zero-sum game repeatedly with random

members of population B={B}. Each player uses a fixed mixed strategy in all the games

in which he participates. After a certain number of games by each player, a new

generation is created according to an evolutionary strategy whose fitness function is the

accumulated winnings or losses of the player. The evolutionary process selects for the

individuals with better strategies. This short paper concerns a general observation

regarding the course of evolution in such a scenario: When the optimal strategies in the

associated game are mixed, the populations spontaneously oscillate around the game

theoretically optimal strategies. This observation, once made, becomes obvious.

Nonetheless, it does not seem to have been noted in the literature, and has interesting and

far-reaching implications.
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A number of authors (Maynard-Smith, 1982; Axlerod, 1987; Boyd and Lorberbaum,

1987; Rovatsos and Lind 1999; Darwen and Yao, 1995; Yao and Darwen, 1994) have

reported on the use of evolutionary strategies for exploring cooperative behavior in

iterated non-zero-sum games, most notably the iterated prisoner's dilemma. The aim of

these numerical experiments is to explore the extent to which the time evolution of the

resulting strategies can model the formation and stability of human cooperation. Co-

evolving strategies have also been a popular topic (Maynard-Smith 1982; Rosin and

Belew, 1996; Haynes and Sen, 1996; Akiyama and Kaneko, 1995) under the rubric of

evolutionary games. The fact that co-evolution in zero-sum games with pure strategies

converges to the optimal solution has been noted (Tizard, 2000; Holland, 1975; van

Nimwegen et al., 1997) and even its method of convergence by way of punctuated

equilibria has been charted (van Nimwegen et al., 1997). Here, as in most of the literature

on game theory, the focus has been on convergence to the game-theoretically optimal

strategies known as evolutionary stable strategies (ESS).

The fact that co-evolution in zero-sum games with mixed optimal strategies does not

converge to the optimum but rather undergoes a spontaneous transition to cyclic

behavior has not been noted. This may be due to the fact that the attention in this area has

focused primarily on non-zero-sum games or zero-sum games with pure strategies.

Further, the focus has been on the behavior of "rational" agents that try their best to

reason ahead from the information given. Our goal is different. We explore the use of

genetic algorithms among two populations of players playing an iterated 2-person zero-

sum game as a model for co-evolving strategies by two populations with limited
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adaptation. The limitation on the adaptation is that any genetic operators (Goldberg,

1989; Haupt and Haupt, 1998) (selection, mutation, crossover) act on all members of the

populations equally based only on their current fitness in relation to the current fitness of

others in the same population. Moreover, such fitness is defined by a strictly monotonic

function of the accumulated winnings or losses in the game. We show that this family of

algorithms leads to cycles iff the optimal strategy in the game is a mixed strategy.  The

implications for economic interactions, biological evolution, and artificial intelligence are

briefly explored.

The basic reason for the cycling behavior follows from the "hedge all your bets" nature of

the optimal strategy in a 2-person zero-sum game. This means that when player A uses

the game-theoretically optimal strategy, he has hedged himself against the worst player B

can do. In this case the complementary slackness portion of the Kuhn-Tucker conditions

assure us that the outcome of the game will be independent of the mixed strategy player

B adopts, provided he only mixes strategies that are part of the blend in his game-

theoretically optimal strategy.  In an adaptive setting, notably a setting with random

fluctuations, this means that the population of B players can drift a long way from their

optimal strategy without feeling any correlation between fitness and strategy among the B

players. Not so for the population of A players. If B has deviated from the hedged all bets

position, the A players' fitness distribution will correlate with certain modifications in the

population that take advantage of the B players' suboptimality. This causes the B players

to evolve back towards optimality while the A players continue trying to exploit B's

suboptimal position. Because the A players' exploitation is itself a deviation from the
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hedged strategy, this causes the B players to evolve beyond their optimal strategy trying

to cash in on the A players' deviation from equilibrium and this leads to growing

oscillations of the strategies around the optimum.

It is certainly possible to use evolutionary algorithms to find optimal mixed strategies

(Koza, 1992; Holland, 1975; Fogel, 1993). These algorithms typically adapt one

population at a time comparing how each strategy performs against all (or a large fixed

sample) of the other player's possible strategies and choosing the best alternative. The

cyclic nature of co-evolution for mixed solution games has not been noted in these efforts

either.  Our co-evolving algorithm does provide a way to find the game-theoretic

optimum. In our version of the algorithm, we can simply average the strategies over

many cycles. Such averages converge to the game theoretic optima. Any techniques

based on evolutionary algorithms will however fail to give linear programming serious

competition in games where the payoff matrix is known since the computational efforts

required by evolutionary techniques are much greater.

An Example

Consider the classic game of Pennies described for example by Vajda in 1960, where two

players each place a coin either heads or tails facing up. Once both coins have been

placed, the players show their coins. If the coins match, Player A collects both coins,

otherwise Player B collects them. The game matrix showing the payoff to Player A is
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If Player A uses the mixed strategy x⋅Heads + (1-x)⋅Tails, i.e. places his coin heads up x

fraction of the time, and Player B uses the mixed strategy y⋅Heads + (1-y)⋅Tails, then the

expected payoff of the game is

    

† 

(1)xy + (-1)(1- x) y + (-1)x(1- y) + (1)(1- x)(1- y) = (1-2x)(1- 2y) . (2)

Note that when A uses x=1/2, the outcome of the game is independent of B's strategy and

vice versa. The game theoretic optimum for this game is x*=y*=1/2.

Now consider the evolution of two populations of players – N players of type A and M

players of type B. Each player has a fixed mixed strategy xi, i=1…N or yj, j=1…M. In one

generation, each player's fitness is determined by some monotonic function of his total

payoff after playing against a random sample of players of the other type. This is then

used in some genetic drift and mutation (and possibly crossover) operators to determine

the population of the next generation. Note that by the form of the payoff function in

equation (2), as long as the A players maintain an average 

† 

x =Sxi/N=1/2, all of the B

players have the same expected payoff and so there is no selection pressure toward any B

strategy! The corresponding argument holds for A players when 

† 

y =1/2.
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Figure 1: One hundred players on each of two teams playing Pennies. For the first 100

generations both teams have all players using the optimal strategies x=y=1/2. At the 100th

generation, evolution begins and soon leads to sustained oscillations. Note how each curve turns

around when the other curve crosses 0.5.

The result of a simulation experiments in this scenario is shown in Fig. 1. Both

populations of players are started from their optimal strategies xi=yj=1/2, for all i and j.

At each generation, a fitness is computed and a certain fraction of the population is

removed with removal of the less fit being more likely. The removed players are replaced

by random mutations of the survivors according to xnew=xold+e, and ynew=yold+e, where e is

a small random variable with mean 0. The drift term (e) was kept equal to zero for the

first 100 generations to show more dramatically the effect of the cycles that result.

Initially both populations drift neutrally around a mean of 1/2. Once the mean of one
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population has drifted significantly away, say 

† 

x !>!1/2, the y's start to feel a selection

pressure. Notably, those yj's that are larger than 1/2 are selected for and 

† 

y  increases

(recall that player B is trying to minimize the payoff).  But once 

† 

y  is larger than 1/2, x

feels a selection pressure to move toward 

† 

x !=!0. The y's do not feel this pressure until the

x's have moved past 1/2. This starts the system cycling and the oscillations continue to

grow until a regular pattern becomes established. We have performed extensive

simulations confirming the phenomenon with a wide sample of selection and mutation

operators in this and more complicated games including games whose optimal strategy is

a mix of many pure strategies. The inherent noise in these systems induces a Neimark-

Sacker bifurcation, the discrete analogue of a Hopf bifurcation. These system are on the

edge of a bifurcation in continuous time and become unstable by the addition of noise or

by the discretization of time.

Conclusions and implications

The behavior described above is generic and should apply at least approximately in many

biological, economic, and heuristic design situations. We begin by recalling the crucial

ingredients in our model: (1) two populations of players repeatedly play a game of pure

competition, (2) the fitness of each individual is determined by the aggregate winnings of

that individual, (3) the strategies for one generation are fixed for each individual, and (4)

the next generation "chooses" its strategies as a diffusion process originating dominantly

from the more fit individuals in the previous generation.
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The robustness and applicability of this process as an approximate model for many

biological and economic situations result from relaxing the strict game-theoretic and

genetic algorithmic aspects of the process. Pure competition could be relaxed to nearly

pure competition. Generation can be reinterpreted to a market period. One important

aspect of our implementation cannot be relaxed too much: the players cannot act like the

rational all knowing agents of traditional game theory. Notably, the evolution of their

strategies cannot use very long and accurate historical data sets.  The requirement that the

strategy choices be based only on current fitness can probably be relaxed slightly but the

time horizon must stay small compared to one cycle. One could therefore call this a

model of the "poorly informed agent".

Let us consider the economic setting first. The poorly informed agent model applies

provided choosing the next strategies is done with limited historical information or

foresight or processing power.  Recent evidence (Bechara et al. 1997, Stewart 2002)

indicates that many human decisions, including economic ones, are based on a gut feel of

the estimated probabilities rather than elaborate forecasting.  This fits our assumptions

very nicely and predicts oscillatory behavior in these areas.

In other economic contexts, one "generation" can represent a year or other natural period

for a consumer or producer to stick to one particular blend of (stores to shop in) or (crops

to plant) or (advertising channels to use). The selection is naturally implemented by

Adam Smith's invisible hand; the less successful shoppers or farmers or marketers are
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likely to try the next year's fashion which is likely to resemble the behavior patterns of

the more successful players.

In the biological setting, a strategy can represent producing a particular blend of toxins to

deter competitors or predators. These levels of toxins are known to ebb and grow as the

predators manage to produce antitoxins which show similar cycles (Maynard-Smith,

1982; Haynes and Sen, 1996; Czaran, et al., 2002). For biological applications it is

particularly important that the phenomenon is robust with respect to making the

reproductive times different for the two populations of players. Such robustness is in fact

guaranteed. If one population reproduces more often, such extra reproductive cycles

merely effect the rate at which the often reproducing population can move toward the

optimal strategy to take advantage of any suboptimality in the other population. With

appropriate selection and mutation parameters for the game of Pennies discussed above,

we have seen one population follow what looks very much like a square wave with the

mean strategy very close to 1 followed by the mean strategy very close to 0. The more

often reproducing population will oscillate with larger amplitude than the slower

population but oscillation is assured by the structure of the game.

In economic, biological or social contexts, the fact that the predicted oscillations are

centered on the game theoretic optimum also leads to the following conclusion: the

average aggregate payoff to both teams is the same as if all players on both sides always

stuck to the optimal strategy. While this conclusion probably has many real-world

applications,  at the very least it says that equilibrium models that ignore dynamics
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predict the correct average payoff.  The diversity of strategies followed in the population

is higher with the oscillations and this could well prove of evolutionary benefit in, for

example, games with evolving payoffs.

Another set of implications of our results concerns the design of heuristics in learning

systems.  Many of the heuristics and learning rules currently implemented, for example

evolutionary programming, work to coevolve optimal strategies. The current argument

for the inherent instability of these attempts suggests that only one set of decisions be

evolved at a time.

In real-life we play many games but the rules and payoffs are continually shifting and we

see only a limited sample of outcomes. In many of these games, a model of

current–performance based evolution, as treated here, is likely to describe the phenomena

better than a rationally–selected evolution model. Cycles are everywhere and the cyclic

nature of many systems (fashions, unstable cobwebs, state mandated teaching curricula,

predator-prey adaptations) can be understood, at least partly, by the considerations of this

paper.  Specifically, our thesis is that they usually result from some game with a mixed

optimal strategy. An advantage from the other player not pursuing his optimal strategy

causes the first player to shift away from an all-bets-hedged position in turn exposing

himself to the other player taking advantage, and so on.  We hope that this paper can pave

the way to recognizing such processes. There is more to iterated games than convergence

to the Nash equilibrium.
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