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Unlike factorization theory of commutative semigroups which

are well-studied, very little literature exists describing factoriza-

tion properties in noncommutative semigroups. Perhaps the most

ubiquitous noncommutative semigroups are semigroups of square

matrices and this article investigates the factorization properties

within certain subsemigroups of Mn(Z), the semigroup of n × n

matrices with integer entries. Certain important invariants are cal-

culated to give a sense of how unique or non-unique factorization

is in each of these semigroups.
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1. Introduction

Many number theoretic results rely on knowing whether or not certain algebraic structures are

endowed with the property of unique factorization. This paper investigates questions of unique fac-

torization within certain classes of integral-valuedmatrices. Given a class S of matrices, we callM ∈ S
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irreducible if it cannot be written as M = AB where A, B ∈ S are noninvertible n × n matrices. We

intend to answer the following questions:

1. Can we enumerate the set of irreducibles of S?

2. Given a matrix A ∈ S, what can we say about the factorizations of A into irreducibles?

Such questions of matrix factorizations were studied by Cohn [4] as early as 1963. In the context of

semigroups of matrices, factorization problemswere studied in 1966 by Jacobson andWisner [14] and

in 1985 by Ch’uan and Chuan [2]. Motivated by these results, we apply the concepts of contemporary

factorization theory to semigroups of integral-valuedmatrices. The study of non-unique factorizations

has beenwell developedover thepast several decades andwasunified in [7].We intend tousemethods

from commutative contexts to study factorizations of matrices with integer entries.

Throughout, N will denote the set of all positive integers and N0 = N ∪ {0}. A semigroup is a

pairing (S, ·) where S is a set and · is an associative binary operation on S. When the binary operation

is clear from context and A, B ∈ S, we will simply write AB instead of A · B. If S contains an element

I such that AI = IA = A for all A ∈ S, then I is the identity of S. An element A ∈ S, a semigroup with

identity, is a unit of S if there exists an element B ∈ S such that AB = BA = I. A nonunit A ∈ S is called

an atom of S if whenever A = BC for some elements B, C ∈ S, either B or C is a unit of S. The semigroup

S is said to be atomic provided each nonunit element in S can be written as a product of atoms of S.

We now briefly introduce some important invariants that we will use throughout to describe how

unique factorizations are within a given semigroup. Let S denote an atomic semigroup and let A be a

nonunit element of S. The set

L(A) = {t : A = A1A2 · · · At with each Ai an atom of S}
is the set of lengths of A. We denote by L(A) = supL(A) the longest (if finite) factorization length of A

and l(A) = minL(A) the minimum factorization length of A. The elasticity, denoted ρ(A) = L(A)
l(A)

, of A

gives a coarse measure of how far away A is from having unique factorization. Indeed, if A has a unique

factorization A = A1A2 · · · At , then L(A) = {t} and hence l(A) = L(A) = t and ρ(A) = t/t = 1. The

elasticity of the semigroup S, ρ(S) is given by ρ(S) = sup{ρ(A) : A ∈ S}. If L(A) = {t1, t2, . . .} with

ti < ti+1 for each i, then �(A) = {ti+1 − ti : ti, ti+1 ∈ L(A)}. Then �(S) = ⋃A∈S �(A).
If S is an atomic semigroup and T is an atomic semigroup with identity, a surjective semigroup

homomorphism φ : S → T is a transfer homomorphism provided that whenever φ(s) = xywith x and

y nonunits of T , there exist a and b nonunits of S such that φ(a) = ux, φ(b) = vy with u, v units of S

and ab = s. It iswell known (cf. [7]) that ifφ : S → T is a transfer homomorphismbetween twoatomic

semigroups, then ρ(S) = ρ(T) and�(S) = �(T). Transfer homomorphismswill allow us, in Sections

2 and 5, to understand the factorization of certain matrix semigroups by studying factorizations of

elements in certain simpler semigroups.

We say that an atomic semigroup is factorial if every factorization is unique up to units. Note

that this differs slightly from the commutative definition sincewe consider AB = BA to be two distinct

factorizations of the same element. An atomic semigroup is half-factorial provided L(A) = l(A) for each
nonunit A ∈ S. Finally, following [1], we define an atomic semigroup to be bifurcus provided l(A) = 2

for every nonunit non-atom A of S. We note that if S is bifurcus, then ρ(S) = ∞ and �(S) = {1}.
Finally, we introduce some basic notation pertaining to greatest common divisor of a matrix. If A is

anym × nmatrix, we set gcd(A) to be the greatest common divisor of the mn entries of A.

The authors would like to thank the referee for a careful reading of this paper and for suggesting

several generalizations which now occur in Sections 2 and 5.

2. The semigroupsMn(�) and Tn(�)

Before considering specific subsemigroups of matrices, we use this section to consider the semi-

groupMn(Z)ofalln × n integervaluedmatricesandthesubsemigroupTn(Z)ofn × nupper triangular

integer valued matrices. Such matrices are widely studied in mathematics; see, for example [12,18].

In this section we will find that the factorization of a matrix with integer entries is equivalent to the
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factorization of its determinant in Z. Thus we are able to relate factorization of matrix semigroups

with the better-understood integer semigroups as studied in [10]. First we give a preliminary result

which we use to classify the units in Mn(Z) and Tn(Z).

Lemma 2.1. Let S denote a subsemigroup of Mn(Z) containing In and let A ∈ S. If A is a unit of S, then

| det(A)| = 1. Moreover, if S is closed under adjugates, then | det(A)| = 1 implies that A is a unit of S.

Proof. If A is a unit, then AB = In for some B ∈ S. Since det(A)det(B) = det(In) = 1, and since all of

the entries of A are integers, det(A) = ±1.

Suppose now that det(A) = ±1 and that adj(A) ∈ S. Then A is invertible in Mn(R) and A−1 =
1

det(A)
adj(A) ∈ S. �

In particular, sinceMn(Z) and Tn(Z) are closed under adjugates, the units of these semigroups are

precisely the elements with determinant plus or minus one.

The following lemmaprovides transferhomomorphisms fromMn(Z)andTn(Z) to the semigroupZ,

thus allowingus to study the factorizationproperties of amatrixAby instead studying the factorization

properties of det(A) ∈ Z.

Lemma 2.2

1. Let A ∈ Mn(Z) such that det(A) = xy for some integers x and y. Then there exist X, Y ∈ Mn(Z) such
that det(X) = x, det(Y) = y and XY = A.

2. Let A ∈ Tn(Z) such that det(A) = xy for some integers x and y. Then there exist X, Y ∈ Tn(Z) such
that det(X) = x, det(Y) = y and XY = A.

Proof. Let A ∈ Mn(Z) and write A using the Smith Normal Form as A = UDV where D ∈ Mn(Z) is

a diagonal matrix and both U and V are elements of Mn(Z) with determinant in the set {−1, 1}. If
necessary, we canmultiply the first rows of D and V by−1 in order to guarantee that det(D) = xy. We

can then construct D1 and D2 diagonal matrices with D = D1D2, det(D1) = x and det(D2) = y. Now

A = XY where X = UD1 and Y = D2V have the desired properties, proving (1).

Now let A ∈ Tn(Z) and let a1, a2, . . . , an denote the diagonal entries of A. Note that det(A) = xy =
a1a2 · · · an and let y = p1p2 · · · pm denote the prime factorization of y with the pi not necessarily

distinct primes. We now use induction on m. If m = 1, then y = p1, a prime. Let k ∈ {1, 2, . . . , n} be

the smallest positive integer such that p1|ak . We claim that A can be factored as

A =
⎡⎣T1 u V

0 ak W

0 0 T2

⎤⎦ =
⎡⎢⎣T1 u1 V

0
ak
p1

W

0 0 T2

⎤⎥⎦
⎡⎣Ik−1 u2 0

0 p1 0

0 0 In−k

⎤⎦ ,

where T1 ∈ Tk−1(Z), T2 ∈ Tn−k(Z), u, u1, u2 ∈ Zk−1, V ∈ Mk−1,n−k(Z), and W ∈ M1,n−k(Z). Such a

decomposition of A exists if and only if we can find vectors u1 and u2 such that T1u2 + p1u1 = u. That

is, there must exist u1 =

⎡⎢⎢⎢⎣
u1,1
u1,2
...

u1,k−1

⎤⎥⎥⎥⎦ and u2 =

⎡⎢⎢⎢⎣
u2,1
u2,2
...

u2,k−1

⎤⎥⎥⎥⎦ such that

⎡⎢⎢⎢⎣
a1 a12 · · · a1(k−1)

0 a2 · · · a2(k−1)

...
...

. . .
...

0 0 · · · ak−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

u2,1
u2,2
...

u2,k−1

⎤⎥⎥⎥⎦+ p1

⎡⎢⎢⎢⎣
u1,1
u1,2
...

u1,k−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
u1
u2
...

uk−1

⎤⎥⎥⎥⎦ .

Since ak−1 and p1 are relatively prime theremust exist u1,k−1 and u2,k−1 such that uk−1 = p1u1,k−1 +
ak−1u2,k−1. Now since ak−2 and p1 are relatively primewe can find u2,k−2 and u1,k−2 such that uk−2 =
p1u1,k−2 + ak−2u2,k−2 + ak−2,k−1u2,k−1.
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Assume now that the result holds whenever y is the product of less thanm primes. Finally, suppose

that y = p1 · · · pm with each pi prime. By our induction hypothesis, we see that A factors as A = X̂Ŷ

where det(X̂) = xp1 and det(Ŷ) = p2 · · · pm. Working as in the case y = p1 above, we see that X̂

factors as XỸ where det(X) = x and det(Ỹ) = p1. Setting Y = Ỹ Ŷ , we see that A factors as A = XY

with det(X) = x and det(Y) = p1p2 · · · pm = y. This proves (2). �

The transfer homomorphism A �→ det(A) provided by Lemma 2.2 together with the uniqueness of

factorization in Z and N provide the following theorem.

Theorem 2.3. Let S be one of the following subsemigroups of Mn(Z):

• Mn(Z),
• Tn(Z),
• {A ∈ Mn(Z)| det(A) > 1}, or
• {A ∈ Tn(Z)| det(A) > 1}.

Then

1. A is an atom of S if and only if det(A) is prime,

2. L(A) = l(A) is the number of (not necessarily distinct) prime factors of det(A), and
3. S is half-factorial.

The remaining sections will consider certain subsemigroups of Mn(Z) and Tn(Z). As we shall see,

these subsemigroups have more interesting factorization properties than the larger semigroups in

which they live.

3. Semigroups which admit a transfer homomorphism to �

In this section we consider subsemigroups ofMn(Z) and Tn(Z)with various restrictions on the de-

terminant. In Section3.1we studymatriceswhosedeterminants are divisible by afixedpositive integer

k. We refer to these semigroups as kMn(Z) and kTn(Z), respectively. Such matrices have been consid-

ered in [3,5]. In Section3.5westudy the larger class ofmatriceswhosedeterminants are composite.Our

main tools in studying factorization in these semigroups are the transfer homomorphisms provided

by Lemma 2.2. In fact, these results hold in any semigroup which admits a transfer homomorphism to

Z and thus we state all but the final corollaries in these sections in terms of this generality.

3.1. Semigroups which admit a transfer homomorphism to kZ

Throughout this section, let k > 1 be a fixedpositive integer and let S denote a semigroupwhich ad-

mits a transfer homormorphismφ : S → Z such thatφ(S) = kZ. Note that since 1 /∈ φ(S), S contains
no units. For an element B ∈ S, we set νr(B) to denote the number max{t : rt|φ(B)}.
Lemma 3.1. Let k > 1 be a positive integer and let S be a semigroup such that there exists a transfer

homomorphism φ : S → Z such that φ(S) = kZ. If A ∈ S, then

1. L(A) = νk(A) and
2. A is an atom of S if and only if k2 � det(A).

Proof. Suppose that A factors as A = A1A2 · · · Am in S. By the definition of S, k|φ(Ai) for all i and hence

km|φ(A). Therefore, L(A) � νk(A). Using the transfer homomorphism, there must exist A1, A2, . . . ,

Aνk(A) ∈ S with φ(Ai) = k for all i ∈ {1, 2, . . . , νk(A) − 1} and φ(Aνk(A)) = φ(A)

kνk(A)−1 . Therefore,

L(A) � νk(A). This proves (1), of which (2) is a consequence. �



Author's personal copy

698 N. Baeth et al. / Linear Algebra and its Applications 434 (2011) 694–711

Lemma 3.2. Let k = pt for some prime integer p and some positive integer t and let S be a semigroup

such that there exists a transfer homomorphism φ : S → Z such that φ(S) = kZ. If A ∈ S, then ł(A) =⌊
νp(A)+2t−2

2t−1

⌋
.

Proof. Write φ(A) = pmx where m� t and p � x; that is, νp(A) = m. Factor A in S as A = A1A2 · · · As

where each Ai is an atom of S and set, for each i, ti = νp(Ai). Sinceφ(A) = φ(A1)φ(A2) · · · φ(As),m =∑s
i=1 ti.Moreover, since eachAi is an atom, Lemma3.1 gives us that ti � 2t − 1 for each i ∈ {1, 2, . . . , s}.

Thusm = ∑s
i=1 ti � s(2t − 1). If s�

⌊
νp(A)+2t−2

2t−1

⌋
− 1, then s� νp(A)−1

2t−1
and hence s(2t − 1) �m − 1,

a contradiction. Therefore, l(A) �
⌊

νp(A)+2t−2

2t−1

⌋
.

Appealing to the transfer homomorphism, we see that factoring A is equivalent to factoringφ(A) in

Z.Writeνp(A) = q(2t − 1) + rwhere0� r < 2t − 1. Then
⌊

νp(A)+2t−2

2t−1

⌋
= q + 1 +

⌊
r−1
2t−1

⌋
. Clearly,

A is an atom of S if and only if q = 0. If A is not an atom then we can factor φ(A) as

φ(A) =
{
(p2t−1)(pt)(pr+t−1x) if r > 0,

(p2t−1)q−1(p2t−1x) if r = 0

giving either a factorization of length q + 1when r > 0 or a factorization of length qwhen r = 0. This

proves that ł(A) �
⌊

νp(A)+2t−2

2t−1

⌋
. �

Using Lemma 3.2, the following theorem gives the elasticity ρ(S) regardless of k. To see this, it is

important to recall that bifurcus semigroups necessarily have infinite elasticity.

Theorem 3.3. Let k > 1 be a positive integer and let S be a semigroup such that there exists a transfer

homomorphism φ : S → Z such that φ(S) = kZ:

1. If k = pt for some prime p and some positive integer t, then ρ(S) = 2t−1
t

.
2. If k = st with s, t > 1 and gcd(s, t) = 1, then S is bifurcus.
3. S is half-factorial if and only if k is prime.

Proof. Suppose that k = pt for some prime p and some positive integer t. By Lemma 3.1, for any A ∈ S

we have that

ρ(A) =
⌊

νp(A)

t

⌋
⌊

νp(A)+2t−2

2t−1

⌋ �
νp(A)

t
νp(A)

2t−1

= 2t − 1

t
.

Therefore, ρ(S) � 2t−1
t

. However, this elasticity is achieved by any element A ∈ S with φ(A) =
(pt)2t−1 = (p2t−1)t and hence ρ(S) = 2t−1

t
.

Suppose that k = st with s, t > 1 and gcd(s, t) = 1. If A ∈ S can be written as the product of two

elements in S, then by Lemma 3.1 (st)2|φ(A) and hence φ(A) = (st)mx1x2 where m� 2, s � x1 and

t � x2. Writing φ(A) = (sm−1tx2)(st
m−1x1), we see that there exist matrices B and C in S such that

φ(B) = sm−1tx2, φ(C) = stm−1x1 and A = BC. Since the images of B and C are not divisible by (st)2,
by Lemma 3.1 B and C are atoms of S and hence l(A) = 2.

If k = st where gcd(s, t) = 1 then S is bifurcus and hence S is not half-factorial. If k = pt for some

prime p and some positive integer k, thenρ(S) = 2t−1
t

and hence S is half-factorial if and only if t = 1;

i.e., k is prime. �

The following corollary is an immediate result of applying the transfer homomorphism given in

Lemma 2.2 to the results of this section.
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Corollary 3.4. Let k > 1 be a positive integer and either let S = kMn(Z) or S = kTn(Z):

1. If k = pt for some prime p and some positive integer t, then ρ(S) = 2t−1
t

.
2. If k = st with s, t > 1 and gcd(s, t) = 1, then S is bifurcus.
3. S is half-factorial if and only if k is prime.

3.2. Composite images

In this section we consider semigroups S which admit a transfer homomorphism φ : S → Z such

that every element in φ(S) is composite. We note that since 1 /∈ φ(S), S contains no units. For conve-

nience, we let r(A) denote the number of prime divisors of φ(A) counted with multiplicity and note

that if X, Y ∈ S, then r(XY) = r(X) + r(Y). Also note that if A ∈ S, then r(A) � 2. The following lemma

is an analog of Lemmas 2.2 and 2.2 which will be allow us to compute both ρ(S) and �(S).

Lemma 3.5. Let S denote a semigroupwhich admits a transfer homomorphismφ : S → Z such that every

element in φ(S) is composite:

1. A is an atom of S if and only if r(A) � 3.
2. If r(A) = x + y with x, y� 2, then there exist X, Y ∈ S with r(X) = x, r(Y) = y and A = XY .

Proof. Suppose that A factors as A = BC in S. Since B, C ∈ S, we have that r(B), r(C) � 2. Then r(A) =
r(B) + r(C) � 2 + 2 = 4.

Now suppose that r(A) � 4. Then we can write r(A) = x + y with x, y� 2. We then factor φ(A) =
p1 · · · pxpx+1 · · · px+y where the pi are not necessarily distinct primes. Utilizing the transfer homo-

morphism, there exist elements X and Y in S with φ(X) = p1 · · · px and φ(Y) = px+1 · · · px+y and

A = XY . Since x, y� 2, φ(X) and φ(Y) are composite and hence X, Y ∈ S. Moreover, A is not an atom

of S. �

Theorem 3.6. Let S denote a semigroup which admits a transfer homomorphism φ : S → Z such that

every element in φ(S) is composite and let A be a non-atom of S. Then

1. L(A) =
⌊
r(A)
2

⌋
,

2. l(A) =
⌈
r(A)
3

⌉
,

3. ρ(S) = 3
2
, and

4. �(S) = 1.

Proof. Write r(A) = 2
⌊
r(A)
2

⌋
+ x where x ∈ {0, 1}. Suppose that A = A1A2 · · · As where each Ai is an

atom of S. Then r(A) = ∑s
i=1 r(Ai). As r(Ai) � 2 for each i, r(A) � 2s. Therefore, L(A) �

⌊
r(A)
2

⌋
. From

Lemma 3.5 we know that since r(A) = 2
⌊
r(A)
2

⌋
+ x � 2, we can factor A as A1A2 · · · A⌊ r(A)

2

⌋ where

r(Ai) = 2 for all i ∈
{
1, . . . ,

⌊
r(A)
2

⌋
− 1
}
and r

(
A� r(A)

2
	
)

= 2 + x. Therefore, L(A) =
⌊
r(A)
2

⌋
.

Set r(A) = 3k + x where k ∈ N0 and x ∈ {0, 1, 2}. If x = 0, we factor A as A = A1 · · · Ak where

r(Ai) = 3 for all i, 1� i � k. If x ∈ {1, 2}, we factor A as A = A1 · · · Ak+1 where r(Ai) = 3 for all i,

1� i � k − 1, r(Ak) = 1 + x and r(Ak+1) = 2. This gives l(A) �
 r(A)
3

�. Next, suppose that x ∈ {1, 2}
and factorA asA = A1A2 · · · A⌊ r(A)

3

⌋A⌊ r(A)
3

⌋
+1

where r(Ai) = 3 for all i ∈
{
1, . . . , A⌊ r(A)

3

⌋}, r (A⌊ r(A)
3

⌋) =
1 + x and r

(
A⌊ r(A)

3

⌋
+1

)
= 2. This gives l(A) �

⌊
r(A)
3

⌋
+ 1 =

⌈
r(A)
3

⌉
. Now factor A as A1 · · · As where
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each Ai is an atom of S. Since r(Ai) � 3 for each i, r(A) � 3s. With s = l(A), r(A)
3

� l(A). Since l(A) ∈ Z,

l(A) �
⌈
r(A)
3

⌉
.

We now have that

ρ(A) =
⌊
r(A)
2

⌋
⌈
r(A)
3

⌉ �
r(A)
2

r(A)
3

= 3

2
.

Whenever 6|r(A) this elasticity is achieved and hence ρ(S) = 3/2.

Write A = A1A2 · · · As where each Ai is an atom of S and such that s > l(A). That is, s�
⌈
r(A)
3

⌉
+ 1.

Let x denote the number of Ai with r(Ai) = 2. Then r(A) = ∑s
i=1 r(Ai) = 2x + 3(s − x) = 3s − x and

hence s�
⌈
r(A)
3

⌉
+ 1 =

⌈
3s−x
3

⌉
+ 1 = s + 1 +

⌈−x
3

⌉
. Therefore, −1�

⌈−x
3

⌉
and so x � 3. Without

loss of generality, assume that r(A1) = r(A2) = r(A3) = 2. Then r(A1A2A3) = 3 + 3 and hence there

are atoms B1, B2 in S with A1A2A3 = B1B2. Therefore, A = B1B2A4 · · · As is the product of s − 1 atoms

of S. As this holds for any non-atom A ∈ S, �(S) = {1}. �

The following is an immediate corollary to the results of this section. Lemma 2.2 provides the

transfer homomorphism det : S → Z.

Corollary 3.7. Let S denote the subsemigroup of all matrices in either Mn(Z) or Tn(Z) with composite

determinant and let A be a non-atom of S. Then

1. L(A) =
⌊
r(A)
2

⌋
,

2. l(A) =
⌈
r(A)
3

⌉
,

3. ρ(S) = 3
2
, and

4. �(S) = 1.

4. Subsemigroups of Tn(�)

Upper triangularmatrices arewell-studied, in part because their determinants are easy to compute

and because any integer valued matrix can be put in Hermite Normal Form. Moreover, being able to

factor matrices in Tn(Z) plays an important role in the Post correspondence problem (cf. [16,11]). In

this section we investigate factorization properties of certain subsemiroups of Tn(Z). In particular, we

consider T2(N), T2(N0), Tn(kN) for k > 1, and unitriangular matrices – elements of Tn(N0) whose

diagonal elements are all 1’s.

Remark 4.1. Note that each of the results in this section pertaining to subsemigroups of Tn(Z) of upper
triangular matrices can be restated for subsemigroups of Ln(Z) of lower triangular matrices.

4.1. Tn(kZ)

In this section we take S to be the subsemigroup of all nonzero upper triangular n × n integer

valued matrices whose entries are a multiple of some integer k > 1. Since S does not contain the

identity matrix, S contains no units. Recall that if x is an integer, divisible by k, then νk(x) is the largest
integer t such that kt|x.
Lemma 4.2. Let k > 1 be an integer and let S denote the semigroup of all nonzero matrices in Tn(kZ). Let
A ∈ S:

1. L(A) = νk(gcd(A)).
2. A is an atom of S if and only if νk(gcd(A)) = 1.
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Proof. First note that if ku divides all entries of an n × nmatrix B and kv divides all entries of an n × n

matrix C, then ku+v divides all the entries of their product BC. Thus, if A = A1A2 · · · At with each Ai an

element of S, then kt divides all entries of A and so t � νk(gcd(A)). That is, taking each Ai to be an atom

of S, L(A) � νk(gcd(A)). Note that kIn ∈ S and that A = (kIn)
νk(gcd(A))−1A′ for some A′ ∈ S. Therefore,

L(A) � νk(gcd(A)) proving (1).

Since A is an atom of S if and only if L(A) = 1, (2) follows immediately. �

Theorem 4.3. Let k > 1 be an integer and let S denote the semigroup of all nonzero matrices in Tn(kZ)
where n� 2. Then S is bifurcus.

Proof. Write A as A = [u B] where u is a column vector and B is an n × (n − 1) matrix. If ν =
νk(gcd(u)), then we can factor A as

A = [u B] =
[(

1

kν−1

)
u 1

k
B
] [

kν−1 0

0 kIn−1

]
,

where

[
kν−1 0

0 kIn−1

]
is a 4 × 4 block matrix with the non-diagonal blocks consisting of only zero

entries. By Lemma 4.2, each of these factors is an atom of S and hence S is bifurcus. �

4.2. Unitriangular matrices

In this section we consider S to be the subsemigroup of Tn(N0)with ones along the diagonal – that

is the set of unitriangular matrices with nonnegative entries. We restrict to nonnegative entries since

every unitriangular matrix over the integers is a unit thus making factorization questions trivial. In

[9], it was shown that the group of n × n upper triangular matrix over a semiring is the semidirect

product of the group of diagonalmatrices and themonoid of unitriangularmatrices. The complexity of

the set of n × n unitriangular matrices over a finite field was studied in [15]. Thus we have motivation

to study factorization properties in the family of unitriangular matrices.

We will first consider the entire semigroup and then restrict to the subsemigroup consisting only

of matrices with nonzero entries above the diagonal. For a matrix A ∈ S, let �(A) denote the sum of

the off diagonal entries in A. Note that since matrices in S contain no negative entries, if A, B ∈ S, then

�(AB) � �(A) + �(B). Therefore, the only unit of S is the n × n identity matrix In. Indeed, if AB = In,

then 0� �(A) � �(AB) = �(In) = 0 and hence �(A) = 0.

For i and jwith i < j, let Ei,j ∈ Mn(N0) denote the matrix whose only nonzero entry is ei,j = 1. We

note that for each pair i, j, Ei,j is not an element of S, but I + Ei,j is an element of S.

Theorem 4.4. Let S denote the subsemigroup of Tn(N0) of unitriangular matrices and let A ∈ S. Then
L(A) = �(A).

Proof. Suppose that A = A1A2 · · · At where each Ai is a nonunit of S (Ai /= In∀i). Then �(A) � t and

hence L(A) � �(A). We now show, via induction on �(A), that L(A) � �(A). If �(A) = 1, then clearly

A is irreducible and hence L(A) = 1. Now suppose that for some m� 1, whenever �(A) �m, then

L(A) � �(A).
If �(A) = m + 1, then either ai,j = m + 1 for some distinct i, j or there are distinct off diagonal

entries of A which are nonzero. If ai,j = m + 1 for some pair i, j, then A = I + (m + 1)Ei,j = (I +
Ei,j)

m+1 andhence L(A) �m + 1. If�(A) = m + 1 and there are distinct off diagonal entries ofAwhich

are nonzero, consider i + jmaximal among thenon-diagonal elements ai,j > 0. Thenwe can factorA as

A = (A − ai,jEi,j)(I + Ei,j)
ai,j . Clearly �(A − ai,jEi,j) = (m + 1) − ai,j and by our induction hypothesis,

L(A − ai,jEi,j) �(m + 1) − ai,j . Moreover, L((I + Ei,j)
ai,j) � ai,j and hence L(A) �(m + 1) − ai,j + ai,j =

m + 1. �

The following result, which follows trivially from Theorem 4.4, gives a classification of the atoms

of S.
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Corollary 4.5. Let S denote the semigroup of Tn(N0) of unitriangular matrices and let A ∈ S. Then A is an

atom of S if and only if �(A) = 1.

Theorem 4.6. Let S denote the semigroup of Tn(N0) of unitriangular matrices:

1. If n = 2, then S is factorial.
2. If n� 3, then ρ(S) = ∞.

Proof. If n = 2, then the only unit in S is I2 and the only atom of S is A =
[
1 1

0 1

]
. If B ∈ S is a nonunit,

then B =
[
1 b

0 1

]
with b� 1. The only factorization of B is B = Ab and hence S is factorial.

Now suppose n� 3 andwrite A = (I + E1,2)
a(I + E2,3)

a = I + aE1,2 + aE2,3 + a2E1,3. Thus l(A) =
2a. Moreover, L(A) = 2a + a2 and hence ρ(S) � lima→∞ ρ(A) � lima→∞ 2a+a2

2a
= ∞. �

We conclude this section by considering the subsemigroup S of Tn(N) of unitriangular matrices.

Note that we now require all entries above the diagonal to be positive. We now show that S is bifurcus

and hence has infinite elasticity.

Theorem 4.7. Let n� 4 and let S denote the semigroup of Tn(N) of unitriangular matrices. Then S is

bifurcus.

Proof. First note that if X ∈ S can be factored as the product of two elements of S, then each of the

superdiagonal entries of X is at least two. Consequently, if any of the superdiagonal entries of X are

one, then X is an atom of S. Now, suppose that A ∈ S can be written as the product of two elements

B, C ∈ S. That is,

A =

⎡⎢⎢⎢⎣
1 a1,2 · · · a1,n
...

. . .
...

...
0 · · · 1 an−1,n

0 · · · · · · 1

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
1 b1,2 · · · b1,n
...

. . .
...

...
0 · · · 1 bn−1,n

0 · · · · · · 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1 c1,2 · · · c1,n
...

. . .
...

...
0 · · · 1 cn−1,n

0 · · · · · · 1

⎤⎥⎥⎥⎦=BC.

Let U = I + (1 − b1,2)E1,2 + cn−1,nEn−1,n and V = I + (b1,2 − 1)E1,2 + (1 − cn−1,n)En−1,n; that is,

U =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 − b1,2 0 · · · 0

0 1 0 · · · 0
...

. . .
...

0 · · · 1 cn−1,n − 1

0 · · · · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦ and V =

⎡⎢⎢⎢⎢⎢⎢⎣
1 b1,2 − 1 0 · · · 0

0 1 0 · · · 0
...

. . .
...

0 · · · 1 1 − cn−1,n

0 · · · · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that U and V are not elements of S. However, since UV = In, A = BC = B(UV)C = (BU)(VC).
Moreover, BU, VC ∈ S are atoms since they each possess a one as a superdiagonal entry. Thus A can be

factored as the product of two atoms of S and hence S is bifurcus. �

4.3. T2(N)

Throughout this section S will denote the semigroup of all 2 × 2 upper triangular matrices with

positive integer entries; that is, if A ∈ S, then A =
[
a b

0 c

]
for some positive integers a, b and c. Since[

1 0

0 1

]
/∈ S, S contains no units. The following lemma classifies all atoms of S.
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Lemma 4.8. Let A =
[
a b

0 c

]
∈ S. Then A is an atom of S if and only if b = 1.

Proof. If b > 1 then we can write b = m + nwith m, n� 1. Thus we can factor A as

A =
[
a b

0 c

]
=
[
1 m

0 c

] [
a n

0 1

]
and hence A is a non-atom. Conversely, suppose that A can be written as the product of two elements

of S as

A =
[
a b

0 c

]
=
[
s m

0 u

] [
t n

0 v

]
.

Then b = sn + mv > 1. �

Theorem 4.9. Let S be the semigroup of all 2 × 2 upper triangular matrices with positive integer entries

and let A =
[
a b

0 c

]
∈ S. Then

1. L(A) = b.
2. ρ(S) = ∞.
3. For every prime p, p − 1 ∈ �(S).

Proof. ConsiderA =
[
a b

0 c

]
∈ S. IfA =

[
a1 b1
0 c1

] [
a2 b2
0 c2

]
· · ·
[
as bs
0 cs

]
, thenb� b1 + b2 + · · · +

bs and hence s� b. That is, L(A) � b. If b = 1, then A is an atom by Lemma 4.8 k = 1 and thus has a

factorization of length b = 1. If b� 2, then we can factor A as

A =
[
a b

0 c

]
=
[
1 1

0 c

] [
1 1

0 1

]b−2 [
a 1

0 1

]
and hence (again by Lemma 4.8) A has a factorization of length b.

Let n be a positive integer and consider the following matrix B =
[
2n 2n+1

0 2n

]
∈ S. Since B =[

2n 1

0 1

] [
1 1

0 2n

]
l(B) = 2 by Lemma 4.8. From (1), L(B) = 2n+1. Therefore, ρ(B) = 2n+1

2
. Taking the

limit as n approaches infinity gives us that ρ(S) = ∞.

Let p be a prime and consider the matrix P =
[
p p + 1

0 1

]
∈ S. Since p is prime, if

P =
[
a1 b1
0 c1

] [
a2 b2
0 c2

]
,

then a1, a2 ∈ {1, p} and c1 = c2 = 1. Thus, by Lemma 4.8, the only atoms that can appear in a factor-

ization of P are

[
1 1

0 1

]
and

[
p 1

0 1

]
. Furthermore, the matrix

[
p 1

0 1

]
must appear exactly once in

any factorization of P. Thus, the only factorizations of P have the form

P =
[
1 1

0 1

]m [
p 1

0 1

] [
1 1

0 1

]t−m−1

,

where t is the length of the factorization and 0�m� t − 1� p. If t − m − 1 = 0, then t = p + 1. If

t − m − 1� 1, then

P =
[
1 1

0 1

]m [
p p(t − m − 1) + 1

0 1

]
and hence p(t − m − 1) + 1� p + 1 which implies that t − m − 1 = 1; i.e., t = 2. Therefore, all

factorizations of P have length 2 or p + 1 and hence �(P) = {p − 1}. �
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4.4. T2(N0)

In this section we consider the semigroup S of upper triangular 2 × 2 matrices with nonnegative

entries and non-zero determinant; that is, if A ∈ S then A =
[
a b

0 c

]
where a, c ∈ N and b ∈ N0. Note

that in this case

[
1 0

0 1

]
is the only unit of S. As in the previous section, we first classify the atoms of

S.

Lemma 4.10. Let S denote the subsemigroup of matrices in T2(N0) with nonzero determinant. The set of

atoms of S consists of the matrix X =
[
1 1

0 1

]
and the matrices – for each prime p – Yp =

[
1 0

0 p

]
and

Zp =
[
p 0

0 1

]
.

Proof. Suppose that X = X1X2 for some X1, X2 ∈ S. Since det(X) = 1, det(X1) = det(X2) = 1 and we

can write

X1X2 =
[
1 m

0 1

] [
1 n

0 1

]
,

wherem + n = 1. Thus either X1 or X2 is the identity and hence X is an atom.

Suppose now that p is prime and Yp = Y1Y2 for some Y1, Y2 ∈ S. Since p is prime, either

Y1Y2 =
[
1 m

0 1

] [
1 n

0 p

]
with 0 = n + mp or

Y1Y2 =
[
1 n

0 p

] [
1 m

0 1

]
with 0 = n + m. In either case,m = 0 and hence Yp is an atom of S. Similarly one can see that each Zp
is an atom of S.

Finally, we show that these are the only atoms of S. Let A =
[
a b

0 c

]
∈ S. Following the proof of

Lemma 4.8, we see that if b� 2 then A is a non-atom of S. Suppose A =
[
a 1

0 c

]
and note that we can

factor A as

A =
[
1 0

0 c

] [
a 1

0 1

]
=
[
1 1

0 c

] [
a 0

0 1

]
.

Thus A is an atom if and only if a = c = 1; that is, A = X . Now suppose A =
[
a 0

0 c

]
and note that A

can be factored as

A =
[
a 0

0 1

] [
1 0

0 c1

] [
1 0

0 c2

]
=
[
1 0

0 c

] [
a1 0

0 1

] [
a2 0

0 1

]
,

where a1 and a2 are factors of a and c1 and c2 are factors of c. Thus A is an atom if and only if A = Yp
or A = Zp for some prime p. �

Throughout the remainder of this sectionwe let r(A)denote thenumber of (not necessarily distinct)

prime factors of det(A).

Lemma 4.11. If A can be factored as A = A1A2 · · · At with each Ai an atom of S, then t = r(A) + k where

k =
∣∣∣∣{i : Ai =

[
1 1

0 1

]}∣∣∣∣ .
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Proof. For each i, Ai is an atom and thus det(Ai) is either 1 or is prime. Since det(A) =
det(A1) det(A2) · · · det(At), |{i : det(Ai) is prime}| = r(A). If k = |{i : det(Ai) = 1}| then the length

of the factorization is

t = |{i : det(Ai) is prime}| + |{i : det(Ai) = 1}| = r(A) + k. �

Theorem 4.12. Let S denote the subsemigroup of invertible matrices in T2(N0) and let A =
[
a b

0 c

]
∈ S:

1. If b = 0, then l(A) = r(A).
2. If b|ac, then l(A) = r(A) + 1.
3. L(A) = r(A) + b.

Proof. Suppose that b = 0 and write l(A) = r(A) + k as in Lemma 4.11. If k � 1 then any factor con-

taining

[
1 1

0 1

]
cannot have two nonzero entries. This contradicts b = 0 and hence k = 0. That is,

l(A) = r(A).
Now suppose that b|ac. Againwrite l(A) = r(A) + k as in Lemma 4.11. Since b > 0, k � 1 and hence

l(A) � r(A) + 1. Write a = ma′, c = nc′ and b = a′c′ and factor A as

A =
[
1 0

0 n

] [
a′ 0

0 1

] [
1 1

0 1

] [
1 0

0 c′
] [

m 0

0 1

]
.

Therefore,

l(A) � l

([
1 0

0 n

])
+ l

([
a′ 0

0 1

])
+ l

([
1 1

0 1

])
+ l

([
1 0

0 c′
])

+ l

([
m 0

0 1

])
= r(n) + r(a′) + 1 + r(c′) + r(m)

= r(na′c′m) + 1

= r(A) + 1.

Note that for any matrix

[
a′ b′
0 c′

]
∈ S,

[
1 1

0 1

]r [
a′ b′
0 c′

] [
1 1

0 1

]s
=
[
a′ d

0 c′
]

with d � r + s. Thus, if A = A1A2 · · · At with each Ai an atom of S, b� |{i : det(Ai) = 1}|. By Lemma

4.11, l(A) = r(A) + k with b� k. Thus L(A) � r(A) + b. Since

A =
[
a b

0 c

]
=
[
1 0

0 c

] [
1 1

0 1

]b [
a 0

0 1

]
,

we have that

L(A) � l

([
1 0

0 c

])
+ b · l

([
1 1

0 1

])
+ l

([
a 0

0 1

])
= r(c) + b + r(a)

= r(A) + b. �

Corollary 4.13. Let S denote the subsemigroup of invertible matrices in T2(N0) and let A =
[
a b

0 c

]
∈ S:

1. If b = 0, then ρ(A) = 1.

2. If b|ac, then ρ(A) = r(A)+b

r(A)+1
.

3. ρ(S) = ∞.
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Proof. The proofs of (1) and (2) follow immediately from Theorem 4.12.

Consider, for each prime p the matrix Ap =
[
p p

0 p

]
. By (2), ρ(Ap) = p+2

3
. Allowing p to tend

towards infinity, we see that ρ(S) = ∞. �

5. Gaussian matrices

In this sectionwe investigate the factorization properties of semigroups of n × nGaussianmatrices

over an additive subsemigroup R of N0 – matrices differing from the identity matrix In only in the jth

column which has the form[
0 · · · 0 1 aj+1,j aj+2,j · · · an,j

]T
for some j, 1� j � n − 1. Gaussian elimination of column j of a matrix is achieved bymultiplication by

a Gaussian matrix with nonzero off diagonal entries in the jth column. This type of matrix is essential

in LU factorizations and thus have a wide array of applications in both pure and applied mathematics

(cf. [8,17,6]).

Note that when two Gaussianmatrices aremultiplied, the only entries affected are the off diagonal

entries. Furthermore, ifA = BCwhereA, B, C areGaussianmatriceswithall nonzerooffdiagonal entries

in fixed column j, then⎡⎢⎢⎢⎣
aj+1,j

aj+2,j

...
an,j

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
bj+1,j

bj+2,j

...
bn,j

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
cj+1,j

cj+2,j

...
cn,j

⎤⎥⎥⎥⎦ .

This immediately yields the following lemma.

Proposition 5.1. Let S denote the semigroup of n × n Gaussian matrices over an additive subsemigroup

R of N0 differing from the identity matrix In only in the jth column which has the form[
0 · · · 0 1 aj+1,j aj+2,j · · · an,j

]T
(whereeachai,j ∈ R) for some j,1� j � n − 1.Finally, set T = Rn−j ∪

{0}. Then there exists a transfer homomorphism φ : (S, ·) → (T,+) defined by
[
a1 · · · an

] �→[
aj+1,j aj+2,j · · · an,j

]T
. In particular, S is commutative.

We note that the results of Proposition 5.1 hold for the semigroups such as N, N0, N� k ∪ {0} for
any k ∈ N and kN for any k ∈ N. The following two theorems give factorizationproperties of Gaussian

matrices over N and over N0 in which we see a dramatic difference in uniqueness of factorization

depending on whether or not entries of the jth column below the diagonal are allowed to be zero.

Theorem 5.2. Let S denote the subsemigroup of Mn(N) of Gaussian matrices with nonzero off diagonal

entries in column j and let A ∈ S:

1. A is an atom if and only if 1 is an off diagonal entry of A.
2. L(A) is equal to the minimal positive off diagonal entry of A.
3. If j = n − 1, then S is factorial.
4. If j /= n − 1, then S is bifurcus.

Proof. In lightof Proposition5.1weconsider, instead, factorizations inT = {0} ∪ Nn−j . ByGeroldinger

and Halter-Koch [7], Nk ∪ {0} is a finitely primary monoid of rank k for each k and thus the results

follow immediately. �

Theorem 5.3. Let S denote the subsemigroup of Mn(N0) of Gaussian matrices with nonnegative off

diagonal entries in column j and let A ∈ S:
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1. A is an atom if and only if all entries in column j are zero except for aj,j = ak,j = 1 for some k ∈
{j + 1, j + 2, . . . , n}.

2. S is factorial.

Proof. Again, in light of Proposition 5.1, we consider factorization in T = N
n−j
0 . Again appealing to

[7], we have that Nk
0 is factorial and hence the result follows immediately. �

6. Rank one matrices

Rank one matrices have been intensely studied from many different perspectives and have a wide

array of applications (cf. [19,21,20]). Throughout this section, let n� 2 and let S denote the subsemi-

group of Mn(N) of matrices with rank one. Note that S contains no identity and no units. We recall

that if A ∈ Mn(N) has rank one, then A = uvT for some vectors u, v ∈ Nn. The following lemma will

be useful in studying factorizations in S.

6.1. Preliminaries

Lemma 6.1. Let u and v be vectors in Nn and set A = uvT . Then gcd(A) = gcd(u) gcd(v).

Proof. Note that 1
gcd(u) gcd(v)

A =
(

1
gcd(u)

u
) (

1
gcd(v)

vT
)
andthuswemayassumethatgcd(u) = gcd(v) =

1. Suppose thatm| gcd(A) for somem > 1. ThenmdivideseachentryofAand inparticular eachentry in

column i ofA for each i ∈ {1, 2, . . . , n}. However, the ith columnofA is the vector viu. Since gcd(u) = 1,

m|vi. As this holds for all i ∈ {1, 2, . . . , n},m| gcd(v), a contradiction. Thus gcd(A) = 1. �

Theorem 6.2. Let S denote the subsemigroup of Mn(N) consisting of all matrices with rank one and let

A ∈ S:

1. A is an atom of S if and only if gcd(A) < n.
2. S is bifurcus.

Proof. Suppose that A = A1A2 for A1, A2 ∈ S. Since A1 and A2 have rank one, there exist vectors

u1, u2, v1, v2 ∈ Nn such that A1 = u1v
T
1 and A2 = u2v

T
2 . Since vT1u2 is a scalar, we have that

A = (u1v
T
1)(u2v

T
2) = u1(v

T
1u2)v

T
2 = (vT1u2)(u1v

T
2).

Since the entries of vT1 and u2 are positive integers, gcd(A) �(vT1u2) � n. Now suppose that gcd(A) � n

and write A = gcd(A)B where B is an atom of S. Write B = uvT for some vectors u and v. Since

gcd(A) � n, write gcd(A) = xTy where x = [(gcd(A) − n + 1) 1 1 · · · 1
]T

and y = [1 1 · · · 1
]T
.

Then

A = gcd(A)B = (xTy)(uvT ) = u(xTy)vT = (uxT )(yvT ).

Since B = uvT and gcd(B) = 1, gcd(u) = gcd(v) = 1 by Lemma 6.1. Again applying Lemma 6.1, we

see that uxT and yvT are atoms of S. Thus A is an atom of S if and only if gcd(A) = 1. Moreover, we

have shown that S is bifurcus as every non-atom can be factored as the product of two atoms of S. �

The following theorem gives a formula for L(A) where A ∈ S and shows that computing L(A) is an
NP-complete problem. First, we define, for integers n and m, Ψn(m) to be the greatest integer k such

that there exist integersm1, m2, . . . , mk, r such thatm = m1m2 · · ·mkr with r < n�mi for each i. We

note that Ψn(m) is at most the number of primes counting multiplicity in the prime factorization of

m, with equality if n=2.
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Theorem 6.3. Let S denote the subsemigroup of Mn(N) consisting of all matrices with rank one and let

A ∈ S:

1. Then L(A) = Ψn(gcd(A)) + 1.
2. Calculating L(A) is a NP-complete problem.

Proof. Assume that A has some factorization of length t and write A = ∏t
i=1 Ai = ∏t

i=1 uiv
T
i where

each Ai = uiv
T
i is an atom of S. We can rewrite this product as

A =
t∏

i=1

uiv
T
i = u1v

T
t

t−1∏
i=1

〈vi, ui+1〉,

where 〈x, y〉 = xyT denotes the standard inner product of vectors x and y. Since each 〈vi, ui+1〉 is

the sum of n positive integers, 〈vi, ui+1〉 � n for each i ∈ {1, 2, . . . , t − 1}. By Lemma 6.1, gcd(A) =
gcd(u1) gcd(vt)

∏t−1
i=1 〈vi, ui+1〉 and hence

Ψn(gcd(A)) = Ψn

⎛⎝gcd(u1) gcd(vt)
t−1∏
i=1

〈vi, ui+1〉
⎞⎠� Ψn

⎛⎝t−1∏
i=1

〈vi, ui+1〉
⎞⎠� t − 1.

Therefore, L(A) � Ψn(gcd(A)) + 1.

Nowsuppose thatΨn(A) = k andwrite gcd(A) = rm1m2 · · ·mk for some integers r, m1, m2, . . . , mk

with r < n�mi for each i ∈ {1, 2, . . . k}. For each i ∈ {1, 2, . . . , k} we can write A = rm1m2 · · ·miBi
for an appropriate matrix Bi ∈ S. Since gcd(miBi) �mi � n, miBi is not an atom of S and thus we can

writemiBi = Bi−1Ci for some atom Ci ∈ S. Therefore,

A = rm1m2 · · ·mkBk = (rB0)C1C2 · · · Ck.
Therefore, A has a factorization of length at least k + 1 and consequently L(A) � Ψn(gcd(A)) + 1.

If m = p1p2 · · · pt with each pi prime, then Ψn(m) is equal to the maximum number of disjoint

subsets {a1, a2, . . . , as} of {1, 2, . . . , t} such that pa1pa2 · · · pas � n. Thus log(pa1) + log(pa2) + · · · +
log(pas) � log(n) and hence finding Ψn(m) is equivalent to solving a bin-covering problem. Therefore,

calculating Ψn(m) is a NP-complete problem. �

6.2. Rank one matrices with entries in mN

In this section we restrict to the subsemigroup Sm of rank one matrices inMn(mN) wherem� 1 is

an integer. The following lemmaallowsus to apply factorization informationgleaned from S1 (Theorem

6.2) to the semigroup Sm.

Lemma 6.4. Let m� 1 be an integer, let Sm denote the subsemigroup of rank onematrices in Mn(mN) and
let A ∈ Sm:

1. If m2 � gcd(A) then A is an atom of Sm.

2. If A = m2B with B ∈ S1, then A is an atom of Sm if and only if B is an atom of S1.

Proof. Suppose that A = A1A2 with A1, A2 ∈ Sm. Then A = (mB1)(mB2) = m2B1B2 for some B1, B2 ∈
S1. Thus ifm

2 � gcd(A), then A is an atom of Sm.

Now suppose that A = m2B for some B ∈ S1. If B = B1B2 for some B1, B2 ∈ S1 then A = m2B =
(mB1)(mB2)withmB1, mB2 ∈ Sm. IfA = A1A2 withA1, A2 ∈ Sm thenm2B = A = A1A2 = (mC1)(mC2)
for some C1, C2 ∈ S1 and hence B = C1C2. Thus A is an atom of Sm if and only if B is an atom of S1. �

Theorem 6.5. Letm� 1bean integer and let Sm denote the subsemigroupof rankonematrices inMn(mN).
Then Sm is bifurcus.
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Proof. Let A ∈ Sm be a non-atom and factor A as A = A1A2 for some A1, A2 ∈ Sm. By Lemma 6.4, A =
(mB1)(mB2) for some B1, B2 ∈ S1. By Theorem 6.2, S1 is bifurcus and so A = m2B1B2 = m2P1P2 =
(mP1)(mP2) for some atoms P1, P2 ∈ S1. IfmPi = XY for X, Y ∈ Sm thenmPi = mX′Y with X′ ∈ S1 and

hence Pi = X′Y with X′, Y ∈ S1, contradicting that Pi is an atom of S1. Therefore, A can be factored as

the product of two atoms in Sm and hence Sm is bifurcus. �

6.3. The semiring of single-valued matrices

In this section we consider a specific class of rank one matrices – the class of n × n matrices in

which all entries are identical. Jacobson [13] considered the 2 × 2 case and was able to classify the

atoms of this semigroup and give examples of nonunique factorization. We extend these results to

n × n single-valued matrices over N, N0 and Z. We adopt Jacobson’s notation and let [a] denote the

n × nmatrix for which every entry is a. The simple observation that if [a] and [b] are n × nmatrices,

then [a][b] = [nab] allows us to classify the atoms and to compute various factorization invariants.

The following theorems are stated for the semigroup S of nonzero single-valuedmatrices with integer

entries, but the results hold if we restrict to nonnegative entries or to only positive entries. In either

case, it is easy to see that S has no units.

Lemma 6.6. Let S denote the semigroup of nonzero single-valued n × n matrices with integer entries and

let [a] ∈ S. Then [a] is an atom of S if and only if n � a.

Proof. If [a] factors as [a] = [s][t], then [a] = [s][t] = [nst] and hence n|a. Conversely, if n|a then we

can factor [a] as [a] = [nst] = [s][t]. �

Recall that νn(a) denotes the largest integer k such that a is divisible by nk .

Theorem 6.7. Let n� 2 and let S denote the semigroup of nonzero single-valued n × n matrices with

integer entries. Let [a] ∈ S:

1. L([a]) = νn(a) + 1.

2. If n = pk for some prime p, then l([a]) =
⌈

νp(a)+k

2k−1

⌉
and ρ(S) = 2k−1

k
.

3. If n is not the power of a prime, then S is bifurcus.

4. If n is prime, then S is half-factorial.

5. If n is not prime, then �(S) = {1}.
Proof. Suppose that [a] can be factored as [a] = [a1][a2] · · · [at] with each [ai] ∈ S. Then [a] =
[nt−1a1a2 · · · at] and hence νn(a) � t − 1. Therefore, L([a]) � νn(a) + 1. Since [a] can be factored as

[a] = [1]νn(a)
[

a

nνn(a)

]
, L([a]) � νn(a) + 1.

Assume now that n = pk for some prime p. Write a = pmy with p � y and suppose that [a] has a

factorization of length d. Then

[a] = [pmy] = [pm1y1][pm2y2] · · · [pmdyd]
where y = y1y2 · · · yd andm = m1 + m2 + · · · + md + k(d − 1). Sincewe are assuming each [pmiyi]
is an atom of S, 0�mi � k − 1 for each i ∈ {1, 2, . . . , d}. Let c be the nonnegative integer such that

m1 + m2 + · · · + md = d(k − 1) − c. Then

d = m − d(k − 1) + c

k
+ 1 = m + c + k

2k − 1
�
⌈
m + k

2k − 1

⌉
.

Therefore, l([a]) =
⌈

m+k
2k−1

⌉
.

Observe that for any [pmy] ∈ S,
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ρ([pmy]) =
⌊
m
k

⌋
+ 1⌈

m+k
2k−1

⌉ �
m
k

+ 1

m+k
2k−1

= 2k − 1

k
.

This elasticity is achieved since [p2k(k−1)] = [1]2k−1 = [pk−1]k .
If n is prime, then ρ(S) = 1 by (2), hence half-factorial. If n = pk for some k > 1 then writing

[a] = [pmy] = [pm1y1][pm2y2] · · · [pmdyd],
where y = y1y2 · · · yd and m = m1 + m2 + · · · + md + k(d − 1) we see that m1 + m2 + · · · + md

can take all integer values between 0 and n(k − 1). Thus, �([a]) = {1} for all [a] ∈ S and hence

�(S) = {1}.
Finally, assume that n = st with s, t > 1 and gcd(s, t) = 1. Then if [a] is not an atom of S we can

write [a] = [nνn(a)y] where n � y. Without loss of generality, assume that s � y. Then we can factor [a]
as

[a] = [nνn(a)y] = [sνn(a)tνn(a)y] = [sνn(a)−1][tνn(a)−1y]
and hence l([a]) = 2. Therefore, S is bifurcus and �(S) = {1}. �

7. Open problems

We conclude with a list of open problems:

1. Let S = T2(N) and let A ∈ S:

(a) Determine a formula for l(A).
(b) Determine a formula for ρ(A).
(c) Calculate �(S).

2. Let S = T2(N0) and let A ∈ S:

(a) Determine a general formula for l(A).
(b) Determine a formula for ρ(A).
(c) Calculate �(S).

3. Let S = Tn(N) for n > 2 and let A ∈ S:

(a) Determine a formula for l(A) and L(A).
(b) Determine a general formula for ρ(A).
(c) Calculate �(S) and ρ(S).

4. Let S = Tn(N0) for n > 2 and let A ∈ S:

(a) Determine a formula for l(A) and L(A).
(b) Determine a general formula for ρ(A).
(c) Calculate �(S) and ρ(S).

5. Let S denote the subsemigroup ofMn(N0) of unitriangular matrices and let A ∈ S:

(a) Determine a formula for l(A).
(b) Determine a general formula for ρ(A).
(c) Calculate �(S).
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6. Let S denote the subsemigroup of Tn(N0) of triangular unitriangular matrices and let A ∈ S:

(a) Enumerate the atoms of S.

(b) Determine a formula for l(A) and L(A).
(c) Determine a general formula for ρ(A).
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