Numerical Semigroups on Compound Sequences

Christopher O'Neill, Vadim Ponomarenko, and Claire Spychalla

Abstract

We generalize the geometric sequence $\left\{a^{p}, a^{p-1} b, a^{p-2} b^{2}, \ldots, b^{p}\right\}$ to allow the p copies of a (resp. b) to all be different. We call the sequence $\left\{a_{1} a_{2} a_{3} \cdots a_{p}, b_{1} a_{2} a_{3} \cdots a_{p}, b_{1} b_{2} a_{3} \cdots a_{p}, \ldots, b_{1} b_{2} b_{3} \cdots b_{p}\right\}$ a compound sequence. We consider numerical semigroups whose minimal set of generators form a compound sequence, and compute various semigroup and arithmetical invariants, including the Frobenius number, Apéry sets, Betti elements, and catenary degree. We compute bounds on the delta set and the tame degree.

Keywords: nonunique factorization, numerical semigroup
Mathematics Subject Classification (2010): 20M13, 11A51, 20M14

1 Introduction

Let \mathbb{N} denote the set of positive integers, and \mathbb{N}_{0} denote the set of nonnegative integers. We call S a numerical semigroup if $S \subseteq \mathbb{N}_{0}, S$ is closed under addition, S contains 0 , and $|\mathbb{N} \backslash S|<\infty$. We say $\left\{x_{0}, x_{1}, \ldots, x_{p}\right\}$ is a set of generators for S if $S=\left\{\sum_{i=0}^{p} a_{i} x_{i}: a_{i} \in \mathbb{N}_{0}\right\}$, and call it minimal if it is minimal as ordered by inclusion. In this case we say S has embedding dimension $p+1$. For a general introduction to numerical semigroups, please see the monograph [18].

Here we will consider structure of numerical semigroups of a particular type,
including some of its arithmetic properties. More generally, factorization theory studies the arithmetic properties of commutative, cancellative monoids and domains, where unique factorization fails to hold. For a general reference see any of $[1,2,14]$.

If S is a numerical semigroup with minimal set of generators $\left\{n_{0}, n_{1}, \ldots, n_{p}\right\}$, the map

$$
\phi: \mathbb{N}_{0}^{p+1} \rightarrow S, \quad \phi\left(x_{0}, x_{1}, \ldots, x_{p}\right)=x_{0} n_{0}+x_{1} n_{1}+\cdots+x_{p} n_{p}
$$

is a monoid homomorphism, called the factorization homomorphism of S. Let σ be its kernel congruence, that is $x \sigma y$ if and only if $\phi(x)=\phi(y)$. Then S is isomorphic to $\mathbb{N}_{0}^{p+1} / \sigma$. We will consider σ as a subset of $\mathbb{N}_{0}^{p+1} \times \mathbb{N}_{0}^{p+1}$. Set $\mathcal{I}(S)$ to be the irreducibles of σ, viewed as a monoid.

For $n \in S$, the set $\phi^{-1}(n)$ is the set of factorizations of n. We say $n>1$ is a Betti element if there is a partition $\phi^{-1}(n)=X \cup Y$ satisfying $\sum_{i=0}^{p} x_{i} y_{i}=0$ for each $x \in X, y \in Y$. Betti elements capture important semigroup structure, and have received considerable recent attention $([6,10,11,12])$. If $x=\left(x_{0}, \ldots, x_{p}\right) \in$ $\phi^{-1}(n)$, the length of the factorization x is $|x|=x_{0}+\cdots+x_{p}$. If $x, y \in \mathbb{N}_{0}^{p+1}$, we define

$$
\operatorname{gcd}(x, y)=\left(\min \left\{x_{0}, y_{0}\right\}, \min \left\{x_{1}, y_{1}\right\}, \ldots \min \left\{x_{p}, y_{p}\right\}\right) \in \mathbb{N}_{0}^{p+1}
$$

We also define the distance between x and y as

$$
d(x, y)=\max \{|x-\operatorname{gcd}(x, y)|,|y-\operatorname{gcd}(x, y)|\}
$$

Further, for $Y \subseteq \mathbb{N}_{0}^{p+1}$, we define $d(x, Y)=\min \{d(x, y): y \in Y\}$. Given $n \in S$ and $x, y \in \phi^{-1}(n)$, then a chain of factorizations from x to y is a sequence
$x^{0}, x^{1}, \ldots x^{k} \in \phi^{-1}(n)$ such that $x^{0}=x$ and $x^{k}=y$. We call this an N-chain if $d\left(x^{i}, x^{i+1}\right) \leq N$ for all $i \in[0, k-1]$. The catenary degree of $n, c(n)$, is the minimal $N \in \mathbb{N}_{0}$ such that for any two factorizations $x, y \in \phi^{-1}(n)$, there is an N-chain from x to y. The catenary degree of $S, c(S)$, is defined by

$$
c(S)=\sup \{c(n): n \in S\} .
$$

For a semigroup S and $n \in S$, we define the length set of n as $\mathcal{L}(n)=\{|x|$: $\left.x \in \phi^{-1}(n)\right\}$. If we label $\mathcal{L}(n)=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ with $t_{1}<t_{2}<\cdots<t_{k}$, then we define the delta set of n as $\Delta(n)=\left\{t_{i}-t_{i-1}: i \in[2, k]\right\}$, with $\Delta(n)=\emptyset$ if $|\mathcal{L}(n)|=1$. We define the delta set of S as $\Delta(S)=\cup_{n \in S} \Delta(n)$. For $i \in[0, p]$, and $n \in S$, we define $\phi_{i}^{-1}(n)=\left\{\left(x_{0}, \ldots, x_{p}\right) \in \phi^{-1}(n): x_{i}>0\right\}$. We define $t_{i}(n)=\max \left\{d\left(z, \phi_{i}^{-1}(n)\right): z \in \phi^{-1}(n)\right\}$ for $\phi_{i}^{-1}(n) \neq \emptyset$, and set $t_{i}(n)=-\infty$ otherwise. We define the tame degree of n as $t(n)=\max \left\{t_{i}(n): i \in[0, p]\right\}$, and the tame degree of S as $t(S)=\max \{t(n): n \in S\}$. For more background on arithmetic invariants in general numerical semigroups see [5, 7].

Numerical semigroups whose minimal generators are geometric sequences $\left\langle a^{p}, a^{p-1} b, a^{p-2} b^{2}, \ldots, b^{p}\right\rangle$ have been investigated recently in [17, 20]. We propose a generalization of such sequences, which we call compound sequences.

Definition 1. Let $p, a_{1}, a_{2}, \ldots, a_{p}, b_{1}, b_{2}, \ldots, b_{p} \in \mathbb{N}$. Suppose that:

1. $2 \leq a_{i}<b_{i}$, for each $i \in[1, p]$.
2. $\operatorname{gcd}\left(a_{i}, b_{j}\right)=1$ for all $i, j \in[1, p]$ with $i \geq j$.

For each $i \in[0, p]$, we set $n_{i}=b_{1} b_{2} \cdots b_{i} a_{i+1} a_{i+2} \cdots a_{p}$. We then call the sequence $\left\{n_{0}, n_{1}, \ldots, n_{p}\right\}$ a compound sequence.

Applying this definition repeatedly leads to the particular consequences $\operatorname{gcd}\left(a_{i}, b_{i}\right)=1, \operatorname{gcd}\left(a_{i}, b_{1} b_{2} \cdots b_{i}\right)=1, \operatorname{gcd}\left(a_{i} a_{i+1} \cdots a_{p}, b_{i}\right)=1$, and lastly
$\operatorname{gcd}\left(a_{i} a_{i+1} \cdots a_{p}, b_{1} b_{2} \cdots b_{i}\right)=1$. Note that the special case of $a_{1}=a_{2}=$ $\cdots=a_{p}, b_{1}=b_{2}=\cdots=b_{p}$ gives a geometric sequence. We now present some elementary properties of compound sequences.

Proposition 2. Let $\left\{n_{0}, n_{1}, \ldots, n_{p}\right\}$ be a compound sequence as defined above.
Then the following all hold.

1. $n_{i}=\frac{b_{i}}{a_{i}} n_{i-1}$, for each $i \in[1, p]$.
2. $n_{0}<n_{1}<\ldots<n_{p}$.
3. $\operatorname{gcd}\left(n_{0}, n_{1}, \ldots, n_{i}\right)=\prod_{j=i+1}^{p} a_{j}$ for all $i \in[0, p]$.
4. $\operatorname{gcd}\left(n_{i}, n_{i+1}, \ldots, n_{p}\right)=\prod_{j=1}^{i} b_{j}$ for all $i \in[0, p]$.
5. $\operatorname{gcd}\left(n_{0}, n_{1}, \ldots, n_{p}\right)=1$.
6. $\left\langle n_{0}, n_{1}, \ldots, n_{p}\right\rangle$ is a minimally generated numerical semigroup.
7. $a_{i}=\frac{n_{i-1}}{\operatorname{gcd}\left(n_{i-1}, n_{i}\right)}$ and $b_{i}=\frac{n_{i}}{\operatorname{gcc}\left(n_{i-1}, n_{i}\right)}$, for each $i \in[1, p]$.

Proof. (1) is immediate from the definition.
(2) follows from (1) since $\frac{n_{i}}{n_{i}-1}=\frac{b_{i}}{a_{i}}>1$ for each $i \in[1, p]$.
(3) Set $A=\prod_{j=i+1}^{p} a_{j}$. Since A divides each of n_{0}, \ldots, n_{i}, it suffices to prove that $\operatorname{gcd}\left(n_{0}^{\prime}, \ldots, n_{i}^{\prime}\right)=1$, where $n_{0}^{\prime}=\frac{n_{0}}{A}, \ldots, n_{i}^{\prime}=\frac{n_{i}}{A}$. Suppose prime q divides $\operatorname{gcd}\left(n_{0}^{\prime}, \ldots, n_{i}^{\prime}\right)$. Then $q \mid \operatorname{gcd}\left(n_{0}^{\prime}, n_{i}^{\prime}\right)=\operatorname{gcd}\left(a_{1} a_{2} \cdots a_{i}, b_{1} b_{2} \cdots b_{i}\right)$. Let k be maximal in $[1, i]$ so that $q \mid a_{k}$, and let j be minimal in $[1, i]$ so that $q \mid b_{j}$. Since $q \mid \operatorname{gcd}\left(a_{k}, b_{j}\right)$, by the definition of compound sequences we must have $k<j$. But now $q \nmid n_{k}^{\prime}$, a contradiction.
(4) Set $B=\prod_{j=1}^{i} b_{j}$. Since B divides each of n_{i}, \ldots, n_{p}, it suffices to prove that $\operatorname{gcd}\left(n_{i}^{\prime}, \ldots, n_{p}^{\prime}\right)=1$, where $n_{i}^{\prime}=\frac{n_{i}}{B}, \ldots, n_{p}^{\prime}=\frac{n_{p}}{B}$. Suppose prime q divides $\operatorname{gcd}\left(n_{i}^{\prime}, \ldots, n_{p}^{\prime}\right)$. Then $q \mid \operatorname{gcd}\left(n_{i}^{\prime}, n_{p}^{\prime}\right)=\operatorname{gcd}\left(a_{i+1} \cdots a_{p}, b_{i+1} \cdots b_{p}\right)$. Let k be maximal in $[i+1, p]$ so that $q \mid a_{k}$, and let j be minimal in $[i+1, p]$ so that
$q \mid b_{j}$. Since $q \mid \operatorname{gcd}\left(a_{k}, b_{j}\right)$, by the definition of compound sequences we must have $k<j$. But now $q \nmid n_{k}^{\prime}$, a contradiction.
(5) Follows from either (3) or (4).
(6) This is a numerical semigroup by (5). To prove it is minimally generated, we appeal to Cor. 1.9 from [18], by which it suffices to prove that $n_{i} \notin\left\langle n_{0}, \ldots, n_{i-1}\right\rangle$ for each $i \in[1, p]$. Set $x=a_{i} a_{i+1} \cdots a_{p}$. We have $x \mid \operatorname{gcd}\left(n_{0}, n_{1}, \ldots, n_{i-1}\right)$. If $n_{i} \in\left\langle n_{0}, \ldots, n_{i-1}\right\rangle$ then $x \mid n_{i}=b_{1} b_{2} \cdots b_{i} a_{i+1} a_{i+2} \cdots a_{p}$. Cancelling, we get $a_{i} \mid b_{1} b_{2} \cdots b_{i}$, a contradiction since $a_{i}>1$ yet $\operatorname{gcd}\left(a_{i}, b_{1} b_{2} \cdots b_{i}\right)=1$.
(7) follows by combining $\operatorname{gcd}\left(n_{i-1}, n_{i}\right)=b_{1} b_{2} \cdots b_{i-1} a_{i+1} a_{i+2} \cdots a_{p} \operatorname{gcd}\left(a_{i}, b_{i}\right)$ with $\operatorname{gcd}\left(a_{i}, b_{i}\right)=1$.

Note that Proposition 2.7 suggests that the generators $n_{0}, \ldots n_{p}$ alone suffice to recover the $\left\{a_{i}\right\},\left\{b_{i}\right\}$. This is indeed the case, as shown in the following.

Proposition 3. Let $n_{0}, n_{1}, \ldots, n_{p} \in \mathbb{N}$ with $n_{0}<n_{1}<\cdots<n_{p}$. Suppose that $\left\langle n_{0}, n_{1}, \ldots, n_{p}\right\rangle$ is a minimally generated numerical semigroup. Then the following are equivalent.

1. $\left\{n_{0}, n_{1}, \ldots, n_{p}\right\}$ is a compound sequence.
2. $n_{1} n_{2} \cdots n_{p-1}=\operatorname{gcd}\left(n_{0}, n_{1}\right) \operatorname{gcd}\left(n_{1}, n_{2}\right) \cdots \operatorname{gcd}\left(n_{p-1}, n_{p}\right)$

Proof. $(1 \rightarrow 2)$. Applying Prop. 2.7, we have $\frac{n_{1}}{\operatorname{gcd}\left(n_{1}, n_{2}\right)} \frac{n_{2}}{\operatorname{gcd}\left(n_{2}, n_{3}\right)} \cdots \frac{n_{p-1}}{\operatorname{gcd}\left(n_{p-1}, n_{p}\right)}=$ $a_{2} a_{3} \cdots a_{p}=\operatorname{gcd}\left(n_{0}, n_{1}\right)$. Cross-multiplying yields (2).
$(2 \rightarrow 1)$. We define a_{i}, b_{i} as in Proposition 2.7. Note that $a_{i} n_{i}=b_{i} n_{i-1}$ and that $\operatorname{gcd}\left(a_{i}, b_{i}\right)=1$. Also note that $a_{i}<b_{i}$ since $n_{i-1}<n_{i}$, and that $a_{i}>1$ since otherwise $n_{i-1} \mid n_{i}$ but the semigroup is minimally generated. Dividing both sides of (2) by $\operatorname{gcd}\left(n_{1}, n_{2}\right) \cdots \operatorname{gcd}\left(n_{p-1}, n_{p}\right)$, we get $a_{2} a_{3} \cdots a_{p}=\operatorname{gcd}\left(n_{0}, n_{1}\right)$. Since $a_{1}=\frac{n_{0}}{\operatorname{gcd}\left(n_{0}, n_{1}\right)}$ we conclude that $n_{0}=a_{1} a_{2} \cdots a_{p}$. Repeatedly applying $a_{i} n_{i}=b_{i} n_{i-1}$ gives $n_{i}=b_{1} b_{2} \cdots b_{i} a_{i+1} a_{i+2} \cdots a_{p}$ for $i \in[0, p]$. Lastly, if $\operatorname{gcd}\left(a_{i}, b_{1} b_{2} \cdots b_{i}\right)=d>1$ for some i, then d divides each of $n_{0}, n_{1}, \ldots, n_{p}$. This
contradicts $\left\langle n_{0}, n_{1}, \ldots, n_{p}\right\rangle$ being a numerical semigroup since $\operatorname{gcd}\left(n_{0}, \ldots, n_{p}\right) \geq$ d.

Applying Proposition 3, we see that in embedding dimension 2, every numerical semigroup $\langle a, b\rangle$ is on a compound sequence. Further, in embedding dimension 3 , we see that numerical semigroup $\langle a, b, c\rangle$ is on a compound sequence if and only if we can write $b=b_{1} b_{2}$ where $b_{1} \mid a$ and $b_{2} \mid c$. Henceforth we will focus on numerical semigroups on compound sequences, which we will abbreviate as NSCS.

Such semigroups are not too rare. For example, consider numerical semigroups of embedding dimension 3, whose largest generator is at most 200. Of these, 1% have their generators in a compound sequence, while 0.6% have their generators in an arithmetic sequence. The latter class of semigroups, and variations thereof, has been the subject of much recent study in $[3,5,8,15,16]$.

2 Factorization Structure

We now turn to the study of factorizations in an NSCS. These have very nice structure, which will be developed in this section. For nonzero $x \in \mathbb{Z}^{p+1}$, we define $\min (x)=\min \left\{i: x_{i} \neq 0\right\}$ and $\max (x)=\max \left\{i: x_{i} \neq 0\right\}$. Note that for any $x, y \in \mathbb{N}_{0}^{p+1}, \min (x) \geq \min (x+y)$ and $\max (x) \leq \max (x+y)$. Note also that $\min (x-y)$ is the smallest coordinate where x, y differ. This next, technical, result divides factorizations of the important element $a_{i} n_{i}=b_{i} n_{i-1}$ into two quite different categories. In particular, it implies that they are each Betti elements.

Proposition 4. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS, and let $i \in[1, p]$. Let $x \in \phi^{-1}\left(a_{i} n_{i}\right)$. Then one of the following must hold:

1. $\min (x) \geq i$ and $|x| \leq a_{i}$; or
2. $\max (x) \leq i-1$ and $|x| \geq b_{i}$.

Further, factorizations of both types exist, where all inequalities are met.

Proof. Set $a=a_{i} a_{i+1} \cdots a_{p}, b=b_{1} b_{2} \cdots b_{i}$. Note that $a_{i} n_{i}=a b$ and that a divides each of $n_{0}, n_{1}, \ldots, n_{i-1}$ while b divides each of $n_{i}, n_{i+1}, \ldots, n_{p}$. We calculate modulo $b: 0 \equiv a_{i} n_{i} \equiv \sum_{j=0}^{p} x_{j} n_{j} \equiv \sum_{j=0}^{i-1} x_{j} n_{j}$. We divide both sides by $a($ since $\operatorname{gcd}(a, b)=1)$ to get $0 \equiv \sum_{j=0}^{i-1} x_{j} \frac{n_{j}}{a}(\bmod b)$. If $\sum_{j=0}^{i-1} x_{j} \frac{n_{j}}{a}=0$, then $\min (x) \geq i$. Otherwise, $b \leq \sum_{j=0}^{i-1} x_{j} \frac{n_{j}}{a}$ and we multiply both sides by a to get $a b \leq \sum_{j=0}^{i-1} x_{j} n_{j} \leq \sum_{j=0}^{p} x_{j} n_{j}=a_{i} n_{i}=a b$. All the inequalities are equalities and hence $\max (x) \leq i-1$.

Now, partition $\phi^{-1}(n)=X \cup Y$, where factorizations $x \in X$ satisfy $\min (x) \geq$ i and factorizations $y \in Y$ satisfy $\max (y) \leq i-1$. For any $x \in X$, we have $n=a_{i} n_{i}=\sum_{j=i}^{p} x_{j} n_{j} \geq|x| n_{i}$, and hence $|x| \leq a_{i}$. Similarly, for any $y \in Y$, we have $n=b_{i} n_{i-1}=\sum_{j=1}^{i-1} y_{j} n_{j} \leq|y| n_{i-1}$, and hence $|y| \geq b_{i}$.

Finally, note that $a_{i} e_{i} \in X$ and $b_{i} e_{i-1} \in Y$.

This next lemma is essential for the proof of Theorem 8, and relates two factorizations of the same element, on their extremal coordinates.

Lemma 5. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS. Let $n \in S$, and $x, y \in \phi^{-1}(n)$. Set $m=\min (x+y), m^{\prime}=\max (x+y)$. Then $x_{m} \equiv y_{m}\left(\bmod b_{m+1}\right)$ and $x_{m^{\prime}} \equiv y_{m^{\prime}}$ $\left(\bmod a_{m^{\prime}}\right)$.

Proof. Set $b=b_{1} b_{2} \cdots b_{m+1}$. Note that b divides each of $n_{m+1}, n_{m+2}, \ldots, n_{p}$. Hence $n(\bmod b) \equiv x_{m} n_{m}+x_{m+1} n_{m+1}+\cdots x_{p} n_{p}(\bmod b) \equiv x_{m} n_{m}(\bmod b)$ but equally $n(\bmod b) \equiv y_{m} n_{m}(\bmod b)$. We conclude that $b \mid\left(x_{m}-y_{m}\right) n_{m}$, or $\left(b_{1} b_{2} \cdots b_{m+1}\right) \mid\left(x_{m}-y_{m}\right)\left(b_{1} b_{2} \cdots b_{m} a_{m+1} \cdots a_{p}\right)$. Cancelling, we get $b_{m+1} \mid\left(x_{m}-\right.$ $\left.y_{m}\right)\left(a_{m+1} \cdots a_{p}\right)$. Hence $b_{m+1} \mid\left(x_{m}-y_{m}\right)$ as $\operatorname{gcd}\left(a_{m+1} \cdots a_{p}, b_{m+1}\right)=1$.

Now set $a=a_{m^{\prime}} a_{m^{\prime}+1} \cdots a_{p}$. Note that a divides each of $n_{0}, n_{1}, \ldots, n_{m^{\prime}-1}$. Hence $n(\bmod a) \equiv x_{0} n_{0}+\cdots+x_{m^{\prime}-1} n_{m^{\prime}-1}+x_{m^{\prime}} n_{m^{\prime}}(\bmod a) \equiv x_{m^{\prime}} n_{m^{\prime}}$
$(\bmod a)$ but equally $n(\bmod a) \equiv y_{m^{\prime}} n_{m^{\prime}}(\bmod a)$. We conclude that $a \mid\left(x_{m^{\prime}}-\right.$ $\left.y_{m^{\prime}}\right) n_{m^{\prime}}$, or $\left(a_{m^{\prime}} a_{m^{\prime}+1} \cdots a_{p}\right) \mid\left(x_{m^{\prime}}-y_{m^{\prime}}\right)\left(b_{1} b_{2} \cdots b_{m^{\prime}} a_{m^{\prime}+1} \cdots a_{p}\right)$. Cancelling, we get $a_{m^{\prime}} \mid\left(x_{m^{\prime}}-y_{m^{\prime}}\right)\left(b_{1} \cdots b_{m^{\prime}}\right)$. Hence $a_{m^{\prime}} \mid\left(x_{m^{\prime}}-y_{m^{\prime}}\right)$ as $\operatorname{gcd}\left(a_{m^{\prime}}, b_{1} \cdots b_{m^{\prime}}\right)=$ 1.

Definition 6. For a fixed $N S C S\left\langle n_{0}, \ldots, n_{p}\right\rangle$, we now define basic swaps. These are elements of the kernel congruence σ, for each $i \in[1, p]$, given by

$$
\delta_{i}=\left(a_{i} e_{i}, b_{i} e_{i-1}\right), \quad \delta_{i}^{\prime}=\left(b_{i} e_{i-1}, a_{i} e_{i}\right)
$$

We define $\Omega=\left\{\delta_{i}\right\} \cup\left\{\delta_{i}^{\prime}\right\}$, the set of all basic swaps. For $\tau=\left(\tau_{1}, \tau_{2}\right) \in \Omega$, if $x+\tau_{1}=y+\tau_{2}$, we say that we apply the basic swap τ to get from x to y. If $x^{0}, x^{1}, \ldots, x^{k}$ is a chain of factorizations in $\phi^{-1}(n)$, we call this a basic chain if for each $i \in[1, k-1]$ we get from x^{i+1} to x^{i} by applying $\tau_{i} \in \Omega$. If a basic chain also satisfies, for all $i \in[1, k-1]$, that $\tau_{i} \in\left\{\delta_{j}, \delta_{j}^{\prime}\right\}$, where $j=1+\min \left(x_{i-1}-x_{i}\right)$, we call it a left-first basic chain. Similarly, if a basic chain also satisfies, for all $i \in[1, k-1]$, that $\tau_{i} \in\left\{\delta_{j}, \delta_{j}^{\prime}\right\}$, where $j=\max \left(x_{i-1}-x_{i}\right)$, we call it a right-first basic chain.

Note that if z is part of either a left-first or right-first basic chain from x to y, then $\min (z) \geq \min (x+y)$ and $\max (z) \leq \max (x+y)$. Note also that if we apply basic swap δ_{i} (or δ_{i}^{\prime}) to get from x to y, then $d(x, y)=d\left(a_{i} e_{i}, b_{i} e_{i-1}\right)=b_{i}$. Each basic swap is in σ since $a_{i} n_{i}=b_{i} n_{i-1}$, but in fact basic swaps are irreducibles in σ, as shown by the following.

Lemma 7. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS. Then $\Omega \subseteq \mathcal{I}(\sigma)$.

Proof. We consider fixed δ_{i} (the case of δ_{i}^{\prime} is similar). If it were reducible, then there is some $\left(\alpha e_{i}, \beta e_{i-1}\right) \in \sigma$, with $0<\alpha<a_{i}$. Hence $\alpha b_{1} \cdots b_{i-1} b_{i} a_{i+1} \cdots a_{P}=$ $\phi\left(\alpha e_{i}\right)=\phi\left(\beta e_{i-1}\right)=\beta b_{1} \cdots b_{i-1} a_{i} a_{i+1} \cdots a_{P}$. Cancelling, we get $\alpha b_{i}=\beta a_{i}$ and
hence $\alpha b_{i} \equiv 0\left(\bmod a_{i}\right)$. Since $\operatorname{gcd}\left(a_{i}, b_{i}\right)=1$, in fact $\alpha \equiv 0\left(\bmod a_{i}\right)$, a contradiction.

The following theorem proves the existence of basic chains connecting any two factorizations. Combined with Lemma 7 , it implies that Ω is a minimal presentation of σ.

Theorem 8. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS. Let $n \in S$, and $x, y \in \phi^{-1}(n)$. Then there are both left-first and right-first basic chains of factorizations from x to y.

Proof. We will only prove the existence of a left-first basic chain (the right-first case is similar). We argue by way of contradiction. Let n be minimal possessing at least one pair of factorizations $x, y \in \phi^{-1}(n)$ that do not admit a left-first basic chain between them. Of all such pairs in $\phi^{-1}(n)$ not admitting a basic chain, choose a pair $x, y \in \phi^{-1}(n)$ with $\left|x_{\min (x+y)}-y_{\min (x+y)}\right|$ minimal. For convenience, set $t=\min (x+y)$. Depending on whether $x_{t}-y_{t}$ is positive, negative, or zero, we now have three cases, each of which will lead to contradiction.

Suppose first that $x_{t}-y_{t}>0$. By Lemma 5 , in fact $x_{t} \geq y_{t}+b_{t+1}$. We now apply δ_{t+1} to x to get $z=x-b_{t+1} e_{t}+a_{t+1} e_{t+1}$. Since $z \in \phi^{-1}(n)$ and $\left|z_{t}-y_{t}\right|<\left|x_{t}-y_{t}\right|$, there must be a left-first basic chain of factorizations $z^{0}, z^{1}, \ldots, z^{k}$ from z to y. But then $x, z^{0}, z^{1}, \ldots, z^{k}$ is a left-first basic chain of factorizations from x to y, which is a contradiction.

Suppose next that $x_{t}-y_{t}<0$. By Lemma 5, in fact $y_{t} \geq x_{t}+b_{t+1}$. We now apply δ_{t+1} to y to get $z=y-b_{t+1} e_{t}+a_{t+1} e_{t+1}$. Since $z \in \phi^{-1}(n)$ and $\left|x_{t}-z_{t}\right|<\left|x_{t}-y_{t}\right|$, there must be a left-first basic chain of factorizations $x^{0}, x^{1}, \ldots, x^{k}$ from x to z. But then $x^{0}, x^{1}, \ldots, x^{k}, y$ is a left-first basic chain of factorizations from x to y, which is a contradiction.

Lastly we have $x_{t}=y_{t}$, with $x_{t}>0$. We now set $\bar{n}=n-x_{t} n_{t}, \bar{x}=$ $x-x_{t} e_{t}, \bar{y}=y-y_{t} e_{t}$. Since $\bar{n}<n$, by the choice of n any two factor-
izations of \bar{n} must admit a left-first basic chain between them. In particular, $\bar{x}, \bar{y} \in \phi^{-1}(\bar{n})$ must admit a left-first basic chain $\bar{x}^{0}, \bar{x}^{1}, \ldots, \bar{x}^{k}$. But then $\left(\bar{x}^{0}+x_{t} e_{t}\right),\left(\bar{x}^{1}+x_{t} e_{t}\right), \ldots,\left(\bar{x}^{k}+x_{t} e_{t}\right)$ is a left-first basic chain from x to y, which is a contradiction.

We recall that a numerical semigroup is a complete intersection if the cardinality each of its minimal presentations is one less than its embedding dimension. We recall that a numerical semigroup is free if for some ordering of its generators $n_{1}^{\prime}, \ldots, n_{p}^{\prime}$, and for all $i \in[2, p]$, we have $\min \left\{k \in \mathbb{N}: k n_{i}^{\prime} \in\left\langle n_{1}^{\prime}, \ldots, n_{i-1}^{\prime}\right\rangle\right\}=$ $\min \left\{k \in \mathbb{N}: k n_{i}^{\prime} \in\left\langle n_{1}^{\prime}, \ldots, n_{i-1}^{\prime}, n_{i+1}^{\prime}, \ldots, n_{p}^{\prime}\right\rangle\right\}$.

Corollary 9. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS. Then S is a free numerical semigroup, and a complete intersection.

Proof. Corollaries 8.17 and 8.19 of [18].

Corollary 10. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS. Then $\left\{a_{1} n_{1}, a_{2} n_{2}, \ldots, a_{p} n_{p}\right\}$ is the set of Betti elements of S.

Proof. Let $n \in S$ be a Betti element. Hence there is a partition $\phi^{-1}(n)=X \cup Y$, where $\sum_{i=0}^{p} x_{i} y_{i}=0$ for each $x \in X, y \in Y$. Choose $x \in X, y \in Y$. Take a basic chain of factorizations from x to y. There must be some consecutive factorizations x^{k}, x^{k+1} in this chain, where $x^{k} \in X$ and $x^{k+1} \in Y$. Hence for some $j \in[1, p]$, we have $x^{k+1}=x^{k}-a_{j} e_{j}+b_{j} e_{j-1}$ (or, similarly, $x^{k+1}=$ $\left.x^{k}+a_{j} e_{j}-b_{j} e_{j-1}\right)$. We have $0=x^{k} \cdot x^{k+1}$, but $x^{k}, x^{k+1} \in \mathbb{N}_{0}^{p+1}$, so $x^{k}=a_{j} e_{j}$ and hence $\phi\left(x^{k}\right)=a_{j} n_{j}$. Proposition 4 provides the other direction.

We now define i-normal factorizations in an NSCS, which will be of use later.

Definition 11. For a fixed $N S C S S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$, a fixed $n \in S$, and a fixed $i \in[0, p]$, we call factorization $x \in \phi^{-1}(n) i$-normal if it satisfies:

1. for all $j<i, 0 \leq x_{j}<b_{j+1}$; and

$$
\text { 2. for all } j>i, 0 \leq x_{j}<a_{j} \text {. }
$$

Note that these conditions are equivalent to none of the basic swaps in the set $\left\{\delta_{1}, \delta_{2}, \ldots, \delta_{i}, \delta_{i+1}^{\prime}, \delta_{i+2}^{\prime}, \ldots, \delta_{p}^{\prime}\right\}$ applying to x. The following proposition justifies calling the term "normal".

Proposition 12. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS. Let $n \in S$, and let $i \in[0, p]$. Then there is exactly one $x \in \phi^{-1}(n)$ that is i-normal.

Proof. For a factorization, call a coordinate "good" if it satisfies the appropriate condition of i-normality, and "bad" otherwise (coordinate i is neither). We will prove existence of i-normal factorizations, in two stages. First, we prove that there are factorizations that satisfy the first i-normal condition. If not, choose x so that its smallest bad coordinate, s, is maximal. That is, $0 \leq x_{j}<b_{j+1}$ for $j \in[0, s-1]$, but $x_{s} \geq b_{s+1}$. Set $t=\left\lfloor\frac{x_{s}}{b_{s+1}}\right\rfloor \geq 1$, and set $y=x+t \delta_{s+1}$. By construction of t, we have $0 \leq y_{s}<b_{s+1}$. Hence the smallest "bad" coordinate of y is greater than the smallest "bad" coordinate of x, a contradiction.

Next, we consider only factorizations that satisfy the first i-normal condition; these exist by the previous. We will prove (at least) one of these satisfies the second i-normal condition. If not, choose x so that its largest bad coordinate, s, is minimal. That is, $0 \leq x_{j}<a_{j}$ for $j \in[s+1, p]$, but $x_{s} \geq a_{s}$. Set $t=\left\lfloor\frac{x_{s}}{a_{s}}\right\rfloor \geq 1$, and set $y=x-t \delta_{s}$. By construction of t, we have $0 \leq y_{s}<a_{s}$. Hence the largest "bad" coordinate of y is smaller than the largest "bad" coordinate of x, a contradiction.

We now prove uniqueness. Let x, y be i-normal factorizations of n. Set $s=\min (x-y)$. Suppose that $s<i$. We set $z=\left(x_{0}, x_{1}, \ldots, x_{s-1}, 0,0, \ldots, 0\right)$, and apply Lemma 5 to $x-z, y-z$, both factorizations of $n-\phi(z)$. We conclude that $x_{s} \equiv y_{s}\left(\bmod b_{s+1}\right)$; however since x, y are simple in fact $x_{s}=y_{s}$, a contradiction. Hence $\min (x-y) \geq i$. By using the second i-normal condition, and the second part of Lemma 5, we similarly prove that $\max (x-y) \leq i$. Hence
x, y agree, except possibly for x_{i}, y_{i}. However if $x_{i} \neq y_{i}$ they would not be factorizations of the same n.

This normal factorization yields various consequences, developed below. Our first observation is that i-normal factorizations are maximal in the i-th coordinate.

Corollary 13. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS. Let $n \in S$, and let $i \in[0, p]$. Let $x, y \in \phi^{-1}(s)$, and suppose that x is i-normal. Then $x_{i} \geq y_{i}$.

Proof. Suppose that $y_{i}>x_{i}$. Then $n-\phi\left(y_{i} n_{i}\right) \in S$, and has an i-normal factorization z. But now $z+y_{i} e_{i}$ is an i-normal factorization for n, which contradicts the uniqueness of x.

Note that since $a_{i}<b_{i}$, applying any basic swap δ_{i} decreases the factorization length, while applying any δ_{i}^{\prime} increases the factorization length. This observation, together with Theorem 8 and the comments preceding Proposition 12 , yield the following.

Corollary 14. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS. Let $n \in S$. Then the minimum factorization length of n is the length of the p-normal factorization of n. Also, the maximum factorization length of n is the length of the 0 -normal factorization of n.

3 Apéry sets

For a semigroup S and $m \in S$, recall that an Apéry set is defined as

$$
A p(S, m)=\{n \in S: n-m \notin S\} .
$$

These are most commonly computed when m is an irreducible; for this application i-normal forms prove to be very helpful. For $n \in S$, we let x be the
i-normal factorization for n. The following theorem proves that $n \in A p\left(S, n_{i}\right)$ if and only if $x_{i}=0$.

Theorem 15. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS. Let $i \in[0, p]$. Then the Apéry set $A p\left(S, n_{i}\right)=\left\{\phi(u): u \in S_{i}\right\}$, where

$$
S_{i}=\left\{u \in \mathbb{N}_{0}^{p+1}: \begin{array}{l}
u_{0}<b_{1}, u_{1}<b_{2}, \ldots, u_{i-1}<b_{i}, u_{i}=0 \\
u_{i+1}<a_{i+1}, u_{i+2}<a_{i+2}, \ldots, u_{p}<a_{p}
\end{array}\right\}
$$

Proof. If $x \in S_{i}$, then x is i-normal, and hence by Corollary $13, x_{i}=0$ is maximal over all factorizations of $\phi(x)$. Hence $\phi\left(x-x_{i}\right) \notin S$, and $\phi(x) \in A p\left(S, n_{i}\right)$. On the other hand, for $n \in A p\left(S, n_{i}\right)$, let x be the i-normal factorization of n. If $x_{i}>0$ then $n-n_{i} \in S$, which is impossible. Hence $x_{i}=0$ and thus $x \in S_{i}$.

For a numerical semigroup S, recall that the largest integer in $\mathbb{N} \backslash S$ is called the Frobenius number of S, denoted $g(S)$. In [4], Brauer and Shockley proved that $g(S)=\max A p(S ; m)-m$. Applying this to Theorem 15 , with $i=0$ for simplicity, we get the following corollary, which directly generalizes the main result of [17].

Corollary 16. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS. Let $i \in[0, p]$. Then

$$
g(S)=-n_{0}+\sum_{j=1}^{p} n_{j}\left(a_{j}-1\right)
$$

For a numerical semigroup S, recall that $|\mathbb{N} \backslash S|$ is called the genus of S, denoted $N(S)$. In [19], Selmer proved that $N(S)=-\frac{m-1}{2}+\frac{1}{m} \sum_{n \in A p(S, m)} n$. Applying this to Theorem 15, with $i=0$ for simplicity, we get the following corollary.

Corollary 17. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS. Then

$$
N(S)=\frac{1}{2}\left(1-n_{0}+\sum_{j=1}^{p} n_{j}\left(a_{j}-1\right)\right)
$$

Proof. We compute $X=\sum_{u \in S_{0}} \phi(u)$. We write $X=X_{1}+\cdots+X_{P}$, where $X_{j}=$ $\sum_{u \in S_{0}} u_{j} n_{j}$. In the terms of X_{j}, u_{j} assumes each of the values $0,1, \ldots, a_{j}-1$ equally often, specifically $\frac{a_{1} a_{2} \cdots a_{p}}{a_{j}}$ times. Hence $X_{j}=\left(0+1+\cdots+\left(a_{j}-\right.\right.$ 1)) $\frac{a_{1} a_{2} \cdots a_{p}}{a_{j}} n_{j}=\frac{a_{j}-1}{2}\left(a_{1} a_{2} \cdots a_{p}\right) n_{j}$. Summing, we get $X=\frac{a_{1} a_{2} \cdots a_{p}}{2} \sum_{j=1}^{p} n_{j}\left(a_{j}-\right.$ $1)$, and the result follows.

Combining the previous two corollaries, we see that $N(S)=\frac{1+g(S)}{2}$, which is precisely the definition of symmetric numerical semigroups. Hence all NSCS semigroups are symmetric; this result also follows since they are complete intersections (see Cor. 8.12 in [18]).

4 Arithmetic Invariants

We now compute several arithmetic invariants in the NSCS context. First we consider the catenary degree $c(S)$, which we can determine exactly. In the special case of a geometric sequence $S=\left\langle a^{p}, a^{p-1} b, \ldots, b^{p}\right\rangle$, this gives $c(S)=b$.

Theorem 18. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS. Then $c(S)=\max \left\{b_{1}, b_{2}, \ldots, b_{p}\right\}$.

Proof. By Theorem 8, we may connect any two factorization by a basic chain. Hence $c(S) \leq \max \left\{b_{1}, \ldots, b_{p}\right\}$. Now fix i such that $b_{i}=\max \left\{b_{1}, b_{2}, \ldots, b_{p}\right\}$. Let x, y be two factorizations of $a_{i} n_{i}$ of the two types guaranteed by Proposition 4. We have $\operatorname{gcd}(x, y)=0$ so $d(x, y)=\max \{|x|,|y|\} \geq b_{i}$. Any chain of factorizations connecting $a_{i} n_{i}$ to $b_{i} n_{i-1}$ must at some point cross from one factorization type to the other, a step of size at least b_{i}. Hence $c\left(a_{i} n_{i}\right) \geq b_{i}$, so $c(S) \geq \max \left\{b_{1}, \ldots, b_{p}\right\}$.

In particular, Theorem 18 shows that the catenary degree of an NSCS is achieved at a Betti element. Compare this to the result in [11] that the catenary degree of a half-factorial numerical semigroup is achieved by a Betti element.

We now consider $\Delta(S)$ in our context, which we can partially determine. Recall from [13] that $\min (\Delta(S))=\operatorname{gcd}(\Delta(S))$.

Theorem 19. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS. Set $N=\left\{b_{1}-a_{1}, b_{2}-\right.$ $\left.a_{2}, \ldots, b_{p}-a_{p}\right\}$. Then:

1. $\min (\Delta(S))=\operatorname{gcd}(N)$,
2. $N \subseteq \Delta(S)$, and
3. $\max (\Delta(S))=\max (N)$.

Proof. (1) Each basic swap is irreducible in σ. Hence by Proposition 2.2 of [3], $\min (\Delta(S))=\operatorname{gcd}(P(\sigma)) \leq \operatorname{gcd}(N)$. For the reverse direction, note that $n_{i}-n_{i-1}=\left(b_{i}-a_{i}\right) b_{1} \cdots b_{i-1} a_{i+1} \cdots a_{p}$, so $\operatorname{gcd}(N) \mid \operatorname{gcd}\left(\left\{n_{i}-n_{i-1}: i \in[1, p]\right\}\right)$, which equals $\min (\Delta(S)$ by Proposition 2.10 of [3].
(2) By Proposition 4, we see that $\mathcal{L}\left(a_{i} n_{i}\right)$ contains a_{i}, b_{i}, and no values in between. Hence $b_{i}-a_{i} \in \Delta\left(a_{i} n_{i}\right) \subseteq \Delta(S)$.
(3) Let $d \in \Delta(S)$. Then there is some $n \in S$ and $x, y \in \phi^{-1}(n)$ with $|y|=|x|+d$, and $\mathcal{L}(n)$ contains no integer strictly between $|x|$ and $|y|$. Applying Theorem 8 there is a basic chain of factorizations $x^{0}, x^{1}, \ldots, x^{k}$ from x to y. Hence $\left\{\left|x^{0}\right|,\left|x^{1}\right|, \ldots,\left|x^{k}\right|\right\} \subseteq \mathcal{L}(n)$. Note that $\left|\left|x^{i-1}\right|-\left|x^{i}\right|\right| \in N$, for each $i \in[1, k]$, so $\mathcal{L}(x)$ contains a sequence of integers from $|x|$ to $|y|$, each at most $\max (N)$ away from the last. Thus $d \leq \max (N)$. This proves that $\max (\Delta(S)) \leq \max (N)$; combined with (2) the result follows.

In certain cases, as shown below, Theorem 19 determines $\Delta(S)$ completely. In particular, the geometric sequence case is settled since that restriction implies $|N|=1$.

Corollary 20. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS. Set $N=\left\{b_{1}-a_{1}, b_{2}-\right.$ $\left.a_{2}, \ldots, b_{n}-a_{n}\right\}$. Suppose that any of the following hold:

1. $|N|=1$, or
2. $|N|>1$ and for some $\alpha \in \mathbb{N}, N=\{\alpha, 2 \alpha, \ldots,|N| \alpha\}$, or
3. $|N|>1$ and for some $\alpha \in \mathbb{N}, N=\{2 \alpha, 3 \alpha, \ldots,(|N|+1) \alpha\}$,

Then $\Delta(S)$ is completely determined. In the first two cases, $\Delta(S)=N$; in the last case $\Delta(S)=N \cup\{\alpha\}$.

Beyond Corollary 20, more work is needed to determine $\Delta(S)$. For example, consider the NSCS given by $a_{1}=a_{2}=2, b_{1}=7, b_{2}=9$, i.e. $S=\langle 4,14,63\rangle$. We have $N=\{5,7\}$ so applying Theorem 19 gives us $\{1,5,7\} \subseteq \Delta(S)$, while a computation with the GAP numericalsgps package (see [9]) shows that $\Delta(S)=$ $\{1,2,3,5,7\}$.

Lastly, we consider the tame degree $t(S)$. We now prove two lower bounds for $t(S)$. They arise by considering the smallest r_{p} such that $r_{p} a_{p} n_{p}-n_{0} \in S$, and the smallest s_{1} such that $s_{1} b_{1} n_{0}-n_{p} \in S$.

Theorem 21. Let $S=\left\langle n_{0}, \ldots, n_{p}\right\rangle$ be an NSCS. Set $r_{1}=1$ and $r_{i}=\left\lceil\frac{a_{i-1} r_{i-1}}{b_{i}}\right\rceil$ for $i \in[2, p]$. Set $s_{p}=1, s_{i-1}=\left\lceil\frac{b_{i} s_{i}}{a_{i-1}}\right\rceil$ for $i \in[2, p]$. Then
$t(S) \geq \max \left\{\left(b_{1}-a_{1}\right) r_{1}+\left(b_{2}-a_{2}\right) r_{2}+\cdots+\left(b_{p-1}-a_{p-1}\right) r_{p-1}+b_{p} r_{p}, b_{1} s_{1}\right\}$.

Proof. For the first bound, we set $n=a_{p} r_{p} n_{p}$ and $z=a_{p} r_{p} e_{p} \in \phi^{-1}(n)$. We now set $u=\left(b_{1} r_{1}, b_{2} r_{2}-a_{1} r_{1}, b_{3} r_{3}-a_{2} r_{2}, \ldots, b_{p} r_{p}-a_{p-1} r_{p-1}, 0\right)$. Note the left-first basic chain $u \rightarrow \stackrel{r_{1} \delta_{2}}{\stackrel{\sim}{?}} \rightarrow\left(0, b_{2} r_{2}, b_{3} r_{3}-a_{2} r_{2}, \ldots, b_{p} r_{p}-a_{p-1} r_{p-1}, 0\right) \rightarrow$ $\stackrel{r_{2} \delta_{3}}{\cdots} \rightarrow\left(0,0, b_{3} r_{3}, \ldots, b_{p} r_{p}-a_{p-1} r_{p-1}, 0\right) \rightarrow \cdots \rightarrow b_{p} r_{p} e_{p-1} \rightarrow \stackrel{r_{p} \delta_{p}}{\cdots} \rightarrow z$. In particular $u \in \phi_{0}^{-1}(n)$. Note that each $w \in \phi_{0}^{-1}(n)$ has $|w|>|z|$ and hence $d(w, z)=|w|$. We will now show that $|u| \leq|w|$ for all $w \in \phi_{0}^{-1}(n)$. First, by Lemma 5, $w_{0} \geq b_{1} r_{1}=u_{0}$. Now, for all $i \in[1, p-1]$ we must have $u_{i}<b_{i+1}$ since otherwise $b_{i+1}\left\lceil\frac{a_{i} r_{i}}{b_{i+1}}\right\rceil-a_{i} r_{i} \geq b_{i+1}$, a contradiction. Hence $u-b_{1} r_{1} e_{1}$ is a
p-normal factorization. By Corollary 14, $\left|u-b_{1} r_{1} e_{0}\right| \leq\left|w-b_{1} r_{1} e_{0}\right|$ and hence $|u| \leq|w|$. Therefore $t_{0}(n) \geq d\left(z, \phi_{0}^{-1}(n)\right)=d(z, u)=|u|=\left(b_{1}-a_{1}\right) r_{1}+\left(b_{2}-\right.$ $\left.a_{2}\right) r_{2}+\cdots+\left(b_{p-1}-a_{p-1}\right) r_{p-1}+b_{p} r_{p}$.

For the second bound, we set $n=b_{1} s_{1} n_{0}$ and $z=b_{1} s_{1} e_{0} \in \phi^{-1}(n)$. We now set $u=\left(0, a_{1} s_{1}-b_{2} s_{2}, a_{2} s_{2}-b_{3} s_{3}, \ldots, a_{p-1} s_{p-1}-b_{p} s_{p}, a_{p} s_{p}\right)$. Note the right-first basic chain $u \rightarrow \stackrel{s_{p} \delta_{p}^{\prime}}{\cdots}\left(0, a_{1} s_{1}-b_{2} s_{2}, a_{2} s_{2}-b_{3} s_{3}, \ldots, a_{p-1} s_{p-1}, 0\right) \rightarrow$ $\cdots \rightarrow a_{1} s_{1} e_{1} \rightarrow \stackrel{s_{1} \delta_{1}^{\prime}}{\cdots} \rightarrow z$. In particular $u \in \phi_{p}^{-1}(n)$. Note that, by Corollary 14, each $w \in \phi^{-1}(n)$ has $|w| \leq|z|$. First, by Lemma $5, w_{p} \geq a_{p} s_{p}=u_{p}$. For all $i \in[1, p-1]$ we must have $u_{i}<a_{i}$ since otherwise $a_{i}\left\lceil\frac{b_{i+1} s_{i+1}}{a_{i}}\right\rceil-b_{i+1} s_{i+1} \geq a_{i}$, a contradiction. Hence $u-a_{p} s_{p} e_{p}$ is a 0 -normal factorization. We apply Corollary 13 to conclude that since $u_{0}=0$, also $w_{0}^{\prime}=0$ for all $w^{\prime} \in \phi^{-1}\left(n-a_{p} s_{p} n_{p}\right)$. Therefore $w_{0}=0$ for all $w \in \phi_{i}^{-1}(n)$, and hence $d\left(z, \phi_{i}^{-1}(n)\right)=|z|=b_{1} s_{1}$, as desired.

We have no examples where this inequality is strict. The following examples show that both parts of the bound are necessary. For $S=\langle 165,176,208\rangle$, we compute $t(S)=27$ while Theorem 21 gives $t(S) \geq \max \{27,16\}$. For $S=\langle 165,195,208\rangle$, we compute $t(S)=26$ while Theorem 21 gives $t(S) \geq$ $\max \{18,26\}$.

References

[1] D. D. Anderson and Jonathan Preisser. Factorization in integral domains without identity. Results Math., 55(3-4):249-264, 2009.
[2] Paul Baginski and Scott T. Chapman. Arithmetic congruence monoids: A survey. In Combinatorial and Additive Number Theory: Contributions from CANT 2011. Springer, forthcoming.
[3] Craig Bowles, Scott T. Chapman, Nathan Kaplan, and Daniel Reiser. On delta sets of numerical monoids. J. Algebra Appl., 5(5):695-718, 2006.
[4] Alfred Brauer and James E. Shockley. On a problem of Frobenius. J. Reine Angew. Math., 211:215-220, 1962.
[5] S. T. Chapman, P. A. García-Sánchez, and D. Llena. The catenary and tame degree of numerical monoids. Forum Math., 21(1):117-129, 2009.
[6] S. T. Chapman, P. A. García-Sánchez, D. Llena, A. Malyshev, and D. Steinberg. On the delta set and the Betti elements of a BF-monoid. Arab. J. Math. (Springer), 1(1):53-61, 2012.
[7] S. T. Chapman, P. A. García-Sánchez, D. Llena, V. Ponomarenko, and J. C. Rosales. The catenary and tame degree in finitely generated commutative cancellative monoids. Manuscripta Math., 120(3):253-264, 2006.
[8] Scott T. Chapman, Walter Puckett, and Katy Shour. On the omega values of generators of embedding dimension-three numerical monoids generated by an interval. Involve, 7(5):657-667, 2014.
[9] Manuel Delgado, Pedro García-Sanchez, and Jose Morais. Gap package numericalsgps. http://www.gap-system.org/Packages/numericalsgps. html, June 2013.
[10] P. A. García Sánchez, I. Ojeda, and J. C. Rosales. Affine semigroups having a unique Betti element. J. Algebra Appl., 12(3):1250177, 11, 2013.
[11] P. A. García Sánchez, I. Ojeda, and A. Sánchez-R.-Navarro. Factorization invariants in half-factorial affine semigroups. Internat. J. Algebra Comput., 23(1):111-122, 2013.
[12] Pedro A. García-Sánchez and Ignacio Ojeda. Uniquely presented finitely generated commutative monoids. Pacific J. Math., 248(1):91-105, 2010.
[13] Alfred Geroldinger. On the arithmetic of certain not integrally closed Noetherian integral domains. Comm. Algebra, 19(2):685-698, 1991.
[14] Alfred Geroldinger and Franz Halter-Koch. Non-unique factorizations, volume 278 of Pure and Applied Mathematics (Boca Raton). Chapman \& Hall/CRC, Boca Raton, FL, 2006. Algebraic, combinatorial and analytic theory.
[15] M. Omidali and F. Rahmati. On the type and the minimal presentation of certain numerical semigroups. Comm. Algebra, 37(4):1275-1283, 2009.
[16] Mehdi Omidali. The catenary and tame degree of numerical monoids generated by generalized arithmetic sequences. Forum Math., 24(3):627-640, 2012.
[17] Darren C. Ong and Vadim Ponomarenko. The Frobenius number of geometric sequences. Integers, 8:A33, 3, 2008.
[18] J. C. Rosales and P. A. García-Sánchez. Numerical semigroups, volume 20 of Developments in Mathematics. Springer, New York, 2009.
[19] Ernst S. Selmer. On the linear Diophantine problem of Frobenius. J. Reine Angew. Math., 293/294:1-17, 1977.
[20] Amitabha Tripathi. On the Frobenius problem for geometric sequences. Integers, 8: A43, 5, 2008.

