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Abstract

A large class of multiplicative submonoids of the natural numbers
is presented, which includes congruence monoids as well as numerical
monoids (by isomorphism). For monoids in this class, the important fac-
torization property of finite elasticity is characterized.

1 Introduction

The Fundamental Theorem of Arithmetic (FTA) states that each element of
N, the set of natural numbers, may be written uniquely (up to order) as the
product of elements of P , the set of primes. We consider now subsets of N that
are closed under multiplication and include 1; these are called submonoids of
N. For submonoids of N, we wish to know if the FTA, or perhaps something
weaker, still holds.

For example, set E = {2n : n ∈ N} ∪ {1}. Note that 6, 18 ∈ E, but
neither can be factored nontrivially in E, since only one factor could be even
and hence the other would have to be 1. We call such elements that can’t be
further (nontrivially) factored irreducibles, or atoms. By using the ordering of
the naturals, it is easy to prove that all submonoids of N are “atomic”; that
is, each element apart from 1 can be factored into irreducibles (a weak form
of the FTA). However, this factorization is typically not unique; for example
36 = 6 · 6 = 2 · 18 are two different factorizations into irreducibles within E.

It is natural to wish to measure how far a multiplicative system, such as a
submonoid of N, is from satisfying the FTA. Indeed, this was one of the orig-
inal interpretations of the class number of an algebraic number field. As it is
well-known that a ring of algebraic integers satisfies the FTA if and only if its
class number is 1, algebraic number rings with high class number were consid-
ered to be “far” from having unique factorizations of elements into products of
irreducibles. While we lose the notion of class number in submonoids of N, we
can still measure the notion of differing factorization lengths in a related way.

One of the key invariants in the growing field of factorization theory is the
elasticity. A recent Monthly paper [3] considers this concept in detail. For
a history of elasticity, see the survey [2]. Given an atomic monoid M and
x ∈M \ {1}, we define the elasticity of x, ρ(x), to be the ratio of the maximum
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number of atoms in a factorization of x divided by the minimum number of
atoms in a factorization of x. If ρ(x) = 1, then all factorizations of x have
the same length, which is close to FTA. Whereas if ρ(x) is very large, then
factorizations of x can vary wildly in size. We define ρ(M) = supx∈M ρ(x),
which is a cap on how wild factorizations can get in M . It turns out that
ρ(E) = 1; although factorizations are not unique, the number of irreducibles is
always the same. Such monoids are called half-factorial (e.g., see [9]).

Example 1. We demonstrate the notion of elasticity on the set E = {2n : n ∈
N} described earlier. If x ∈ E and 4|x, then we can factor x as the product of two
elements of E as x = 2· x2 . On the other hand, if x = y·z, with y, z ∈ E, then 4|x.
Hence x ∈ E is an atom if and only if 4 - x. Consequently, every factorization of
2mn (n odd) into atoms must comprise of exactly m atoms. Therefore ρ(E) = 1.
We contrast the situation in E by considering T = {6n : n ∈ N}. The element
6m may be factored into m atoms as 6 · 6 · · · 6, and also into two atoms as
(2× 3m−1) · (3× 2m−1). Hence ρ(T ) =∞.

2 Definitions

A fundamental question to ask about an atomic monoid is whether its elasticity
is finite; if not, then FTA fails to hold quite catastrophically. We propose to
answer this question for a class of submonoids which we define below. We will
give some examples and then return to the elasticity question in our main result,
Theorem 12.

Definition 2. Let M be a submonoid of N. For any x ∈ N, we say that x
respects M if for all y ∈ N,

xy ∈M if and only if x2y ∈M.

For r ∈ N, we say that M is r-respectful if xr respects M for each x ∈ N. We
say that M is R-respectful if M is r-respectful for some r ∈ N.

Note that if x respects M , then for all y ∈ N, the set {xy, x2y, x3y, . . .} is ei-
ther a subset of M or disjoint from M . Not every submonoid of N is r-respectful.
For example, consider M = {x ∈ N : for all p ∈ P, νp(x) = 0 or νp(x) ≥ p},
where νp(x) denotes the highest power of p dividing x. Then M is not R-
respectful.

Definition 3. For M a submonoid of N, we define its P -radical as

P
√
M = {p ∈ P : pk ∈M for some k ∈ N}.

For any T ⊆ P and x ∈ N, let T (x) denote the number of primes from T dividing
x, counted according to multiplicity. Let N0 denote N∪{0}. For t ∈ N0, we say
that M is t-modest if P

√
M(x) ≤ t for all irreducibles x ∈ M . We say that M

is T-modest if M is t-modest for some t ∈ N0.

2



Note that for any T ⊆ P and any x, y ∈ N, T (xy) = T (x) + T (y). Also, if
T = T1 ∪ T2 for disjoint T1, T2, then T (x) = T1(x) + T2(x). Lastly, note that if
P
√
M = ∅, then M is 0-modest since P

√
M(x) is identically 0.

Not every R-respectful submonoid of N is T-modest, as the following example
shows.

Example 4. Label P sequentially as {q1, q2, q3, . . .}. Set S = {q2i : i ∈ N} ∪
{q1q2, q3q4q5, q6q7q8q9, q10q11q12q13q14, . . .}. Set M = 〈S〉 = {

∏
s∈S s

bs : bs ∈
N0}, where N0 denotes N ∪ {0} and all but finitely many bs are zero. Then
M = {

∏
i∈N q

ai
i : a1 ≡ a2, a3 ≡ a4 ≡ a5, a6 ≡ a7 ≡ a8 ≡ a9 . . .}, where all

congruences are modulo 2. Further, M is 2-respectful and P
√
M = P . However,

M has irreducibles with arbitrarily many prime divisors, so M is not T-modest.

3 Important Examples

By restricting our attention to R-respectful T-modest submonoids, we do lose
some submonoids of N. We do not have an anologue of our main theorem for
these lost submonoids. However, several important classes of monoids meet
these restrictions, as will be shown below.

Example 5. Let n ∈ N. Let Γ ⊆ {1, 2, . . . , n} be closed in the sense that if
x, y ∈ Γ, then there is some z ∈ Γ with xy ≡ z (mod n). Set M(Γ, n) = {x ∈
N : for some g ∈ Γ, x ≡ g (mod n)} ∪ {1}. This is known as a congruence
monoid. Further, if |Γ| = 1 it is known as an arithmetic congruence monoid.

For example, set n = 12. If we take Γ = {4}, then M(Γ, 12) = {1, 4, 16, 28,
40, . . .}. If we take Γ = {1, 4}, then M(Γ, 12) = {1, 4, 13, 16, 25, 28, . . .}. How-
ever we may not take Γ = {5}, because 5 · 5 6≡ 5 (mod 12).

(Arithmetic) congruence monoids have received considerable attention re-
cently [4, 6, 8, 12, 14]. In [15] it was shown that a congruence monoid M(Γ, n)
satisfies the FTA if and only if Γ = {m : 1 ≤ m ≤ n and gcd(n,m) = 1}. Now
consider the case where Γ = {m}, and gcd(m,n) > 1. In [5] it was shown that
if gcd(m,n) is not a prime power, then ρ(M(Γ, n)) = ∞. Otherwise, we have
gcd(m,n) = pk and ρ(M(Γ, n)) = a+k−1

k where a is the smallest positive integer
such that pa ∈M(Γ, n).

Lemma 6. Let M = M(Γ, n) be a congruence monoid. Set T1 = {p ∈ P :
p|n, pk ∈ M for some k ∈ N}, and T2 = {p ∈ P : p - n}. If there is some g ∈ Γ
with gcd(g, n) = 1, then P

√
M = T1 ∪ T2; otherwise P

√
M = T1.

Proof. Certainly T1 ⊆ P
√
M . If p|n but p /∈ T1, then p /∈ P

√
M .

We now consider p ∈ P with p - n. Suppose first we have p ∈ P
√
M . Since

pk ∈ M for some k ∈ N, there is some g ∈ Γ with pk ≡ g (mod n). Since
p - n, then gcd(pk, n) = 1 and also gcd(g, n) = 1. Suppose now that there is
some g ∈ Γ with gcd(g, n) = 1. Because g, p ∈ Z×n , by Euler’s totient theorem
gφ(n) ≡ pφ(n) ≡ 1 (mod n). But gφ(n) ∈M , so there must be some g′ ∈ Γ with
g′ ≡ 1 ≡ pφ(n) (mod n). Hence pφ(n) ∈M , so p ∈ P

√
M .
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Let G be a finite abelian group and g1, g2, . . . , gt elements from G. If t ≥ |G|,
then an elementary argument shows that there exists a subset T ⊆ {1, 2, . . . , t}
such that

∏
i∈T gi = 1. This idea is central to the following definition, upon

which the proof of Proposition 8 relies.

Definition 7. Let G be a finite abelian group under multiplication. Let D(G)
be the smallest positive integer m such that if g1, g2, . . . , gm are elements of G,
then there is some nonempty S ⊆ {1, 2, . . . ,m} such that 1 =

∏
s∈S gs. D(G) is

known as the Davenport constant of G.

For an introduction to the subject, or to learn more about the importance
and history of D(G), see [13]. By the elementary argument above, D(G) ≤ |G|.
If G ∼= Zn is cyclic, then D(Zn) = n. If G is not cyclic, then it is easy to show
that D(G) < |G| (in fact D(Z2 ⊕ Z2) = 3). Its precise value is known if G is of
rank 1 or 2, is a p-group, or in several other cases. However, in general, only
bounds are known.

Proposition 8. Let M = M(Γ, n) be a congruence monoid. Then it is R-
respectful and T-modest.

Proof. We factor n = pe11 p
e2
2 · · · pemm . We then choose an r such that ei ≤ r

and φ(peii )|r, for all i. We will now show that x2r ≡ xr (mod n), for all x.
If pi|x, then peii |xr since ei ≤ r. Otherwise x is coprime to pi and by Euler’s

totient theorem xφ(p
ei
i ) ≡ 1 (mod peii ). Hence xr ≡ 1 (mod peii ). Hence each

peii divides xr(xr−1); so too does their least common multiple, namely n. Now,
for any y ∈ N, the following statements are equivalent: (1) xry ∈M , (2) xry ≡ g
(mod n) for some g ∈ Γ, (3) x2ry ∈M . Thus M is r-respectful.

Let T1, T2 be as in Lemma 6. Because |T1| < ∞, we may choose K > 0 so
that pK ∈ M for all p ∈ T1. For any irreducible x ∈ M , T1(x) =

∑
p∈T1

νp(x).
We will show that for any p ∈ T1, that νp(x) < (K + 1)r. Suppose otherwise.
Because pr respects M and pr | x/pKr, we in fact have x/pKr ∈ M . Since
pK ∈M , then pKr ∈M . Hence x = pKr ·(x/pKr) is a factorization in M , which
contradicts the irreducibility of x. Hence T1(x) ≤ |T1|(K + 1)r. If P

√
M = T1,

then M is T-modest; otherwise there is more to do.
We now assume that P

√
M = T1 ∪ T2. By the proof of Lemma 6, there is

some g ∈ Γ with g ≡ 1 (mod n). Let x be any irreducible of M . Let Z×n denote
the group of units modulo n. Set v = D(Z×n ), the Davenport constant as from
Definition 7. Suppose that T2(x) > v. We write x = q1q2 · · · qvx′, where qi
are (not necessarily distinct) elements of T2. Hence, there is some subsequence
of q1q2 · · · qv whose product is 1 in Z×n . We then write x = q · x′′, where now
q ≡ 1 ≡ g (mod n), x′′ 6= 1, and x′′ ≡ x (mod n). This is a factorization in M .
Hence T2(x) ≤ v for all irreducible x ∈M . Thus P

√
M(x) ≤ |T1|(K+1)r+v.

Example 10 relies upon the following definitions; for an introduction to the
subject see [19].

Definition 9. Let a1, a2, . . . ak ∈ N, with gcd(a1, a2, . . . , ak) = 1. Set S =
{a1b1 + a2b2 + · · ·+ akbk : bi ∈ N0} ⊆ N0. S is a monoid under addition known
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as a numerical monoid. There is some minimum F ∈ N0 such that x ∈ S for
all x ∈ N with x > F . F is known as the Frobenius number of S.

Numerical monoids have long been the subject of considerable study, e.g.
[10, 11, 16, 18]. The precise value of F is known if S has two or three generators,
but not in general. The problem of determining F has been revisited many times
as the knapsack problem, the coin problem, the postage stamp problem, and
the Chicken McNugget problem. It is known to be NP-hard in general, which
makes it at least as hard as Sudoku that was shown to be NP-complete in [21].

Example 10. Let S be a numerical monoid under addition. Then M = {2s :
s ∈ S} is a (multiplicative) submonoid of N with M ∼= S. Moreover, M is
R-respectful and T-modest.

Proof. Let F be the Frobenius number of S, as in Definition 9. For any x, y ∈ N,
we consider Q = {xF+1y, x2(F+1)y, x3(F+1)y, . . .}. If x = 1, then Q = {y} so
1F+1 respects M . If x or y is not a power of 2, then Q is disjoint from M . If
both x, y are powers of 2, then Q ⊆M , because each element has at least F + 1
copies of 2. Hence M is (F + 1)-respectful.

Clearly P
√
M = {2}. Let x ∈ M be irreducible. We claim that P

√
M(x) <

2(F + 1). Suppose otherwise. Then we may write x = 2F+1 · (x/2F+1). Since
v2(x/2F+1) ≥ F + 1, both factors are in M , which contradicts the irreducibility
of x. Hence M is T-modest.

Example 11. Let S1, S2 be numerical monoids. Let M = {2s13s2 : s1, s2 ≥
1, s1 ∈ S1, s2 ∈ S2} ∪ {1}. Then M is a (multiplicative) submonoid of N which
is R-respectful and T-modest.

Proof. Let F > 0 be chosen strictly larger than the Frobenius numbers of both
S1 and S2. For any x, y ∈ N, we consider Q = {xF y, x2F y, x3F y, . . .}. If x = 1,
then Q = {y} so 1F+1 respects M . If either x or y has any prime factor outside
of {2, 3}, then Q is disjoint from M . If x is a power of 2, then either Q ⊆ M
(if ν3(y) ∈ S2) or Q is disjoint from M (otherwise). If x is a power of 3, then
either Q ⊆ M (if ν2(y) ∈ S1) or Q is disjoint from M (otherwise). Lastly, if
both 2,3 divide x, then Q ⊆M . Hence M is F -respectful.

Clearly P
√
M ⊆ {2, 3}; however no power of 2 or 3 alone is in M , so P

√
M = ∅.

Hence M is 0-modest.

Monoids of this type may be thought of as a form of multi-dimensional
numerical monoids, e.g. [1, 17, 20].

4 Theorem

We now present our main result, that characterizes and bounds finite elasticity
in R-respectful, T-modest monoids. We note that this bound is typically not
sharp; t is a uniform bound on all of P

√
M while a sharper bound may be found
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by looking at its elements individually. A more abstract version of this result
concerning C0-monoids, attributed to F. Halter-Koch, was cited as a personal
communication in the manuscript [7]. This “folklore” motivated the present
paper.

Theorem 12. Suppose that M is an R-respectful, t-modest monoid, for some
t ∈ N. Then the following are equivalent:

1. ρ(M) is finite,

2. ρ(M) ≤ t, and

3. P
√
M(x) ≥ 1 for all x ∈M \ {1}.

Proof. (2→ 1) Clear.
(1 → 3) Suppose there is some x ∈ M \ {1} with P

√
M(x) = 0. If x

has only one prime factor, then x is a prime power and hence P
√
M(x) =

1. Hence, x has at least two distinct prime factors. Choose one such, x =
pe11 p

e2
2 · · · pemm , with ei ∈ N and m minimal. Set e = max(e1, e2, . . . , em). Be-

cause pr1 respects M , and xr = pre11 · · · premm ∈M , we conclude that p
r(e−e1)
1 xr =

pre1 p
re2
2 · · · premm ∈M . Repeating this with each of pr2, . . . , p

r
m, we may conclude

that y = (p1p2 · · · pm)re ∈M . We now choose any s ∈ N. Set v = s(m−1)+m.
Consider ρ(yv). Certainly this may be factored into at least v irreducibles by first
factoring into v copies of y. Now set yi = y(p1p2···pmpi

)res. The second multipli-

cand respects M . Because y ∈M , we in fact have yi ∈M . Because νpi(yi) = re,
if yi were to factor into more than re irreducibles, then some irreducible would
not have a pi factor. This would therefore violate the minimality of m in the
choice of x. We have y1y2 · · · ym = ym(p1 · · · pm)res(m−1) = ys(m−1)+m = yv.
Since each yi has at most re irreducibles, then this factorization of yv yields

at most mre irreducibles. Thus ρ(yv) ≥ v
mre = s(m−1)+m

mre . Since m, r, e are
all fixed but s was chosen freely, we may make this fraction arbitrarily large.
Consequently, ρ(M) =∞.

(3 → 2) Suppose now that P
√
M(x) ≥ 1 for all x ∈ M \ {1}. Let x ∈ M .

Suppose that x = u1u2 · · ·uj = v1v2 · · · vk are factorizations into irreducibles

where j is maximal and k is minimal. We also have P
√
M(ui) ≥ 1 and P

√
M(vi) ≤

t. Consequently, j ≤ P
√
M(x) ≤ kt. Hence ρ(x) = j

k ≤ t.

Recall the 1-respectful monoid E. We have P
√
E = {2}. Also, E is 1-

modest. Hence Theorem 12 shows that ρ(E) = 1. Theorem 12 also shows that
ρ(M) < ∞ in Example 10. On the other hand, ρ(M) = ∞ in similar Example
11. In Example 5, ρ(M) may be finite or infinite depending only on Γ and n,
as will be shown by the following.

Proposition 13. Let M = M(Γ, n) be a congruence monoid. Let T1, T2 be as
in Lemma 6. Set Γ1 = {x ∈ Γ : gcd(x, n) > 1}. Then ρ(M) <∞, if and only if
T1(x) ≥ 1 for all x ∈ Γ1.
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Proof. Suppose first that there is some x ∈ Γ1 with T1(x) = 0. If P
√
M = T1,

then already P
√
M(x) = 0. Otherwise, write x = x1x2, where T2(x1) = 0. We

must have x1 > 1 since x ∈ Γ1. Set y = x
φ(n)
1 . Note that x

φ(n)
2 ≡ 1 (mod n).

Hence, y ≡ x
φ(n)
1 x

φ(n)
2 = xφ(n) (mod n). Also we have xφ(n) ∈ M because

x ∈ M . Therefore, y ∈ M . However P
√
M(y) = 0. Hence, in both cases,

Theorem 12 implies that ρ(M) =∞.
Now suppose that T1(x) ≥ 1 for all x ∈ Γ1. Let y ∈ M \ {1}. We have

y ≡ x (mod n), for some x ∈ Γ. If x /∈ Γ1, then gcd(x, n) = 1 = gcd(y, n)
and hence T1(y) = 0. We have P

√
M(y) = T1(y) + T2(y) = T2(y) ≥ 1, since

y has some prime divisor. Otherwise x ∈ Γ1. Since T1(x) ≥ 1, there is some
p ∈ T1 with p|x. But also p|n, so p|y. Hence T1(y) ≥ 1. We conclude that
P
√
M(y) ≥ T1(y) ≥ 1. In both cases Theorem 12 implies that ρ(M) <∞.
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