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1 Introduction

Nonunique factorization theory studies the arithmetic properties of commu-
tative, cancellative monoids and domains, where unique factorization fails to
hold. For a general reference see any of [1,2,12]. One large class of such monoids
are multiplicative submonoids of the natural numbers. This is quite broad
in general, but a particular subclass called arithmetic congruence monoids
(ACM’s) have received considerable attention recently [4,6–10,16]. These ACM
results are surveyed in the forthcoming [2]. The present work considers a gen-
eralization of ACM’s, still contained within the natural numbers, called con-
gruence monoids (CM’s). The arithmetic properties of ACM’s are fairly well-
understood, and our intention is to determine these properties for CM’s. Some
previous results concerning CM’s may be found in [5,13,15]. More generally,
congruence monoids in Dedekind domains have been investigated in [11,14].

Let N denote the set of positive integers, N0 denote the set of nonnegative
integers, and P denote the set of rational primes. Let us fix n ∈ N, and let [·]n
denote the natural epimorphism from N to Z/nZ. Let Γ ⊆ N be nonempty, and
set [Γ ]n = {[x]n : x ∈ Γ} ⊆ Z/nZ. We define Γn = {x ∈ N : [x]n ∈ [Γ ]n}∪{1}.
If [Γ ]n is multiplicatively closed, then Γn is a multiplicative submonoid of N
and we call Γn a congruence monoid (CM). CM’s were first introduced in [13],
wherein they were called arithmetical congruence semigroups.

An arithmetic congruence monoid (ACM) is a congruence monoid with the
added restriction that |Γ | = 1. They are commonly written as Ma,n, where
Γ = {a}. The ACM’s of the special type Mn,n = {1} ∪ nN are of particular
interest to us in the sequel, so we shall denote them more compactly as M(n).
The arithmetic properties of ACM Ma,n are categorized broadly as follows. If
gcd(a, n) = 1, then in fact a = 1 and the ACM is called regular. Otherwise,
the ACM is called singular. Singular ACM’s are further subdivided based on
whether gcd(a, n) is a prime power (called local ACM’s), or otherwise (called
global ACM’s).

We now need to define various tools from the theory of nonunique fac-
torization. For a full introduction, see the monograph [12]. For monoid M ,
let M× denote its units and M• denote its nonunits. We call M reduced if
|M×| = 1. We call x ∈M• irreducible if it cannot be expressed as the product
of two nonunits. We denote the set of all irreducibles of M by A(M). Given
x ∈M•, we call x1x2 · · ·xk a factorization of x if each term is irreducible and
their product is x. Monoid M is atomic if every x ∈M• has at least one fac-
torization; all congruence monoids are reduced and atomic, being submonoids
of N. We call x ∈M• prime if x|ab (in M) implies either x|a (in M) or x|b (in
M). It is a standard result that every prime is irreducible; we call M factorial
if every irreducible is prime.

Several important invariants are concerned with the quantity of irreducibles
into which an element may be factored. For x ∈M•, let L(x) denote the max-
imum number of irreducibles in a factorization of x (in our context always
finite), and let l(x) denote the minimum number of irreducibles in a factor-

ization of x. Let ρ(x) = L(x)
l(x) , called the elasticity of x. The elasticity of M is
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defined as ρ(M) = sup{ρ(x) : x ∈M•}. If ρ(M) = 1 we call M half-factorial ;
at the other extreme we can have ρ(M) = ∞. If there is some x ∈ M• such
that ρ(x) = ρ(M), we say that the elasticity of M is accepted. If for every
rational q ∈ [1, ρ(M)), there is some xq ∈M• with ρ(xq) = q, we say that the
elasticity of M is full, or M is fully elastic.

For general commutative, cancellative, reduced, atomic monoids M,N and
monoid homomorphism σ : M → N , we call σ a transfer homomorphism if

– σ(x) ∈ N× if and only if x ∈M×,
– σ is surjective, and
– If x ∈ M and there are a, b ∈ N such that σ(x) = ab, then there are
x′, x′′ ∈M such that x = x′x′′, σ(x′) = a, and σ(x′′) = b.

In particular, transfer homomorphisms preserve lengths; they are a common
tool used in nonunique factorization theory, because the elasticity-related in-
variants for M coincide with those for N .

We now begin our study of congruence monoids with several classifying
definitions. These are motivated in part by the following lemma.

Lemma 1 Let Γn be a congruence monoid, and x, y ∈ Γn. Suppose that [x]n =
[y]n. Then gcd(x, n) = gcd(y, n).

Proof We have x = y + kn for some k ∈ Z. Because gcd(x, n) divides x and
n, gcd(x, n) also divides y and hence gcd(y, n). Reversing the roles of x, y we
have gcd(y, n) divides gcd(x, n) and the result follows. ut

The structure of ACM Ma,n varies substantially depending on the invariant
gcd(a, n). Similarly, the CM structure varies depending on two invariants, u, d,
as defined below. For particular n and Γ , we factor n = ur, choosing r to be
maximal such that gcd(r, g) = 1 for all g ∈ Γ . We call r the pRivate part of n,
and u the pUblic part of n, and observe that gcd(u, r) = 1. Analogously, we
call (rational) primes dividing r private primes, and primes dividing u public
primes. Note that all primes dividing n are either private or public, but not
both; also, for each public prime p there is some g ∈ Γ with p|g. We call those
rational primes that are neither public nor private external primes.

If u = 1 we call Γn regular ; in this case each g ∈ Γ satisfies gcd(g, n) = 1.
If gcd(g, n) = 1 for at least one g ∈ Γ we call Γn weakly regular. When |Γ | = 1
these notions coincide, and agree with the established definition of regular
ACM’s.

We now define a related invariant d = gcd(Γ ∪ {n}). Note that d|u and
hence 1 ≤ d ≤ u. In particular if Γn is regular then u = d = 1. If Γn is weakly
regular then d = 1. The converse need not hold; for example Γ = {3, 4, 6} with
n = 6 has d = 1 but is not weakly regular.

If d = u we call Γn a J-monoid. J-monoids are the closest direct general-
ization of ACM’s; results for J-monoids are often similar to those for ACM’s.
If d > 1 we call Γn singular. If d > 1 and u is a prime power, then we call
Γn local. These generalize the established definitions for singular and local
ACM’s. We call Γn semi-regular if it is weakly regular but not a J-monoid.
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In particular, if Γn is semi-regular then 1 = d < u. Hence all weakly regular
CM’s are either regular or semi-regular. Since ACM’s are J-monoids, they are
never semi-regular.

For p ∈ P and x ∈ N, let νp(x) denote the largest power of p that divides x
(as integers). By φ(x) we denote the Euler totient. By a|b we mean a divides
b as integers; if a, b are also members of a monoid, we will establish b

a in the
monoid separately. For r ∈ N, we let r⊥ = {s ∈ N : gcd(s, r) = 1}.

The sequel contains the following results. First we recall that regular CM’s
are equivalent to other well-understood monoids, which largely determines
their arithmetic properties. For all CM’s, the presence of primes is character-
ized completely. For local J-monoids we compute elasticity, characterize half-
factoriality, and in some cases determine accepted and full elasticity. More
generally for singular J-monoids we present several transfer homomorphisms.
For all local CM’s, we have both an exact computation of elasticity (which is
always finite) as well as several bounds using different invariants. Most gen-
erally, we determine whether elasticity is finite for many CM’s. We conclude
with two elasticity results for semi-regular CM’s, and a family of semi-regular
examples with infinite and full elasticity (a phenomenon that does not occur
in ACM’s).

2 Structural Results

We first consider regular congruence monoids. The following lemma, found in
[2], shows that regular CM’s are isomorphic to Krull monoids.

Lemma 2 Let Γn be a regular congruence monoid. Then [Γ ]n ≤ (Z/nZ)×.

Proof [Γ ]n is closed by definition of congruence monoid. For [x]n ∈ [Γ ]n,

gcd(x, n) = 1. Hence by Euler’s theorem, [x]
φ(n)−1
n [x]n = [1]n, and since [Γ ]n

is closed, all of these are in [Γ ]n. ut

By [12, Example 5.3 (4)], we conclude from Lemma 2 that Γn is Krull with
finite class group (Z/nZ)×/[Γ ]n. Krull monoids are well-studied (e.g. in [12]),
with finite and accepted elasticity equal to half of the Davenport constant of
the block monoid of the class group. Half-factoriality is characterized by the
class group being of order 1 or 2, which translates into the following result.

Proposition 1 Regular congruence monoid Γn is half-factorial if and only if

|[Γ ]n| ≥ φ(n)
2 . It is factorial if and only if |[Γ ]n| = φ(n).

We now turn our attention to prime elements of Γn. These are characterized
in Theorem 1, which first requires the following lemma.

Lemma 3 Let Γn be a weakly regular congruence monoid. Then [1]n ∈ [Γ ]n.

Proof Because Γn is weakly regular, there is some g ∈ (Γ ∩ n⊥). By Euler’s

theorm, 1 ≡ gφ(n) (mod n) and [g]
φ(n)
n ∈ [Γ ]n since [Γ ]n is closed. ut
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We now characterize congruence monoids that contain primes. Henceforth
we will regularly make use, without further comment, of Dirichlet’s theorem
on primes in arithmetic progression.

Theorem 1 Let Γn be a congruence monoid. If Γn is weakly regular, then it
contains infinitely many primes; if not, then it contains no primes.

Proof Let p ∈ P be arbitrary with p ≡ 1 (mod n).
First, suppose that Γn is weakly regular. We will prove that p is prime in

Γn. We have [p]n = [1]n and, by Lemma 3, [1]n ∈ [Γ ]n so p ∈ Γn. Suppose
now that p|xy, where x, y ∈ Γn. Since p is a rational prime, we may assume
without loss that p|x; write x = px′ for some x′ ∈ N. Since p ≡ 1 (mod n)
we have x ≡ x′ (mod n) and hence [x]n = [x′]n. Since x ∈ Γn also x′ ∈ Γn.
Consequently, p|x in Γn which completes the proof.

Now, suppose that Γn is not weakly regular. Let x ∈ Γ •n be arbitrary.
Because [x]n = [xp]n = [xp2]n, both of xp, xp2 ∈ Γn. However p /∈ Γn since
gcd(p, n) = 1 although, by Lemma 1, gcd(g, n) > 1 for all g ∈ Γ . Now we have
x|(xp)(xp) in Γn because x(xp2) = (xp)(xp), but x - xp in Γn because p /∈ Γn.
Hence x is not prime in Γn. ut

In [3] it is shown that monoids with accepted elasticity and at least one
prime have full elasticity. Since regularity implies weak regularity, Theorem 1
implies that all regular congruence monoids have full elasticity.

We now produce an explicit element of Γ , based on the factorization n =
ur.

Theorem 2 Let Γn be a CM, with n = ur. Then [uφ(r)]n ∈ [Γ ]n.

Proof Write u = pa11 p
a2
2 · · · parr . Because p1, p2, . . . , pr are all public primes,

there are some g1, g2, . . . , gr ∈ Γ (not necessarily distinct) such that p1|g1,
p2|g2, . . ., pr|gr. Set x = ga11 ga22 · · · garr . Because [Γ ]n is closed, [x]n ∈ [Γ ]n.
Hence, there is some y ∈ Γ such that [x]n = [y]n. But gcd(x, n) = u so,
by Lemma 2, gcd(y, n) = u. Note that [yφ(r)]n ∈ [Γ ]n. We have yφ(r) ≡
0 ≡ uφ(r) (mod u) because u|y. Also we have yφ(r) ≡ 1 ≡ uφ(r) (mod r), via
Euler’s theorem, because gcd(y, r) = gcd(u, r) = 1. By the Chinese Remainder
Theorem, yφ(r) and uφ(r) are congruent modulo lcm(u, r) = n. Hence [yφ(r)]n =
[uφ(r)]n and the result follows. ut

In the special case of ACM’s, |[Γ ]n| = 1, so by Theorem 2 we see that
[Γ ]n = {[uφ(r)]n}. For fixed n, there are hence 2t ACM’s, where t denotes the
number of distinct primes dividing n, and just one of these (corresponding to
u = 1) is regular. This observation was Proposition 4.1 in [2].

A useful structural ACM result in [4] expresses each ACM as the intersec-
tion of a regular ACM and the singular ACM M(u). This result is generalized
in the following.

Theorem 3 Let Γ ⊆ N, Γn be a congruence monoid, and n = ur. Then Γr
is a regular congruence monoid and

M(u) ∩ Γr ⊆ Γn ⊆M(d) ∩ Γr
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Further, Γn is a J-monoid if and only if M(u) ∩ Γr = Γn.

Proof We first prove that Γr is a regular congruence monoid. Let x, y ∈ Γ .
Because [Γ ]n is closed, there is some z ∈ Γ such that [x]n[y]n = [z]n. That
is, ur|(xy − z). But then r|(xy − z), so [x]r[y]r = [z]r. Hence [Γ ]r is closed. If
gcd(r, g) > 1 for any g ∈ Γ , that would violate the definition of r; hence Γr is
regular. Further, for g ∈ Γ , if [x]n = [g]n, then n|(x− g) and hence r|(x− g)
and [x]r = [g]r. Consequently Γn ⊆ Γr.

The second inclusion is now clear. To prove the first inclusion, let x ∈
(M(u)∩Γr)•. Then there is some y ∈ Γ such that x ≡ y (mod r). But uφ(r) ≡ 1
(mod r) so also x ≡ yuφ(r) (mod r). Hence r|(x− yuφ(r)) = u(xu − yu

φ(r)−1),

but since gcd(r, u) = 1 in fact r|(xu − yu
φ(r)−1) and hence n = ru|(x− yuφ(r)).

Hence [x]n = [y]n[uφ(r)]n ∈ [Γ ]n.
We now prove the last statement. If Γn is a J-monoid, then all the inclusions

are equalities. If instead Γn is not a J-monoid, there is some g ∈ Γ with u - g.
Then (g + n) ∈ Γ •n \ (M(u) ∩ Γr). ut

Corollary 1 Let x, y ∈ Γn, a CM. If x
y ∈M(u) then x

y ∈ Γn.

Proof By the second inclusion of Theorem 3, x, y ∈ Γr, which is regular. By
Lemma 2, there is some z ∈ Γ satisfying [y]r[z]r = [1]r. Since x

y ∈ M(u),
x
y ∈ N and [xy ]r = [x]r[z]r ∈ [Γ ]r. Hence x

y ∈M(u)∩ Γr and we apply the first
inclusion of Theorem 3. ut

The following generalizes Lemma 2 to non-regular congruence monoids. It
shows that J-monoids have an implicit group structure.

Theorem 4 Let Γn be a congruence monoid. Then [(M(u) ∩ Γr)•]n is iso-
morphic to a subgroup of (Z/rZ)×. Further, if Γn is a J-monoid, then [Γ ]n =
[(M(u) ∩ Γr)•]n.

Proof Consider ψ : Γr → (M(u)∩Γr)• given by ψ(x) = uφ(r)x. Let t : Z/nZ→
(Z/uZ)× (Z/rZ) be the natural isomorphism. Set S = {t([ψ(x)]n) : x ∈ Γr} ⊆
(Z/uZ)× (Z/rZ). In fact, because ψ(x) ≡ 0 (mod u) and ψ(x) ≡ x (mod r),
S = {0}×[Γ •r ]r = {0}×[Γ ]r. By Theorem 3, Γr is a regular congruence monoid,
so we apply Lemma 2 to get the first statement. The second statement follows
from Theorem 3 and [Γ •n ]n = [Γ ]n. ut

Theorem 4 is illustrated by the following example.

Example 1 Let n = 30 and Γ = {1, 4, 14, 16, 26}. We have d = 1, u = 2, r = 15,
so [Γ ]30 is semi-regular. We see that [(M(2) ∩ Γ15)•]30 = {[4]30, [14]30, [16]30,
[26]30} ∼= (Z/2Z) × (Z/2Z) ≤ (Z/2Z) × (Z/4Z) ∼= (Z/15Z)×. The identity in
(Z/2Z)× (Z/2Z) is the image of [16]30.

Our last result of this section generalizes the analogous ACM result found
in [4]. Its condition holds for all non-regular J-monoids, and hence for all non-
regular ACM’s.
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Theorem 5 Let Γn be a congruence monoid with d2 - u. If x ∈ Γ •n is reducible,
then x+ n ∈ Γn is irreducible.

Proof We have x = yz for some y, z ∈ Γ •n . By the second inclusion of Theorem
3, d2|x. If also x+ n were reducible, then d2|(x+ n) and hence d2|n but then
d2|u contrary to hypothesis. ut

Consequently, if Γn satisfies the conditions of Theorem 5 then

lim sup
k→∞

|A(Γn) ∩ [1, k]|
|Γn ∩ [1, k]|

≥ 1

2

3 Elasticity

Recall that in the ACM context, if u is 1 (the regular case), or u is a prime
power (the local singular case), the elasticity is finite. On the other hand, for
all other u (the global singular case), the elasticity is infinite. We have similar
results for congruence monoids, except instead of just u we are concerned with
both u and d. For J-monoids, just as with ACM’s, these constants coincide.

We recall the following result from [16].

Theorem 6 Let Γn be a congruence monoid. Let A = {x ∈ Γ : gcd(x, n) >
1}, and let B = {p ∈ P : p|n, pk ∈ Γn for some k ∈ N}. Then ρ(Γn) < ∞, if
and only if, ∀x ∈ A ∃p ∈ B with p|x.

We first generalize the ACM finite elasticity result, via u. The following
result handles all local CM’s, as well as certain semi-regular CM’s.

Theorem 7 Let Γn be a congruence monoid. If u = pk for some p ∈ P and
some k ∈ N0, then ρ(Γn) <∞.

Proof Let A,B be as in Theorem 6. By Theorem 2, [uφ(r)]n ∈ [Γ ]n. Setting
s = kφ(r) we have ps = uφ(r) so [ps]n ∈ [Γ ]n and ps ∈ Γn. Thus p ∈ B.
Now let x ∈ A. We have gcd(x, u) = gcd(x, n) > 1, so p|x. Since x ∈ A was
arbitrary, the result follows. ut

We now generalize the ACM infinite elasticity result, via d.

Theorem 8 Let Γn be a congruence monoid. If d = d1d2 for some d1, d2 > 1
with gcd(d1, d2) = 1, then ρ(Γn) =∞.

Proof Let A,B be as in Theorem 6. We first prove that B = ∅; otherwise let
pk ∈ B. Then [pk]n ∈ [Γ ]n, so there is some y ∈ Γ with [pk]n = [y]n. By
Lemma 1, gcd(y, n) = gcd(pk, n) = ps for some s ∈ N. But also d| gcd(y, n),
which is a contradiction since d is not a prime power. We now observe that
A 6= ∅, else d = 1, and the result follows. ut

For J-monoids, Theorems 7 and 8 characterize finite elasticity. Otherwise,
there is no simple way to close the gap, as the following two examples show.
For particular cases one can always apply Theorem 6 directly, by calculating
B and checking which elements of Γ have one of these as divisor.
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Example 2 Set n = 105 = 3·5·7, and Γ = {1, 15}. We have r = 7, u = 15, d = 1
so Theorems 7 and 8 do not apply. Applying Theorem 6, we have A = {15}
yet B = ∅, hence ρ(Γn) =∞.

Example 3 Set n = 105, and Γ = {1, 15, 85}. We again have r = 7, u =
15, d = 1 so Theorems 7 and 8 do not apply. Applying Theorem 6, we have
A = {15, 85}; however this time [85]n = [530]n so B = {5}. Hence ρ(Γn) <∞.

We now sharpen Theorem 7 and compute elasticity for the local case. An
upper bound for elasticity is computed in [16], but it is not particularly tight.

Theorem 9 Let Γn be a local congruence monoid, p ∈ P. Suppose that u =
pα, d = pγ > 1. Let δ = sup{νp(x) : x ∈ Γn, x irreducible}. Then ρ(Γn) = δ

γ .

Proof If δ is finite, set δ′ = δ; otherwise set δ′ to be an arbitrarily large ele-
ment of {νp(x) : x ∈ Γn, x irreducible}. We now choose s, t ∈ (P ∩ n⊥) with

pδ
′
s, pγt both irreducibles in Γn. The former is guaranteed by the definition

of δ′, while the latter is guaranteed by the definition of d. Let k ∈ N be ar-
bitrary, and consider the two factorizations x = (pδ

′
s)γφ(n)k(pγtδ

′φ(n)k+1) =
(pγt)δ

′φ(n)k(pγtsγφ(n)k). We verify that νp(x) = δ′γφ(n)k+γ, νs(x) = γφ(n)k,
νt(x) = δ′φ(n)k + 1, so indeed these are factorizations as integers. Because
tφ(n) ≡ 1 ≡ sφ(n) (mod n), by Euler’s theorem we have (pγtδ

′φ(n)k+1) ≡
pγt ≡ (pγtsγφ(n)k) (mod n), so they are each in Γn. Further, they are each
irreducibles because they have only γ copies of p, the minimum possible. Con-

sequently, L(x) ≥ δ′φ(n)k + 1 and l(x) ≤ γφ(n)k + 1 so ρ(x) ≥ δ′φ(n)k+1
γφ(n)k+1 .

Hence ρ(Γn) ≥ δ′φ(n)k+1
γφ(n)k+1 for all k ∈ N so indeed ρ(Γn) ≥ δ′

γ .

If δ = ∞ we are done, otherwise we need an upper bound for ρ(Γn). For
irreducible z ∈ Γn, we have γ ≤ νp(z) ≤ δ. For y ∈ Γn, γL(y) ≤ νp(y) ≤ δl(y),

which rearranges to ρ(y) = L(y)
l(y) ≤

δ
γ . Hence ρ(Γn) ≤ δ

γ . ut

The invariant δ in Theorem 9 may be difficult to compute, so in the follow-
ing result we bound ρ(Γn) using other invariants. Note that because u = pα,
by Theorem 2 there is some power of p that is Γn. Let β be minimal such that
pβ ∈ Γn. We have γ ≤ β ≤ αφ(r).

Theorem 10 Let Γn be a local congruence monoid, p ∈ P. Suppose that u =
pα, d = pγ > 1. Let β be minimal such that pβ ∈ Γn. Then

max

(⌊
γ + β − 1

γ

⌋
,
ψβ + γ − 1

ψγ

)
≤ ρ(Γn) ≤ α+ β − 1

γ

where ψ = dα−γ+1
β e.

Proof Let δ = max{νp(x) : x ∈ Γn, x irreducible}, and let x ∈ Γn be irre-
ducible with νp(x) = δ. Suppose first that δ ≥ α + β. We have pβ ∈ Γn by
definition of β. Set y = xp−β ∈ N. We have νp(y) ≥ α so y ∈ M(u) and, by
Corollary 1, y ∈ Γn. Hence x is reducible via x = pβy, a contradiction. Hence
δ ≤ α+ β − 1, which establishes the right inequality.
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Set c = bβ−1γ c. Because c ≤ β−1
γ , we have β ≥ cγ + 1. Choose any t ∈ n⊥

with pγt ∈ Γn; such a t must exist by definition of d. Let s ∈ P\{p} satisfy s ≡
tc+1 (mod n). Now, set x = pγ(c+1)s. We have [x]n = [(pγt)c+1]n = [pγt]c+1

n .
Because [Γ ]n is closed, x ∈ Γn. Suppose x were reducible as x = (pa)(pbs). By
definition of d, b ≥ γ and hence a ≤ γ(c+1)−γ = γc ≤ β−1. This contradicts
the definition of β. Hence x is irreducible and δ ≥ γ(c+ 1); applying Theorem
9 gives ρ(Γn) ≥ bγ+β−1γ c.

We now turn to the last inequality. We assume without loss that there is
some q1 ∈ (P ∩ n⊥) such that pγq1 ∈ Γn. Choose q2 ∈ (P ∩ n⊥) such that
q2 ≡ p−ψβ−γ+1 (mod r). We now show that x = pψβ+γ−1q2 ∈ Γn. First, we
have νp(x) = ψβ + γ − 1 ≥ α, so x ≡ 0 (mod pα). Second, we have x ≡ 1
(mod r). Hence [x]n = [uφ(r)]n ∈ [Γ ]n, by Theorem 2.

Factoring x = (ps0q2)(ps1)(ps2) · · · (pst) into as many irreducibles as possi-
ble, we have ψβ + γ − 1 = νp(x) = s0 + s1 + · · · + st ≥ γ + tβ. Rearranging,
we get t < ψ and hence L(x) = t + 1 ≤ ψ. Now, we set φ = φ(n) and choose
(large) k ∈ N. We now consider

y = (pψβ+γ−1q2)kφγ(pγq
kφ(ψβ+γ−1)+1
1 ) = (pγq1)kφ(ψβ+γ−1)(pγqkφγ2 q1)

Note that since qφ1 ≡ qφ2 ≡ 1 (mod n), we have [pγq
kφ(ψβ+γ−1)+1
1 ]n =

[pγq1]n = [pγqkφγ2 q1]n, so these terms are in Γn. Since γ is minimal, these
terms are irreducible. We now compute

ρ(y) ≥ kφ(ψβ + γ − 1) + 1

kφγL(x) + 1
≥ kφ(ψβ + γ − 1) + 1

kφγψ + 1

Since ρ(Γn) ≥ ρ(y) for arbitrary k, the desired bound follows. ut

In the special case of local J-monoids, α = γ and ψ = 1 in Theorem 10,
giving the exact result ρ(Γn) = α+β−1

α . This generalizes a result in [6] for local
singular ACM’s.

Another consequence of Theorem 10 is the following necessary condition
for half-factoriality in local CM’s. An exact characterization of this property
for J-monoids appears in Proposition 2, and for regular congruence monoids in
Proposition 1. For other congruence monoids the problem remains open. Con-
gruence monoids with the stronger property of factoriality were characterized
60 years ago in [15].

Corollary 2 Let Γn be a local congruence monoid. If Γn is half-factorial, then
γ = β = 1.

Proof We have 1 = ρ(Γn) ≥ β
γ + γ−1

ψγ ≥ 1+0. All inequalities are equalities. ut

Proposition 2 Let Γn be a local J-monoid. Then Γn is half-factorial if and
only if

1. u is prime, and
2. [u]n ∈ [Γ ]n.
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Proof By Theorem 10, we have 1 = ρ(Γn) = α+β−1
α , if and only if β = 1 (i.e.

[u]n ∈ [Γ ]n). If β = 1, then since 1 ≤ γ ≤ β, γ = 1, and since Γn is a J-monoid,
α = γ = 1 and hence u is prime. For the other direction, if u is prime and
[u]n ∈ [Γ ]n, then β = 1. ut

Half-factoriality of J-monoids is therefore completely characterized by Propo-
sitions 1 and 2, and Theorem 8.

The following examples show that both lower bounds of Theorem 10 are
meaningful, and that the upper bound is sometimes, but not always, met.

Example 4 Let n = 128, Γ = {16, 20, 64, 128}. We have p = 2, γ = 2, β =
4, α = 7, and ψ = 2. Theorem 10 gives us max(2, 2.25) ≤ ρ(Γn) ≤ 5.

Example 5 Let n = 1280, Γ = {32, 188, 192, 256, 512, 768, 784, 896, 1024}. We
have p = 2, γ = 2, β = 5, α = 8, and ψ = 2. Theorem 10 gives us max(3, 2.75) ≤
ρ(Γn) ≤ 6.

Example 6 Let n = pα, Γ = {p, p2, . . . , pα}. Theorem 10 gives 1 ≤ ρ(Γn) ≤ α.
If p 6= 2, then 2pα is irreducible (since, for r < α, 2pr is not congruent to any
element of Γ , modulo pα). Hence by Theorem 9, ρ(Γn) = α. If instead p = 2,
then 3pα−1 = pα−1 + pα ∈ Γn, and is irreducible (since, for r < α − 1, 3pr is
not congruent to any element of Γ , modulo pα). Hence ρ(Γn) ≥ α− 1, and we
will prove equality. If we had ρ(Γn) = α then some for some c ∈ N, cpα would
be irreducible, but (p)( c2p

α) or (p)(pα−1 + c−1
2 pα) are factorizations for c even

or odd, respectively.

4 Singular J-Monoids

In the case of singular J-monoids, the factorization structure is determined by
the interplay between public and external primes. Motivated by Theorem 4,
we make the following definitions. For singular J-monoid Γn, we define abelian
group G = G(Γn) = (Z/rZ)×/[Γ ]r. We write G = {g1, g2, . . . , gm}, where g1
is the identity, and let σ : r⊥ → G denote the natural epimorphism.

We factor u = ua11 u
a2
2 · · ·u

ak
k , where u1, . . . , uk ∈ P and a1, . . . , ak ∈ N. Let

{ei} denote the standard basis vectors. We now define θ : r⊥ → Nk0 × Nm0 as
follows:

θ(ui) = (ei, 0), for ui ∈ {u1, u2, . . . , uk}

θ(p) = (0, eσ(p)), for p ∈ (P ∩ n⊥)

θ(xy) = θ(x) + θ(y), for x, y ∈ r⊥

For z ∈ r⊥, we consider θ(z) = (z′, z′′) = ((z′1, . . . , z
′
k), (z′′1 , . . . , z

′′
m)). We

have z ∈ M(u) if and only if z′i ≥ a′i (for each 1 ≤ i ≤ k). We have z ∈ Γr if
and only if

σ(u1)z
′
1 · · ·σ(uk)z

′
kg
z′′1
1 · · · g

z′′m
m = g1
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That is, if we consider the sequence in G formed by the images of all the primes
dividing z, that sequence must be zero-sum for [z]r ∈ [Γ ]r and hence z ∈ Γr.
These observations lead to the following result.

Theorem 11 Let Γn be a singular J-monoid. Let N1 = ((a1, . . . , ak) +Nk0)×
Nm0 . Let N2 = {(z′, z′′) ∈ Nk0 × Nm0 :

∏k
i=1 σ(ui)

z′i
∏m
j=1 g

z′′j
j = g1}. Then

N = (N1 ∩ N2) ∪ {(0, 0)} is a monoid under addition, and θ is a transfer
homomorphism from Γn to N .

Proof First, since N1 ∪ {(0, 0)} and N2 ∪ {(0, 0)} are each submonoids of
Nk0×Nm0 under addition, their intersection is. The map θ : Γn → N is a monoid
homomorphism by construction, and θ(x) = (0, 0) if and only if x = 1. We may
choose external primes q1, . . . , qm such that σ(qi) = gi. Hence for (z′, z′′) ∈ N ,

we take z =
∏k
i=1 u

z′i
i

∏m
j=1 q

z′′j
j and have θ(z) = (z′, z′′). Thus θ is surjective.

Now, let z = uf11 · · ·u
fk
k p1 · · · ps, where the pi are not necessarily distinct ex-

ternal primes. Suppose now that θ(z) = ((f1, . . . , fk), z′′) = (x′, x′′) + (y′, y′′),
a factorization in N . For each gj ∈ G, exactly z′′j of the {p1, . . . , ps} are
preimages under σ. Arbitrarily choose x′′j of these, and let vj denote their
product. Let wj denote the product of the remaining y′′i of them. Now set

x =
∏k
i=1 u

x′i
i

∏m
j=1 vj , y =

∏k
i=1 u

y′i
i

∏m
j=1 wj . We have x, y ∈ Γn by Theorem

3, and θ(x) = (x′, x′′), θ(y) = (y′, y′′) as desired. ut

For regular J-monoids, u = 1 and the problem reduces to the study of
zero-sum sequences as before. For singular J-monoids, the public primes are
distinguished and there are minimal requirements for their quantity; the pres-
ence of external primes affects which quantities are permitted.

Example 7 Let n = 1860 and Γ = {124, 496, 1364, 1736}. We have u = 31 ·
22, r = 15, [Γ ]15 = {[1]15, [4]15, [−4]15, [−1]15} and G = (Z/15Z)×/[Γ ]15 ∼=
(Z/2Z). For p ∈ (P ∩ r⊥), we have σ(p) = g1 if p is congruent to one of
{±1,±4} modulo 15, and σ(p) = g2 otherwise. We have N• ∼= {(a, b, c, d) ∈
N4

0 : a ≥ 1, b ≥ 2, and 2|(b + d)}. Element (a, b, c, d) is irreducible exactly
when a = 1 or b ∈ {2, 3}.

In some sense the opposite extreme of the regular case is where σ(u1) =
· · · = σ(uk) = g1; in this case the zero-sum sequence component of the problem
is irrelevant. In the context of ACM’s, this corresponds to the case of Mxd,yd

where gcd(x, y) = 1 and each divisor of d is congruent to 1 modulo y.

Theorem 12 Let Γn be a singular J-monoid. Suppose that σ(u1) = · · · =
σ(uk) = g1. Then there is a transfer homomorphism τ : Γn → M given by
τ(x) = (νu1(x), . . . , νuk

(x)), where M =
(
(a1, . . . , ak) + Nk0

)
∪ {0} .

Proof The map τ is a monoid homomorphism by construction, and τ(x) = 0

if and only if x = 1. For z ∈M , we take x =
∏k
i=1 u

zi
i and have τ(x) = z; thus

τ is surjective. Now, let x = m
∏k
i=1 u

zi
i ∈ Γn, where gcd(m,n) = 1. Since

σ(x) = g1 = σ(u1) = · · · = σ(uk), we have σ(m) = g1 as well. Now, suppose
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that z = τ(x) = (z1, . . . , zk) = z′+ z′′, where z′, z′′ ∈M . Set x′ = m
∏k
i=1 u

z′i
i ,

x′′ =
∏k
i=1 u

z′′i
i . We have x′, x′′ ∈ Γn by Theorem 3, and τ(x′) = z′, τ(x′′) = z′′,

as desired. ut

Recall that in [2] a transfer homomorphism was demonstrated from M(u)
to the same (a1, . . . , ak) + Nk0 . Consequently, M(u) and Γn share the same
factorization invariants if σ(u1) = · · · = σ(uk) = g1.

In the remainder of this section, we consider local J-monoids, and with
three choices of restrictions we determine full and/or accepted elasticity. Our
first restriction is that β = α.

Theorem 13 Let Γn be a J-monoid with u = pα. Suppose that u ∈ Γn. Then
ρ(Γn) = 2α−1

α , and it is accepted. Further, if pk /∈ Γn for all α < k < 2α, then
Γn has full elasticity.

Proof Theorem 10 gives ρ(Γn) = α+β−1
α . Let q ∈ (P ∩ n⊥) such that σ(q) =

σ(p). Consider the factorization (2α− 2)(α, 0) + (α, αeσ(q)) = α(2α− 1, eσ(q))

in N0 × Nm0 , which has elasticity 2α−1
α , as desired.

Now, let s
t ∈ [1, 2α−1α ). Let x ∈ Γn have the two factorizations given by

(pα)t(2α−1)−sα(p2α−1q)α(s−t) = (pα)sα−s−1(pαqα(s−t))

Because νp(y) ≥ α for all irreducibles y, L(x) ≤ b νp(x)α c = sα − s, as
represented on the right. Now, express any factorization of x as xpxq, where
xp is a product of irreducibles that are pure powers of p, while xq is a product
of irreducibles that are multiples of q. We have |x| = |xp| + |xq| and νp(x) ≤
α|xp| + (2α − 1)|xq| since νp(y) = α if y ∈ xp and νp(y) ≤ 2α − 1 if y ∈ xq.
We have |xq| ≤ νq(x) = α(s− t). We now have |x| ≥ νp(x)−(2α−1)|xq|

α + |xq| =
1
α (νp(x) − (α − 1)|xq|) ≥ 1

α (νp(x) − (α − 1)α(s − t)) = αt − t. Hence the
minimal length factorization is represented on the left. Combining, we have
ρ(x) = αs−s

αt−t = s
t , as desired. ut

Our next restriction is that α = 1.

Theorem 14 Let Γn be a J-monoid with u = p. Then ρ(Γn) = β, and Γn has
full elasticity.

Proof Theorem 10 gives ρ(Γn) = β. Let q ∈ (P∩n⊥) such that σ(q) = σ(p)−1.
Let s

t ∈ [1, β). Let x ∈ Γn have the two factorizations given by

(pq)βs−βt+1(pβ)βt−s−1 = (pβ)βt−t−1(pqβs−βt+1)

By Theorem 9, νp(y) ≤ β for all irreducibles y. Hence l(x) ≥ dνp(x)β e =
βt− t− 1, as represented on the right. Now, express any factorization of x as
xpxq, where xp is a product of irreducibles that are pure powers of p, while xq
is a product of irreducibles that are multiples of q. We have |x| = |xp| + |xq|
and νp(x) ≥ β|xp|+ |xq| since νp(y) ≥ β if y ∈ xp and νp(y) ≥ α = 1 if y ∈ xq.
We have |xq| ≤ νq(x) = βs − βt + 1. We now have |x| ≤ νp(x)−|xq|

β + |xq| =
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1
β (νp(x) + (β − 1)|xq|) ≤ 1

β (νp(x) + (β − 1)(βs− βt+ 1)) = βs− s. Hence the
maximal length factorization is represented on the left. Combining, we have
ρ(x) = βs−s

βt−t = s
t , as desired. ut

In general the question of accepted elasticity in local ACM’s (and hence
local J-monoids) is difficult; see, e.g. [10]. We give one more result in this
direction, under a restriction based on σ(p) and the structure of G.

Theorem 15 Let Γn be a J-monoid with u = pα and set g = σ(p)−1. Suppose
there is some h ∈ G such that |h| = |g| = β and 〈h〉 ∩ 〈g〉 = g1. Then the
elasticity of Γn is accepted.

Proof Let q ∈ (P ∩ n⊥) such that σ(q) = h, and let r ∈ (P ∩ n⊥) such that
σ(r) = h−1g.

We have the factorization

α(α+ β − 1, (α+ 2β − 1)eσ(q) + (α− 1)eσ(r))+

+α(α+ β − 1, (α− 1)eσ(q) + (α+ 2β − 1)eσ(r)) =

= (2α+ 2β − 2)(α, α(eσ(q) + eσ(r)))

We first show that each term is in N . (α+ β − 1, (α+ 2β − 1)eσ(q) + (α−
1)eσ(r)) corresponds to (g−1)α+β−1hα+2β−1(h−1g)α−1 = g−βh2β = g1. The
next term is similar, and the last corresponds to (g−1)αhα(h−1g)α = g1. We
now show that pα+β−1qα+2β−1rα−1 is irreducible in Γn. Suppose we factor it
as xy; then νp(x) ∈ [α, β − 1]. But since σ(x) = g1, νr(x) ≡ νp(x) (mod |g|),
which is impossible since νr(x) ≤ α − 1. Similarly, pα+β−1qα−1rα+2β−1 is
irreducible and hence this factorization has elasticity 2α+2β−2

2α = ρ(Γn).
ut

5 Semi-Regular Γn

We conclude with some rather meager results on semi-regular congruence
monoids. This class of CM’s has very rich structure, is disjoint from ACM’s,
and has the most opportunity for further work.

Of our earlier elasticity results, only Theorems 6 and 7 apply for semi-
regular CM’s, which determine when elasticity is infinite. To refine this, for
semi-regular CM Γn we define Γ⊥ = Γ ∩ n⊥ and Γ ◦ = Γ \Γ× = Γ \ n⊥; each
must be nonempty since {[1]n, [u

φ(r)]n} ⊆ [Γ ]n, by Lemma 3 and Theorem 2
respectively. We now use this notation to present two lower bounds for ρ(Γn),
in Theorems 16 and 17.

Theorem 16 Let Γn be a semi-regular congruence monoid. Then Γ⊥n is a
regular congruence monoid, and ρ(Γn) ≥ ρ(Γ⊥n ).
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Proof First, let g1, g2 ∈ Γ⊥n ⊆ Γn. Hence g1g2 ∈ Γn; but also g1g2 ∈ n⊥ so in
fact g1g2 ∈ Γ⊥n and hence Γ⊥n is a congruence monoid. By construction, Γ⊥n is
regular.

Suppose that x = yz with x, y, z ∈ Γn, and further x ∈ Γ⊥n . Then also
y, z ∈ Γ⊥n , because otherwise y (say) has y /∈ n⊥. Then, some public prime
divides y and hence x, a contradiction. Hence ρ(x) in Γn agrees with ρ(x) in
Γ⊥n . Since this holds for all x ∈ Γ⊥n , the conclusion follows. ut

Consequently, if Γn is a half-factorial semi-regular CM, then Γ⊥n is a half-
factorial regular CM and Proposition 1 applies.

Theorem 17 Let Γn be a semi-regular congruence monoid. Then Γ ◦n is a
congruence monoid that is not weakly regular. Further, if Γ ◦n is a J-monoid,
then

1. If u = pα is a prime power, then ρ(Γn) ≥ α+β−1
β , where β is minimal such

that pβ ∈ Γn.
2. If u is not a prime power, then ρ(Γn) =∞.

Proof First, let g1, g2 ∈ Γ ◦n ⊆ Γn. Hence g1g2 ∈ Γn; but also g1g2 /∈ n⊥ so in
fact g1g2 ∈ Γ ◦n and hence Γ ◦n is a congruence monoid. By construction, Γ ◦n is
not weakly regular, and shares u, r (though not necessarily d) with Γn. If Γ ◦n
is a local J-monoid, then it also shares α, β with Γn.

Next, suppose that Γ ◦n is a J-monoid, and u = u1u2 for some u1, u2 > 1

with gcd(u1, u2) = 1. For each m ∈ N, set xm = (uφ(r)u
mφ(r)
1 )(uφ(r)u

mφ(r)
2 ) =

(uφ(r))(m+2). Note that since xm consists entirely of public primes, all irre-
ducibles dividing xm in Γn, must actually be contained in Γ ◦n (and hence

ρ(xm) is the same in both). By Theorem 3, each of (uφ(r)u
mφ(r)
1 ), (uφ(r)u

mφ(r)
2 ),

(uφ(r)) ∈ Γ ◦n , although they might not be irreducible. However, L(uφ(r)u
mφ(r)
1 ) ≤

φ(r) and L(uφ(r)u
mφ(r)
2 ) ≤ φ(r), by considering the primes in u2, u1 respec-

tively, since u must divide every irreducible. Hence 2 ≤ l(xm) ≤ 2φ(r), while
L(xm) ≥ m+2, we conclude that ρ(xm) ≥ m+2

2φ(r) . Letting m→∞ we conclude

that ρ(Γn) = ρ(Γ ◦n) =∞.
Next, suppose that Γ ◦n is a J-monoid, with u = pα. By the comments

following Theorem 10, we have ρ(Γ ◦n) = α+β−1
α . By Theorem 9, there is some

irreducible z ∈ Γ ◦n with νp(z) = α + β − 1. Suppose first that pα+β−1 ≡ 1
(mod r). Then we consider x = (pα+β−1)β = (pβ)α+β−1. Since all factors of x
are public primes, every irreducible dividing x is from Γ ◦n . Hence the elasticity
of x in Γn agrees with the elasticity of x in Γ ◦n , which is α+β−1

β . Lastly, we

consider the case where pα+β−1 6≡ 1 (mod r). We may write z = pα+β−1s,
for some s ∈ (P ∩ n⊥) and s 6≡ 1 (mod r). Now, set x = (pα+β−1s)φ(n)β =
(pβ)φ(n)(α+β−1)(sφ(n))β . Within Γn, factors of (pα+β−1s) must of necessity be
both from Γ ◦n , apart from (pα+β−1)(s), which is excluded since pα+β−1 /∈ Γ ◦n .
Hence pα+β−1 is irreducible in Γn and thus l(x) ≤ φ(n)β. Each of pβ , sφ(n) ∈
Γn, and hence L(x) ≥ φ(n)(α + β − 1) + β. Combining, we have ρ(x) ≥
φ(n)(α+β−1)+β

φ(n)β > α+β−1
β . ut
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Note that Theorem 17 leaves open the possibility that Γ ◦n is a J-monoid
and α+β−1

β ≤ ρ(Γn) < ρ(Γ ◦n) = α+β−1
α . We wonder if this is possible.

We conclude with a variation of Theorem 17 that provides a family of
examples that have infinite and full elasticity; in contrast, it was shown in [6]
that no ACM has infinite and full elasticity.

Theorem 18 Let Γn be a semi-regular congruence monoid. Suppose that u ∈
Γn, and that Γ ◦n is a J-monoid with infinite elasticity. Then Γn has infinite
and full elasticity.

Proof Since Γ ◦n is a J-monoid with infinite elasticity, we must have u = u1u2
for some u1, u2 > 1 with gcd(u1, u2) = 1. Set xm = (uu

2mφ(r)
1 )(uu

2mφ(r)
2 ) =

(u)2mφ(r)+2. Since xm consists entirely of public primes, all irreducibles divid-
ing xm must actually be contained in Γ ◦n , and ρ(xm) agrees in both. By Theo-

rem 3, each of (uu
2mφ(r)
1 ), (uu

2mφ(r)
2 ) ∈ Γ ◦n . Further, by considering the primes

in u2, u1 respectivly, each is irreducible, as is u. Therefore L(xm) = 2mφ(r)+2
and l(xm) = 2. Now, by Theorem 1, there is some prime π ∈ Γn. Let s

t ≥ 1.

We consider x = π2tφ(r)−2xs−t. We have ρ(x) = L(xs−t)+2tφ(r)−2
l(xs−t)+2tφ(r)−2 = s

t , as de-

sired. ut

Many problems involving arithmetic of congruence monoids remain open:

1. Characterizing half-factoriality for non-regular, non-J-monooids.
2. Computing elasticity (or even good bounds) when d is a prime power but
u is not.

3. Computing elasticity (or even good bounds) for semi-regular CM’s.
4. Computing elasticity (or even good bounds) for CM’s that are not semi-

regular, but have d = 1.
5. Determining accepted and full elasticity, apart from the several classes

considered above.
6. Determining various other nonunique factorization invariants such as delta

sets, catenary degree, etc.
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