Pollen ultrastructure of the Haemodoraceae and its taxonomic significance

MICHAEL G. SIMPSON

The classification of the genera and tribes of the monocot family Haemodoraceae has been variable and uncertain. In order to provide additional taxonomic characters, SEM and TEM were used in describing the pollen ultrastructure of seventeen genera and nineteen species of the family. The Haemodoraceae as a whole, with the exception of Lanaria and Lophiola, is palynologically united by the absence of a typical tectate-columellate exine architecture. Within the family, all eight genera of the tribe Haemodoreae have boat-shaped, monosulcate, heteropolar pollen grains with a verrucate (foveolate in one genus) exine wall sculpturing. In contrast, all six genera of the tribe Conostylideae (as defined here) possess variously shaped 2-, 3-, or 7-8-porate, isopolar or apolar grains with a characteristic rugulate sculpturing. A distinctive 2-layered exine, lacking a foot-layer, occurs in all members of the Conostylideae and in four genera of the Haemodoreae. The four other genera of the Haemodoreae are linked to the 2-layered members by a hypothesized gradation in wall architecture. Additional ultrastructural evidence supports the delimitation of the tribes Haemodoreae and Conostylideae, the placement of Phlebocarya within the tribe Conostylideae, and the recognition of subgroups of genera within each tribe. In contrast to the Haemodoreae, members of the Tecophilaeaceae possess a tectate-columellate exine, arguing against the classification of that family as a third tribe (Conanthereae) of the Haemodoraceae. Lanaria and Lophiola are aberrant within the Haemodoraceae in having tectate-columellate exine walls with monosulcate, exine-less apertures. The classification of Lanaria or Lophiola within the tribes Haemodoreae or Conostylideae or within the Tecophilaeaceae is refuted based on palynological evidence. The pollen of Pauridia, which also has a tectate-columellate architecture, is otherwise distinct from that of Lanaria and Lophiola in having disulcate apertures and in lacking an ektexinous foot-layer. The inclusion of Pauridia in the Haemodoraceae versus the Hypoxidaceae is unresolved based on the present study.

Michael G. Simpson, Department of Botany, Duke University, Durham, NC 27706, USA
(Manuscript received 14 April 1982, revised version accepted 24 October 1982)

INTRODUCTION
The Haemodoraceae is a monocot family of 13-17 genera and approximately 80 species with distributions in southern Africa, northern South America, Central America, Mexico, eastern North America, Australia, and New Guinea. Members of the family are characterized as perennial, rhizomatous herbs with equitant, unifacial leaves and trimerous flowers in a terminal, cymose inflorescence (Geerinck 1968, 1969, Hutchinson 1973, Robertson 1976). The infrafamilial classification of the Haemodoraceae has varied considerably in past treatments (see Geerinck 1968 for a detailed synopsis). The four family tribes originally proposed by Bentham & Hooker (1883), Euhaemodoreae (= Haemodoreae), Conostylideae (= Conostylideae), Conanthereae, and Ophiopogoneae, have been shifted in various combinations to other families. For example, Pax
(1888, 1930) and Pax & Hoffmann (1930) considered the family Haemodoraceae to be equivalent to Bentham & Hooker's tribe Euaemodoraceae; the Conostylideae and Conanthereae were placed in the Amaryllidaceae (subfamily Hypoxidoideae) and the Ophiopogonaceae in the Liliaceae. Baillon (1894) viewed the Haemodoraceae as an unnatural assemblage. Melchior (1964) treated the family as consisting of three tribes: Haemodoraceae, Conostylideae, and Conanthereae. However, the most recent treatments (Hutchinson 1934, 1959, 1973, Geerinck 1969) have recognized two family tribes: Haemodoraceae (10–11 genera) and Conostylideae (3–6 genera). Hutchinson, furthermore, grouped the Haemodoraceae with five other families in the order Haemodorales, but treated the tribe Conanthereae as a distinct family, the Tecophilaeaceae, in the Liliales. In addition to these conflicts of family definition, the circumscription of tribes has varied. Three genera, *Lanaria*, *Lophiola*, and *Phleborcarya*, have been variably transferred between the tribes Haemodoraceae and Conostylideae, even by recent authors (see Geerinck 1968, Robertson 1976). *Lanaria*, moreover, is sometimes classified in the Liliaceae or Tecophilaeaceae (De Vos 1961, 1963, Willis 1973). The genus *Pairridia*, placed in the tribe Haemodoraceae by Pax (1888, 1930), is included in the family Hypeoxidaeae in most recent treatments (Geerinck 1969, Hutchinson 1973; see Thompson 1979).

Erdtman (1966) recognized three pollen types within the family. Six genera of the tribe Haemodoraceae (sensu Pax 1930), *Haemodorum*, *Pairridia*, *Dilatris*, *Lachnanthes*, *Wachendorfia*, and *Xiphidiurn*, are characterized by monosulcate pollen (20–90 \(\mu m \) long) with a "usually not very distinct" exine stratification and sexine pattern (Erdtman 1966: 198–199). In contrast, five genera of the tribe Conostylis (sensu Pax & Hoffmann, 1930), *Angiozanthos*, *Blancoa*, *Conostylis*, *Phleborcarya*, and *Tribonanthes*, have isopolar, subisopolar, or apolar grains with either 2, 3 or 8 porate apertures (24–53 \(\mu m \)) and with a consistent and characteristic LQ pattern: "at low adjustment, dark islands (with fainter darker dots = bacula) separated by brighter channels" (Erdtman 1966: 46). Erdtman emphasized that this common LQ-pattern unites these genera despite their shifting aperture number. Finally, two other genera of the family, *Lanaria* and *Lophiola*, comprise a third pollen type of monosulcate grains (29–35 \(\mu m \)) with a thin exine and finely reticulate sculpturing.

Radulescu (1973), using light microscopy of acetolyzed preparations, described twelve species of *Conostylis* (tribe Conostylideae), 1 species each of *Dilatris* and *Schlechteria* (tribe Haemodoraceae), and 1 species of *Cyanelia* (tribe Conanthereae of the Haemodoraceae, sensu Melchior 1964). The pollen of the tribe Conostylideae (i.e., the 12 spp. of *Conostylis*) was characterized as porate with 0, 2, or 3 apertures, having reticulate exine sculpturing (verrucate in 2-porate grains of *C. setosa*) which is pilate or pilate-tegillate in optical cross-section. Radulescu described pollen of the Haemodoraceae as monosulcate and heteropolar with a reticulate-foveolate sculpturing and a tegillate-baculate exine. *Cyanelia* of the Conanthereae only differs from the Haemodoraceae in having a pilate-tegillate exine.

Despite numerous studies in many different fields of the taxa of the Haemodoraceae and related families, "the substantial and continuing disagreements concerning the limits of the Haemodoraceae and the relationships of the genera assigned to it indicate that the family merits additional detailed study" (Ornduff 1979). The purpose of the present study is to provide additional characters from pollen ultrastructure in assessing taxonomic and phylogenetic relationships. Specific questions asked in this study are: (1) What, if any, pollen ultrastructural features characterize the Haemodoraceae as a whole? (2) Does pollen wall architecture support the classification of the Tecophilaeaceae (= tribe Conanthereae) within the Haemodoraceae? (3) What similarities and differences, based on wall structure, are evident between the tribes Haemodoraceae and Conostylideae? (4) Does pollen ultrastructure clarify the tribal classification of *Phlebo-
cary, Lanaria, or Lophiola? (5) Is the classification of Pauridia within the Haemodoraceae supported palynologically? (6) What is the pollen ultrastructural basis for the three pollen groups of Erdman?

MATERIALS AND METHODS

Pollen samples were obtained either from herbarium sheets or from liquid preserved field collections. Anthers from dried herbarium specimens ("DRIED") were re-expanded in Aerosol OT for 1-4 days, followed by several H₂O rinses. Flowers from field collections were fixed in either formalin/acetic acid/alcohol ("FAA") or a solution of 4% gluteraldehyde and 4% formalin in 0.1 M Sorensen's phosphate buffer ("GLUT").

The following 19 species, in 17 genera, were examined: *Anigozanthos flavidus* DC. "FAA"—M. G. Simpson 23IX81J (DUKE); *Barberetera aurea* Harv. "FAA"—R. Ornduff 7661 (UC); *Blancoa canescens* Lindl. "GLUT"—M. G. Simpson 18IX81AA (DUKE); *Conostylis beali* F. Muell. "FAA"—Arboretum, U. C. Santa Cruz, 3 Nov. 1980 (UCSC); *Dilatris corymbosa* Berg. "FAA"—P. Goldblatt 3242 (MO); *D. pilusit Barker" "DRIED"—E. Werdermann & H.-D. Oberdieck 754 (US); *Haemodoron spicatum* R. Br. "FAA"—M. G. Simpson 16IX81C (DUKE); *H. simplex* Lindl. "GLUT"—M. G. Simpson 20IX81A (DUKE); *Lachnautes caroliniana* (Lam.) Dandy "FAA"—M. G. Simpson 14VI81A (DUKE); *Lanaria lanata* (L.) Dur. & Schinz (= *L. pluana* Ait.) "DRIED"—R. D. A. Bayliss 4369 (US); *Lophiola aurea* Ker-Gawler "FAA"—M. G. Simpson 14VI80B (DUKE); *Macropidia fuliginosa* (Hook.) Druce "FAA"—M. G. Simpson 18IX81DD (DUKE); *Pauridia minuta* (L.) Dur. & Schinz (= *P. hypoxanthoides* Harv.) "DRIED"—P. Macowan & H. Bolus 291 (US); *Phileocarya elliptica* R. Br. "GLUT"—M. G. Simpson 16IX81A (DUKE); *Pterorrhiza neblinae* Maguire & Wurdack "DRIED"—B. Maguire, J. J. Wurduck & G. S. Bunting 37222 (US); *Schickia orinocensis* (Kunth) Meissn. "FAA"—B. Maguire 41569 (NY); *Tribonanthes australis* Endl. "DRIED"—A. J. Eames & A. T. Hotchkiss, 23 Aug. 1953 (US); *Wachendorfia thyrsiflora* L. "FAA"—R. Ornduff 7691 (UC); *Xiphidium coerulescens* Aubl. "FAA"—J. M. MacDougal 1043 (DUKE).

For SEM studies, whole dehisced anthers containing mature pollen were placed in a modified capsule between two 2 μm Millipore filters or two 0.1 or 5 μm Nuclepore filters. If the pollen of a species was later observed to be covered with debris or pollen-kill, the technique of Lynch & Webster (1975) was followed and the isolated pollen placed in the capsules. Anthers or free pollen were dehydrated to 100% ethanol, then infiltrated with 100% Freon 113 (intermediate fluid). The material was critical-point dried in a BOMAR SP3 900/EX drier with CO₂ (transition fluid). Pollen grains were tapped onto a stub covered by double-stick Scotch tape, sputter coated (ca. 200 Å thickness) with gold/palladium (60/40), and viewed with a Joel JSM-S1 SEM. Optionally, cross sections of pollen grains were prepared using a freezing microtome.

The pollen sections were dehydrated, critical-point dried, mounted on a stub, and coated as before for SEM viewing (see Fig. 7E, 8E).

For TEM analysis of wall architecture, pollen samples were fixed in 4.2% gluteraldehyde for 1-2 hours, rinsed several times in 0.1 M Sorensen's phosphate buffer, and post-fixed in 2% OsO₄ for 1 hour. After two rapid H₂O rinses and dehydration to 100% ethanol, the material was infiltrated in a series of increasing concentrations of Spurr's resin (Spurr 1969). Fully infiltrated grains were placed in an obconical BEAM capsule and polymerized 8-12 hours in a 65°C oven. Sections ca. 500-800 Å thick were prepared using a Dupont BEAM diamond-knife on a Cambridge-Huxley ultramicrotome, and mounted on uncoated 200 mesh copper grids. Preparations were post-stained with uranyl acetate (15 min) and lead citrate (7 min) and viewed with a Siemens Elmiskop 101 TEM.

Hagenbeckia brasiliensis C. Nees & Mart. (Haemodoraceae, sensu Hutchinson 1973), which recently has been recognized as a species of *Chlorophyllum* of the Liliaceae (Ravena 1977), is not included in the present study. Pollen terminology generally follows that of Walker & Doyle (1975).

RESULTS

Tribe Haemodoraceae

Dilatris (2 of 5 species examined)

D. pilusiti Barker.—Pollen grains monosulcate and heteropolar (Fig. 1A) with verrucate to baculare non-apertural sculpturing (Fig. 1B) and gemmate to pitulate apertural sculpturing (Fig. 1C). Non-apertural exine 2-layered, a commissural line occurring at the junction of the two layers (Fig. 1E). Outer exine layer composed of irregularly baculate, laterally fused elements (Fig. 1D), the distal ends forming the verrucate sculpturing; inner exine layer composed of smaller, distinct, generally papillate elements (Fig. 1E). Apertural wall with an exine of scattered, 2-layered, gemmate elements atop a relatively thick, 2-layered intimate (Fig. 1F), the thickened outer intimate with radially oriented, channel-like structures (Fig. 1F).

D. corymbosa Berg.—Grains monosulcate, heteropolar (Fig. 1G). Sculpturing of non-apertural wall verrucate (Fig. 1H) and of apertural wall finely gemmate (Fig. 1I); larger wart-like elements scattered among the minute gemmate elements near the aperture border (Fig. 1I). Non-apertural exine bordering the aperture and at the ends of the grain smooth and perforated (Fig. 1H, I). Non-apertural exine 2-layered by presence of a commissural line (Fig. 1J); inner exine layer composed of discontinuous to fused baculate elements (Fig. 1J). Exine...
and intine of apertural wall (Fig. 1 K) similar to those in *D. pilansii*. Outer exine layer thin at interface between apertural and non-apertural walls, corresponding to the perforated border (Fig. 1 L).

Xiphidium (monotypic)
X. coeruleum Aubl.—Pollen monosulcate and heteropolar (Fig. 2 A). Sculpturing of the non-apertural wall verrucate with granular material between the major verrucae (Fig. 2 B), a relatively smooth border encircling the aperture (Fig. 2 A). Apertural wall sculpturing verrucate (Fig. 2 C). Non-apertural exine composed of closely spaced, baculate elements, 2-layered as defined by a median commissure (Fig. 2 E); exine between the major baculate elements granular, particularly in the lower exine layer. Intine of non-apertural wall 2-layered (Fig. 2 E). Aperture wall composed of distinct, closely spaced, verrucate to baculate exine elements atop a relatively thick, 2-layered intine (Fig. 2 D, G). Outer layer of aperture intine thickened at the interface with the non-apertural wall (Fig. 2 F).

Wachendorfia (1 of 5 species examined)
W. thysiflora L.—Pollen monosulcate and heteropolar (Fig. 3 A). Aperture wall convex in shape (Fig. 3 A), consisting of widely separated, 2-layered baculate exine elements (Fig. 3 C) over a relatively thick fibrillar intine (Fig. 3 D, F). Non-apertural wall proximally verrucate (Fig. 3 A, D), a granular material present between adjacent verrucae (Fig. 3 B). Exine of the proximal region 2-layered, a commissural line present between the large, verrucate elements of the outer layer and smaller, irregular granular elements of the inner layer (Fig. 3 G). Aperture wall encircled by a smooth non-apertural border, pitted with micropores (Fig. 3 A, C, D). Exine of the border continuous with that of proximal wall exine and 2-layered, a prominent commissure present between the homogeneous, micropore-filled outer layer and the irregular, somewhat granular inner layer (Fig. 3 H). Intine of non-apertural wall generally 2-layered (Fig. 3 G). Outer intine layer at the aperture interface thickened (Fig. 3 E), comprising the bulk of the apertural intine wall (Fig. 3 F).

Barberetta (monotypic)
B. aurea Harv.—Pollen monosulcate, heteropolar with verrucate to baculate apertural sculpturing (Fig. 4 A). Non-apertural wall with a verrucate proximal surface (Fig. 4 B), and a smooth, micropore dense border surrounding the aperture (Fig. 4 A, B). Non-apertural exine 2-layered, with a commissure between the layers (Fig. 4 C, D). Outer layer composed either of distinct, closely appressed verrucate elements in the proximal region (Fig. 4 C) or relatively homogeneous in the smooth border region (Fig. 4 D). Inner exine layer throughout of appressed, radially elongate elements comprising 1/2-2/3 of the exine thickness (Fig. 4 C, D). Aperture with a relatively thick intine and an exine of closely spaced, 2-layered, baculate elements, the inner exine layer reduced (Fig. 4 E).

Pyrorhiza (monotypic)
P. neblinae Maguire & Wurdack.—Grains monosulcate and heteropolar (Fig. 4 F) with verrucate non-apertural and gemmate to verrucate apertural wall sculpturing (Fig. 4 G). Non-apertural wall composed of a thin intine and an exine with 2-layers: a continuous outer layer with a verrucate outer surface and an inner layer of amorphous, discontinuous, somewhat granular exine material (Fig. 4 I); inner exine layer along the border of the aperture reduced (Fig. 4 H). Aperture wall composed of scattered verrucate exinous elements atop a thick, 2-layered intine (Fig. 4 J). Outer intine layer expanded at the aperture periphery (Fig. 4 H) and containing radially oriented, channel-like structures (Fig. 4 J).

Schiekia (monotypic)
S. orinocensis (Kunth) Meisn.—Grains monosulcate and heteropolar (Fig. 5 A), with foveolate-fossulate non-apertural exine (Fig. 5 B) and verrucate to gemmate apertural sculpturing (Fig. 5 C). Aperture wall of scattered gemmate exinous elements and a thick, homogeneous intine (Fig. 5 D, E). Non-apertural exine composed of 3 layers: an outer, perforated homogeneous layer; a middle layer of discontinuous, amorphous exine deposits; and a continuous, somewhat granular inner layer (Fig. 5 F). Middle and inner exine layers reduced at the aperture periphery (Fig. 5 E) and absent along two apparent regions of constriction of the proximal wall (Fig. 5 D, G).

Haemodorum (2 of 20 species examined)
H. spicatum R. Br.—Grains monosulcate, heteropolar (Fig. 6 A) with verrucate non-apertural and...
Fig. 1. Dilatris (Haemodoraceae). A–F: D. pilansii Bark
(A) Pollen grain, with monosulcate aperture above. SEM ×1500. (B) Close-up of verruculate non-apertural wall. SEM ×5600. (C) Close-up of aperture, showing pilate-gemmate exine elements. SEM ×5500. (D) Interface between non-apertural wall (left) and apertural wall (a); note the 2-layered intine. TEM ×3900. (E) Non-apertural wall, showing commissural line (arrows) between inner (papillate) and outer exine layers. TEM ×54800. (F) Apertural wall, composed of a 2-layered intine (i) and 2-layered exine elements (e); note channel-like structures (arrow) of outer intine layer. TEM ×19500.

G–L: D. corymbosa Berg. (G) Pollen grain, aperture facing. SEM ×1000. Verruculate proximal wall; note smooth, perforated exine at the end of grain (arrow). SEM ×2700. (H) Close-up of aperture edge, showing foveolate border (b) and numerous gemmate exine elements of aperture wall; larger, warty exine elements (arrow) occur sparingly at aperture border. SEM ×2700. (I) Non-apertural wall; note commissural line between two exine layers (arrows). TEM ×28400. (K) Apertural wall, showing 2-layered intine (i) and gemmate exine elements (e); note channel-like structures of outer intine layer (arrow). TEM ×24700. (L) Interface between apertural (left) and non-apertural (right) walls; note aperture border (b). TEM ×8100.
Fig. 2. *Xiphidium coeruleum* Aubl. (Haemodoreae). (A) Whole grain, aperture at right; note raphide crystal. SEM \(\times 2100 \). (B) Non-apertural wall; note granular exine (arrow) between major verrucae. SEM \(\times 9000 \) (C) Verrucose apertural wall. SEM \(\times 7700 \). (D) Cross-section of whole grain, showing aperture (a). TEM \(\times 2400 \). (E) Non-apertural wall, showing 2-layered intine (i) and 2-layered exine (e), with commissural line between the exine layers (arrows); note granular exine between major elements. TEM \(\times 22400 \) (F) Interface between aperture (a) and non-apertural wall (right); note thickening of outer intine layer in the apertural wall. TEM \(\times 6000 \). (G) Apertural wall, showing 2-layered intine (i) and scattered exine elements (e). TEM \(\times 30900 \).

gemmate apertural sculpturing (Fig. 6B). Non-apertural exine composed of laterally appressed, baculate structural elements basally interconnected by thin exinous material (Fig. 6C, E); commissure not present. Apertural wall of scattered baculate to gemmate elements atop a thick, 2-layered intine (Fig. 6C, F). Outer intine layer containing radially oriented, electron transparent channel-like structures (Fig. 6F) and thickened at interface between non-apertural and apertural walls (Fig. 6D).

H. simplex Lindl.—Grains monosulcate, heteropolar with verrucose non-apertural and apertural wall sculpturing (Fig. 6G). Aperture region indistinct, defined only by the slightly more separated

Grana 22
Fig. 3. Wachendorfia thrysiflora L. (Haemodorea). (A) Whole grain, showing convex aperture (above) and flattened proximal surface (below); note smooth aperture border (b). SEM ×1 600. (B) Close-up, proximal surface, showing granular exine (arrow) between major verrucae. SEM ×5 500. (C) Close-up, aperture; note smooth micropore-filled border (b). SEM ×3 600. (D) Cross-section of whole grain, showing proximal wall (p), aperture (a), and border (b). TEM ×2 600. (E) Interface between apertural (a) and non-apertural (right) walls; note thickening of outer layer of the 2-layered intine (i). TEM ×6 500. (F) Aperture wall, showing 2-layered intine (i) and 2-layered exine (e); note junction between exine layers (arrow). TEM ×11 200. (G) Non-apertural, proximal wall, showing 2-layered intine (i) and 2-layered exine (e), with commissural line between the two exine layers (arrows). TEM ×21 300. (H) Non-apertural wall of smooth border region; note commissural line between two exine layers (arrows) and micropores (m). TEM ×20 300.
Pollen ultrastructure of the Haemodoraceae

exine elements. Exine composed of laterally appressed to separated baculate elements (Fig. 6H); some exine elements occasionally 2-layered, the inner layer very thin (Fig. 6I). Intine of apertural and non-apertural walls indistinguishable, 2-layered, with radially oriented, electron transparent channel-like structures in the outer layer throughout (Fig. 6H).

Lachnanthes (monotypic)

L. caroliniana (Lam.) Dandy.—Grains monosulcate, heteropolar (Fig. 7A). Sculpturing of the non-apertural wall verrucate; that of the apertural wall gemmate (Fig. 7B). Tetrads of pollen from immature anthers decussate, with apertures positioned at the distal pole (Fig. 7C); thus, grains absolutely heteropolar. Exine of the non-apertural wall composed of laterally appressed, apparently fused baculate structural elements, the distal ends forming the verrucate sculpturing (Fig. 7D, E); exine elements homogeneous with commissure absent (Fig. 7D). Apertural wall of distinct pilate to verrucose elements with papillate protuberances on the inner face (Fig. 8G). Apertural wall essentially free of exine, consisting of a thick, 3-layered fibriullar intine (Fig. 8G). Middle intine layer thickened in the interface region of the aperture and containing numerous, radially extended channel-like structures (Fig. 8G).

Conostylidae

Angiozanthos (1 of 10 species examined)

* A. *flavidus* DC.—Pollen grains isopolar, usually diporate (Fig. 8A), rarely (in the same anther) triporate (Fig. 8C). Apertural wall protrusions hemispheric in shape (Fig. 8A, B). Non-apertural wall with a rugulate sculpturing; apertural wall psilate to slightly scabrate (Fig. 8B). Non-apertural exine composed of irregular, tangentially elongate structural elements (Fig. 8D, E); major tangential exine elements interconnected by thin, presumably exinous basal strands, demonstrated in acetolyzed grains (Fig. 8D). Inner exine layer composed of distinctive papillate protuberances (Fig. 8E, F), a line of breakage or a commissure often visible between papillate protuberances and the major structural elements (Fig. 8F). Apertural wall essentially free of exine, consisting of a thick, 3-layered fibriullar intine (Fig. 8G). Middle intine layer thickened in the interface region of the aperture and containing numerous, radially extended channel-like structures (Fig. 8G).

Macropidia (monotypic)

M. fliginosa (Hook.) Druce.—Grains isopolar and diporate with hemispheric to obconical shaped apertural walls (Fig. 8H). Non-apertural walls rugulate; apertural walls psilate (Fig. 8I). Apertural wall lacking exine (Fig. 8J), consisting of a thick, 3-layered intine with prominent channel-like structures in the middle layer (Fig. 8K). Non-apertural exine composed of sinuous, tangentially elongate elements with papillate protuberances on the inner surface (Fig. 8L); commissure present between the outer exine and the inner protuberances, indicating a 2-layered nature to the wall (Fig. 8M).

Conostylos (1 of 24 species examined)

C. bealiana F. Müll.—Pollen grains isopolar, usually triangular and triporate; aperture walls hemispheric in shape (Fig. 9A). Aberrant 3-, 2-, or 4-aperturate grains occasionally present (Fig. 9C, D, E). Non-apertural walls rugulate; apertural walls psilate to scabrate (Fig. 9B). Non-apertural wall comprised of an exine of continuous, tangentially elongate elements with minute papillate protuberances on the inner face (Fig. 9G). Apertural wall without exine (Fig. 9I), composed of a relatively thick, obscurly layered intine, with radially oriented, channel-like structures (Fig. 9H).
Blancoa (monotypic)

B. canescens Lindl.—Pollen grains diporate and isopolar with elongate, hemispheric to obconical shaped aperture walls (Fig. 9 J); triporate grains rarely present in the same anther (Fig. 9 L). Sculpturing of the non-apertural wall rugulate, that of the apertural wall somewhat scabrate (Fig. 9 K). Apertural wall essentially devoid of exine, consisting of a thick, 3-layered intine, the middle layer expanded at the aperture interface (Fig. 9 K). Non-apertural
Fig. 6. *Haemodorum* (Haemodoreae). A–F: *H. spicatum* R. Br. (A) Pollen grain, aperture above. SEM ×3600. (B) Close-up of grain, showing non-apertural (lower left) and apertural (upper right) walls. SEM ×7900. (C) Cross-section of whole grain; note apertural region (a). TEM ×4200. (D) Interface between non-apertural (left) and apertural wall (right), showing thickening of outer intine wall at the aperture. TEM ×18400. (E) Non-apertural wall, showing 1-layered exine (*e*). TEM ×38100. (F) Intine wall: note exine elements (*e*) and 2-layered intine (*i*) with channel-like structures in outer layer (arrow). TEM ×37100.

G–I: *H. simplex* Lindl. (G) Whole pollen grain; note indistinct aperture region (above). SEM ×1600. (H) Pollen grain wall, showing exine elements (*e*) and 2-layered intine (*i*); channel-like structures (arrow) occur in the outer intine layer. TEM ×32400. (I) Pollen grain wall, showing occasional 2-layered exine, with commissural line (arrows). TEM ×41400.
Fig. 7. *Lachnanthes caroliniana* (Lam.) Dandy (Haenordoreae). (A) Pollen grain, aperture above; note raphide crystal. SEM ×2,500. (B) Close-up of wall, with verrucate non-apertural wall (left) and geminate apertural wall (right). SEM ×5,200. (C) Pollen tetrad, showing decussate arrangement of microspores and distal orientation of apertures. SEM ×1,300. (D) Non-apertural wall; note intine (i) and 1-layered exine (e). TEM ×31,000. (E) Acetolyzed non-apertural exine; note laterally appressed baculate elements and apparent micropore channel openings at inner surface (arrow). SEM ×22,300. (F) Aperture wall; note 2-layered intine (i), exine elements (e), and fibrillar deposit between exine elements; outer intine layer contains apparent channel-like structures (arrow). TEM ×23,000. (G) Cross-section of whole grain. Note aperture (a), with greatly thickened outer intine layer. TEM ×4,400.
wall composed of a thin intine and a continuous, 2-layered exine, a commissural line evident between the outer homogeneous and inner papillate exine layers (Fig. 9N).

Tribonanthus (1 of 3 species examined)
T. australis Endl.—Pollens apolar, globose with 7-8 porate apertures (Fig. 10A). Non-apertural wall sculpturing rugulate, that of the apertural wall irregular (Fig. 10B). Exine of the non-apertural wall 2-layered, a commissure occurring between the continuous outer layer and the inner layer of discontinuous, generally papillate elements (Fig. 10D). Intine of the non-apertural wall 2-layered, the inner layer thicker (Fig. 10C, D). Apertural wall composed of closely spaced verrucae exinous elements atop a thick 2-layered intine (Fig. 10E). Outer apertural intine layer contiguous with that of the non-apertural wall (Fig. 10C) and greatly thickened in the aperture region (Fig. 10C, E), containing prominent, radially-oriented, channel-like structures (Fig. 10E).

Phlebocyara (1 of 3 species examined)
P. ciliata R. Br.—Pollens grains cylindrical, diporate, and isopolar; sculpturing of non-apertural and apertural walls rugulate (Fig. 10F). Exine of non-apertural wall composed of two equally thick layers, a prominent commissural face occurring at the junction of the layers (Fig. 10H). Toward the aperture, lower exine layer gradually reduced to thinner, distinct, papillate structures (Fig. 10I). Apertural wall composed of a thick, 3-layered intine, with channel-like structures apparent in the middle layer (Fig. 10G); scattered exine elements present outside apertural intine wall (Fig. 10G).

Additional taxa
Lanaria (monotypic)
L. lanata (L.) Dur. & Schinz.—Grains monosulcate and heteropolar (Fig. 11A) with a foveolate non-apertural wall and a psilate apertural wall (Fig. 1B). Non-apertural wall exine tectate-columellate (tectate-perforate) with a thick foot-layer, a commissural junction present at the center of the columellae (Fig. 11C). Non-apertural intine thin, 2-layered (Fig. 11C). Apertural wall composed of a sick, 3-layered intine (Fig. 11E). Middle intine layer thickened at junction of aperture and non-apertural walls (Fig. 11D), containing irregular, sinuous, channel-like structures (Fig. 11E).

Lophiola (monotypic)
L. aurea Ker-Gawler.—Grains monosulcate and heteropolar (Fig. 12A). Non-apertural wall regular (Fig. 10B). Exine of the non-apertural wall 2-layered, a commissure occurring between the continuous outer layer and the inner layer of discontinuous, generally papillate elements (Fig. 10D). Intine of the non-apertural wall 2-layered, the inner layer thicker (Fig. 10C, D). Apertural wall composed of closely spaced verrucae exinous elements atop a thick 2-layered intine (Fig. 10E). Outer apertural intine layer contiguous with that of the non-apertural wall (Fig. 10C) and greatly thickened in the aperture region (Fig. 10C, E), containing prominent, radially-oriented, channel-like structures (Fig. 10E).

Fig. 8. A-G: *Anigozanthos flavidus* D.C. (Conostylideae). (A) Pollen grain, showing two hemispheric apertural walls and attached raphide crystal. SEM ×1200. (B) Close-up of wall; note rugulate sculpturing of non-apertural wall (left) and paucity of exine on aperture (right). SEM ×2600. (C) Rare, 3-porate grain; note raphides. SEM ×900. (D) Acetolyzed non-apertural wall, showing basal exine material interconnecting major exine elements. SEM ×5000. (E) Cross-section of acetolyzed non-apertural wall, showing three-dimensional structure; note papillate protuberances (arrow) on inner surface of wall. SEM ×8000. (F) Non-apertural wall, showing exine with inner papillate elements and commissural line (arrows). TEM ×22700. (G) Interface between aperture (a) and non-apertural wall (right); note exine-less, 3-layered apertural intine, with a thickened middle layer containing channel-like structures (arrow). TEM ×13000.

H-M: *Macroandricus fuliginosa* (Hook.) Druce (Conostylideae). (H) Pollen grain; note two pores. SEM ×1200. (I) Close-up of wall; note rugulate sculpturing of non-apertural wall (lower left) and exine-less apertural wall (upper right). SEM ×3200. (J) Longitudinal-section of grain, showing aperture wall (a), devoid of exine. TEM ×1300. (K) Apertural wall, 3-layered; note extensive channel-like structures of middle layer (arrow). TEM ×21100. (L) Non-apertural wall; note characteristic papillate elements of inner exine layer. TEM ×28600. (M) Close-up of non-apertural wall, showing 2-layered exine with a commissure (arrows) between the layers. TEM ×58700.

Fig. 9. A-I: *Conostylis beallana* F. Mueller. (Conostylideae). (A) Pollen grain, showing 3 hemispheric pores, devoid of exine; note raphide crystals. SEM ×1600. (B) Close-up of wall; note rugulate sculpturing of non-apertural wall (lower left) and exine-less apertural wall (upper right). SEM ×3100. (C) Rare 4-porate grain. SEM ×900. (D) Rare 2-porate grain. SEM ×1000. (E) Aberrant 3-porate grain. SEM ×900. (F) Slightly oblique section of whole grain, showing 3-apertures (a), which are devoid of exine. TEM ×1600. (G) Non-apertural wall; note papilla protuberances on inner surface of exine (arrows). TEM ×16200. (H) fibrillar apertural wall, showing channel-like structures (arrow). TEM ×19500. (I) Interface between aperture (a) and non-apertural wall (right). TEM ×10400.

J-N: *Blancoa canescens* Lindl. (Conostylideae). (J) Pollen grain; note two hemispheric apertures. SEM ×1700. (K) Close-up of wall, showing rugulate non-apertural wall (right) and exine-less aperture (left). SEM ×2900. (L) Rare 3-porate grain. SEM ×1200. (M) Interface between aperture (a) and non-apertural wall (right). TEM ×9300. (N) Non-apertural wall; note papilla protuberances of inner exine; commissural line (arrows) is faintly visible. TEM ×62100.
Pollen ultrastructure of the Haemodoraceae
Fig. 10
Pollen ultrastructure of the Haemodoraceae

Hutchinson (1973) as a whole, with the exception of Lanaria and Lophiola, is palynologically united by the absence of a typical tectate-columellate architecture. Even Schiekia, which has a 3-layered exine, does not have columellae, possessing instead a discontinuous, amorphous, granular middle layer. Furthermore, in all six genera of the tribe Conostylidiaceae and in four genera of the tribe Haemodoraceae, the non-apertural exine lacks a foot-layer and is 2-layered, the difference between genera being primarily in the thickness and continuity of the lower exine layer. The remaining four genera of the Haemodoraceae are linked to the 2-layered members of that tribe by a gradation in exine wall structure (Fig. 13). Thus, the occurrence of a common pollen wall architecture in the tribes Conostylidiaceae and Haemodoraceae (excluding Lanaria and Lophiola) argues strongly for their close relationship and the monophyly of the family, sensu Hutchinson (1973). In contrast to the Haemodoraceae, all 7 genera of the Tecophilaeaceae (sensu Hutchinson 1973) possess a characteristic tectate-columellate wall stratification with a continuous, ektexinous foot-layer (Simpson 1981b, in progress). The taxonomic treatment by Melchior (1964), which classified the Tecophilaeaceae as the tribe Conanthereae of the Haemodoraceae, is not supported based on evidence from the present study.

A distinctive commissural plane delimits the exine layers in the ten genera of the Haemodoraceae with 2-layered exine walls. Although the commissure almost always appears to be a real boundary between layers, it may in some cases represent a region of structural weakness (and therefore breakage during sectioning). In either case, a structural distinction can be made between outer and inner exine layers in these taxa. However, no difference in staining properties and no endexine/ektexine differentiation can be observed between the two exine layers. Preliminary studies by the author using brightfield and fluorescence microscopy indicate that both exine layers in these genera have an ektexinous chemical reaction. Further studies by the author are planned to determine the exact chemical nature and ontogeny of the exine in "2-layered" taxa of the Haemodoraceae.

Members of the Haemodoraceae also possess a common intine wall structure. Non-apertural intines characteristically have 2-layers, which are distinguished based on differences in staining pro-

DISCUSSION

Palynological characteristics

Ultrastructural features of the pollen wall provide excellent characters for noting similarities and discontinuities between genera and tribes of the Haemodoraceae. The Haemodoraceae (sensu Hutchinson 1973) as a whole, with the exception of Lanaria and Lophiola, is palynologically united by the absence of a typical tectate-columellate architecture. Even Schiekia, which has a 3-layered exine, does not have columellae, possessing instead a discontinuous, amorphous, granular middle layer. Furthermore, in all six genera of the tribe Conostylidiaceae and in four genera of the tribe Haemodoraceae, the non-apertural exine lacks a foot-layer and is 2-layered, the difference between genera being primarily in the thickness and continuity of the lower exine layer. The remaining four genera of the Haemodoraceae are linked to the 2-layered members of that tribe by a gradation in exine wall structure (Fig. 13). Thus, the occurrence of a common pollen wall architecture in the tribes Conostylidiaceae and Haemodoraceae (excluding Lanaria and Lophiola) argues strongly for their close relationship and the monophyly of the family, sensu Hutchinson (1973). In contrast to the Haemodoraceae, all 7 genera of the Tecophilaeaceae (sensu Hutchinson 1973) possess a characteristic tectate-columellate wall stratification with a continuous, ektexinous foot-layer (Simpson 1981b, in progress). The taxonomic treatment by Melchior (1964), which classified the Tecophilaeaceae as the tribe Conanthereae of the Haemodoraceae, is not supported based on evidence from the present study.

A distinctive commissural plane delimits the exine layers in the ten genera of the Haemodoraceae with 2-layered exine walls. Although the commissure almost always appears to be a real boundary between layers, it may in some cases represent a region of structural weakness (and therefore breakage during sectioning). In either case, a structural distinction can be made between outer and inner exine layers in these taxa. However, no difference in staining properties and no endexine/ektexine differentiation can be observed between the two exine layers. Preliminary studies by the author using brightfield and fluorescence microscopy indicate that both exine layers in these genera have an ektexinous chemical reaction. Further studies by the author are planned to determine the exact chemical nature and ontogeny of the exine in "2-layered" taxa of the Haemodoraceae.

Members of the Haemodoraceae also possess a common intine wall structure. Non-apertural intines characteristically have 2-layers, which are distinguished based on differences in staining pro-

Fig. 10. A-E: Tribonanthus australis Endl. (Conostylidiaceae). (A) Whole grain, showing three visible apertures (a). SEM ×1900. (B) Close-up, showing rugulate non-apertural wall and aperture with irregular exine elements. SEM ×5200. (C) Section of pollen grain, showing two apertures (a). TEM ×2400. (D) Non-apertural wall, showing 2-layered intine (i) and 2-layered exine (e); a commissural line (arrows) occurs between the 2 exine layers; note papillate protuberances of inner exine layer. TEM ×19600. (E) Apertural wall, showing thick intine (i) and outer, scattered exine elements; note thickening of outer intine layer, which contains numerous channel-like structures (arrow). TEM ×5500.

F-I: Phlebocarya ciliata R. Br. (Conostylidiaceae). (F) Whole pollen grain; note 2-porate apertures at ends of grain. SEM ×2300. (G) Aperture wall, with thick intine (i) and occasional exine elements (e); note channel-like structures (arrow) of intine. TEM ×22000. (H) Non-apertural wall, showing intine (i) and 2-layered exine (e); a commissural line (arrows) occurs between the two exine layers. TEM ×45800. (I) Region of aperture border; note papillate protuberances of inner exine layer and commissure (arrows). TEM ×214000.
properties or fibrillar structure. Initial chemical investigations of some members of the Haemodoraceae indicate that the inner layer is primarily cellulose and the outer composed of pectic compounds, as has been found for numerous angiosperms, both monocots and dicots (Kress & Stone 1982). Progressing from the non-apertural to the apertural wall, the outer intine layer becomes substantially thickened and is traversed with narrow, radially oriented channel-like structures. Lophiola lacks these channel-like structures, possessing instead curious undulating, electron dense regions.
in the apertural intine. In some taxa, mainly of the tribe Conostylideae, there is an additional thin, rather ill-defined layer of the apertural intine external to the other two intine layers.

The tribes Haemodoreae and Conostylideae can be differentiated based on pollen characters. As originally noted by Erdtman (1966), members of the Haemodoreae have monosulcate, heteropolar grains while those of the Conostylideae have 2 or more porate, isopolar, subsulcopolar, or apolar grains. This trend, supported by Radulescu (1973) for Schieokia, is here confirmed for Barberetta, Macropidia and Pyrrorhiza (Table 1). (It should be noted that only in Lachnlanthes is pollen polarity absolutely determined, based on observations of tetrads in the present study.) The only ultrastructural character which diagnostically separates the two tribes is sculpturing. In the Haemodoreae non-apertural walls are verrucate, except for Schieokia which is somewhat foveolate-fossulate. In contrast, all members of the Conostylideae have a characteristic rugulate non-apertural wall sculpturing (Table 1). Additionally, all members of the Haemodoreae have exine as a component of the apertural wall, whereas in most members of the Conostylideae, apertural exine is lacking.

Within the tribe Haemodoreae four basic types of wall structures can be distinguished (Table 1). Four genera of the tribe, Barberetta, Dilatris, Wachendorfia, and Xiphidium, possess a distinctive 2-layered exine, evident by the presence of a commissural “line” in electron micrographs. Further similarities can be noted between Wachendorfia and Xiphidium, which both have a partially granular lower exine layer, and between Barberetta and Wachendorfia, which have a similar proximal wall sculpturing and identical psilate, micropore-pitted apertural borders (differing from the smooth, perforated border of Dilatris corymbosa). A second wall structure type of the tribe occurs in Haemodororum and Lachnanthes. These two genera possess an exine composed of laterally appressed, basally fused, baculate structural elements. These elements are not 2-layered, except very rarely in isolated portions of the pollen wall of H. simplex; the occasional presence of this thin, inner exine layer in H. simplex may be evidence of a structural homology with 2-layered members of the family. Thus, the wall structure of Haemodororum and Lachnanthes may be homologous with the upper exine layer of the 2-layered members of the tribe (Fig. 13). Pyrorhiza has a third type of wall architecture, possessing a 2-layered exine, the inner layer being discontinuous, amorphous, and somewhat granular. Finally, a fourth type is present in Schieokia, which has a 3-layered exine, the middle layer of which resembles the inner exine layer in Pyrorhiza.

Unlike that of other members of the tribe, the exine sculpturing of Schieokia is foveolate-fossulate, resembling that of tectate-columellate taxa, such as Lanaria of the Haemodoraceae (present study) or Cyanella and Odontostomum of the Tecophilaeaceae (Simpson 1981b). In fact, the three exine layers of Schieokia show resemblances to a typical foot-layer, columellae, and tectum and may represent an evolutionary modification from the typical tectate-columellate architecture. The wall of Schieokia differs, however, in that the middle exine layer is structurally discontinuous with the inner and outer layers and is amorphous, not columnar, in shape. Pyrorhiza, which has a verrucate sculpturing and lacks a third, inner exine layer, is somewhat intermediate between Schieokia and 2-layered members of the Haemodoreae. Thus, a structural gradation can be hypothesized between Schieokia, Pyrorhiza, and the 2-layered members of the tribe Haemodoraceae (Fig. 13). It should be pointed out, however, that suggestions of an evolutionary gradation in pollen wall structure presupposes the monophyly of the Haemodoraceae. Such a gradation can only be substantiated based on comparative analyses with other taxa using a wide range of characters.

Subgroups of pollen morphologies can be noted in the tribe Conostylideae. Four genera of the tribe, Angiozanthos, Blanchoa, Conostylis, and Macropidia, are very similar in having relatively smooth, hemispheric to obconical aperture wall protrusions. Conostylis has 3-porate, triangular grains, while the other three genera have 2-porate, fusiform pollen grains. However, the fact that occasional 2-or 4-porate grains are found in Conostylis and 3-porate grains in Angiozanthos is indicative of an intergradation of pollen morphology between these genera. (SEM observations of pollen from several other species of both Angiozanthos and Conostylis indicate morphologies very similar to the species described here; palynological studies may prove useful in resolving relationships of species complexes within the two genera). Phlebocarya differs in the tribe in having cylindrical pollen grains with two circular, flattened aperture walls. Tribonanthes
Fig. 13. Hypothetical morphocline of exine wall architecture in the non-tectate-columellate members of the Haemodoraceae. The indicated gradation between Schiekia, Pyrorhiza, and genera with a commissural, 2-layered exine is unclear.

Fig. 12. A-D: Lophioloa aurea Ker.-Gawler. (A) Monosulcate pollen grain, aperture at upper right. SEM ×4000. (B) Close-up of wall, showing reticulate non-apertural wall (lower left) and ridged aperture wall (upper right); note apparent “fusion” of exine elements at aperture border. SEM ×15200. (C) Interface between apertural (a) and non-apertural (left) wall; note tectate-columellate non-apertural exine (e) and 3-layered intine (i); middle intine layer is expanded at aperture border and contains radially-oriented, electron dense regions (arrow). TEM ×32 800. (D) Aperture wall, showing general correspondence of electron dense regions with the ridged apertural wall sculpturing (arrow). TEM ×55 700.

E-J: Paridilia minuta (L.f.) Dur. & Schinz. (E) Pollen grain, apparent polar view, showing two sulcate apertures (a). SEM ×4000. (F) Close-up of aperture (left) and non-apertural wall (right). SEM ×9400. (G) Apparent equatorial view of pollen grain showing two apertures (a). SEM ×2700. (H) Cross-section of grain; note two apertures (a) with outer exine elements, thickened intine, and plasmolyzed regions beneath. TEM ×2700. (I) Non-apertural wall showing intine (i) and tectate-columellate exine (e); note thin, electron dense foot-layer (arrow). TEM ×33 500. (J) Interface between aperture (a) and non-apertural wall (right); note thick 2-layered intine (i). TEM ×20 400.

All genera of the Conostylideae have a 2-layered exine, the lower layer being composed of discontinuous papillate elements (2-layered exine was not observed in Conostylis; however, perhaps because of the small size of the inner exine papillae). A gradation is evident between the exine structure in the Conostylideae and the 2-layered wall structure of four genera of the Haemodoraceae. Phlebocarya especially corroborates this gradation in having a thick, continuous inner exine (resembling that of 2-layered members of the Haemodoraceae), which, in the aperture region, becomes thin, discontinuous and papillate (resembling the exine of the rest of the Conostylideae) (Fig. 13).

Taxonomic implications

The taxonomic position of Phlebocarya is clarified with reference to pollen wall ultrastructure. Phlebocarya has been classified in either the tribe Conostylideae (Pax 1888, Pax & Hoffmann 1930) or Haemodoraceae (Bentham & Hooker 1883, Hutchinson 1973, Geerinck 1969). However, the pollen of Phlebocarya has at least three structural features shared only with genera of the tribe Conostylideae: (1) grains with 2 or more porate apertures (2) rugulate sculpturing (3) a papillate inner exine layer (found only near the aperture in Phlebocarya). It is proposed that these are shared derived characters and that the classification of Phlebocarya in the tribe Conostylideae, as done only by Pax (1888) and Pax & Hoffmann (1930), is supported. The placement of the genus in the tribe Haemodoraceae has been based primarily on the common occurrence of an im-
bricate perianth (Bentham & Hooker 1883, Hutchinson 1934, Geerinck 1969), which is almost certainly a primitive character for the group and should not be used in delimiting hypothesized monophyletic taxa (sensu Hennig 1966).

In contrast to all other members of the Haemodoraceae, Lanaria and Lophiola possess a tectate-columellate wall architecture, with a thick, continuous foot-layer (interestingly, however, the columellae of Lanaria often appear to be 2-layered). Apertural exine is absent in the two genera, whereas all genera of the similarly monosulcate Haemodoraceae have a prominent cover of apertural exine elements. Lanaria and Lophiola are also aberrant within the family with respect to anatomy (Schulze 1893, Simpson & Dickision 1981), chemistry (Edwards et al. 1970), and embryology (De Vos 1963, Simpson 1981a). These data, applied to a cladistic analysis of the complex (Simpson, unpublished), argue strongly against the classification of the two genera in either the tribe Haemodoraceae or Conostylideae. Erdtman (1966) proposed that Lanaria and Lophiola are palynologically more similar, in size and sculpturing, to the tribe Conantheraceae (= Tecophilaeaceae, sensu Hutchinson 1973), whose members have monosulcate grains with operculate sulci. The wall ultrastructure of the seven genera of the Tecophilaeaceae is, like Lanaria and Lophiola, tectate-columellate (Simpson 1981b, work in progress), thus seemingly supporting Erdtman’s contention. However, other families presumed to be closely related to the Haemodoraceae (sensu Cronquist 1981, Dahlgren 1980, Hutchinson 1973, Takhtajan 1980, Thorne 1981) also possess a tectate-columellate pollen wall architecture similar to that of Lanaria, Lophiola, and the genera of the Tecophilaeaceae. The taxa investigated to date include Barbacenia of the Velloziaceae (Ayensu & Skvarla 1974), Curculigo & Hypoxis of the Hypoxidaceae; Helmholtzia & Phylidrella of the Philydaceae; Tacc of the Taccaceae; and Liriope of the Liliaceae, tribe Ophiopogoneae (Simpson, work in progress). Although additional studies are needed, it is hypothesized here that the tectate-columellate wall structure is ancestral, based on outgroup comparison (Simpson, unpublished), for the complex as a whole, as it probably is for the angiosperms as a whole (Van Campo 1971). If this interpretation...
is correct, the exine of members of the Haemodoraceae may conceivably represent the loss of a foot-layer from an ancestral tectate-columellate condition. Additionally, the common occurrence of a tectate-columellate wall in *Lanaria, Lophiola*, and members of the Tecophilaeaceae cannot provide evidence for their classification in one taxon. In fact, the operculate aperture of members of the Tecophilaeaceae is almost certainly, for that family, a shared derived character based on outgroup comparison (Simpson, unpublished). The absence of an operculum in *Lanaria* and *Lophiola* argues against their classification in the Tecophilaeaceae. However, whether *Lanaria* and *Lophiola* should be included within their own tribe of the Haemodoraceae or transferred (perhaps not together) to some other taxon will remain unclear until additional characters are found and comparative analyses with other families are made. Anatomical evidence has recently been presented which supports the classification of *Lophiola* in the Liliaceae, tribe Melanthioideae (Ambrose 1980).

The genus *Pairridia* is palynologically distinct from members of the Haemodoraceae. Although the pollen of *Pairridia* resembles that of *Lanaria* and *Lophiola* in having an apparent tectate-columellate exine stratification, it differs in having: (1) two apertures with a cover of apertural elements, (2) a supratectal papillate sculpturing, and (3) a very thin, apparently endexinous basal layer with ektexinous foot-layer absent. The observation in the present study of disulate pollen in *Pairridia* confirms a similar report by Thompson (1979) but conflicts with Erdtman’s (1966) description of the genus as monosulcate. Although Erdtman treated *Pairridia* within the tribe Haemodoraceae, he did report resemblances in size and sculpturing between *Pairridia* and members of the Hypoxidaceae (sensu Hutchison). Preliminary studies by the author indicate that two genera of the Hypoxidaceae, *Curculigo* and *Hypoxis*, are similar to *Pairridia* in having a tectate-columellate architecture. However, pollen grains of the former two genera differ from *Pairridia* in having a monosulcate aperture and in possessing a thicker, continuous, ektexinous foot-layer, similar to that of *Lanaria, Lophiola*, or members of the Tecophilaeaceae. In fact, the absence of a continuous ektexinous foot-layer in *Pairridia* indicates similarity to the 2-layered members of the tribe Haemodoraceae. Although the placement of *Pairridia* in the Hypoxidaceae is supported based on embryological (De Vos 1961) and anatomical (Schulze 1893) characters, no clear taxonomic conclusions can be drawn based on pollen wall architecture. Further palynological studies are needed to verify the taxonomic placement of *Pairridia* within the Hypoxidaceae.

Comparisons with past studies

Clarifications regarding the three pollen groups in the Haemodoraceae recognized by Erdtman (1966) can be made with reference to the present ultrastructural study. Erdtman’s description of wall structure in six genera of the tribe Haemodoraceae as “not very distinct” is probably a reflection of the atectate architecture found in all members of that tribe. The characteristic LO-pattern he observed for five genera of the Conostylideae can be explained ultrastructurally. The “dark islands... separated by brighter channels” probably correspond to the rugulae separated by fissures in the wall. Also, the “fainter darker dots...” almost certainly correspond to the papillate protruberances of the inner exine layer characteristic of the tribe. Finally, the reticulate exine wall of *Lanaria* and *Lophiola* corresponds with a tectate-columellate architecture as seen with the electron microscope.

Erdtman’s (1966: 199) description of a “coarsely granular, distinctly convex operculum” in Wackenroderia is incorrect. This is not an operculum, but simply an aperture wall with an outer layer of closely spaced exine structural elements. Radulescu’s (1973) description of granules or verrucae on the apertures of *Dilatris* and Schiekiia corresponds to these exine elements. Similar aperture walls are found in all other genera of the tribe Haemodoraceae; the apertures often disintegrate during acetolysis, probably because of the lack of continuous exine material between the elements. The use of the term reticulate by Radulescu (1973) for the sculpturing of *Conostylis* and *Dilatris* is in disagreement with Erdtman (1966) and the present study. Radulescu’s report of a pilate-tegillate wall structure in *Conostylis* and a tegillate-baculate exine for *Dilatris* and Schiekiia inadequately describe the major structural elements observed here.

CONCLUSIONS

Observations of pollen ultrastructure are useful in characterizing and delimiting the Haemodoraceae,
family tribes, and groups of genera within tribes. Suggestions regarding the classification of family taxa and the intergradation of wall types have been made based on these pollen characters. Of especial interest in this study is the general occurrence in the family of a 2-layered exine wall lacking a footlayer. Based on comparisons with taxa of several other, presumably closely related families, it is proposed that the exine structure of the Haemodoraceae is derived and the tectate-columellate architecture is probably primitive for the complex. However, comparative analyses, such as cladistic techniques, using all known characters should be made to test hypotheses regarding homology and character polarity. The pollen of many more monocotyledonous taxa need to be studied before broad taxonomic comparisons can be noted. The additional families of the Haemodorales, sensu Hutchinson (1973) and Dahlgren (1980), are under current investigation by the author.

ACKNOWLEDGEMENTS

This study was supported in part by United States National Science Foundation grant DEB-81-09909 and is part of a Ph.D. dissertation submitted to the Department of Botany, Duke University. I wish to thank Patricia G. Gensel for conceiving the project and making initial observations; Donald E. Stone and Richard A. White for reviewing the manuscript; Gwen C. Roney for substantial editorial help; Robert Ornduff, Bassett Maguire, and Peter Goldblatt for supplying critical plant material; Greg J. Keighery, Steven D. Hopper, and P. G. Wilson for their help in field collection in Australia; herbaria at US, UC, MO, DUKE, UCSC, PERTH, and NY for supplying plant samples or housing vouchers and Sue D. Dickerson for typing the manuscript.

REFERENCES

Radulescu, D. 1973. La morphologie du pollen chez quel-
Pollen ultrastructure of the Haemodoraceae

