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Abstract

It is well known that most physical fluid flows feature vorticity. In order to avoid mathe-
matical complexity, the study of surface waves is often carried out in the context of potential
flow. In studies where vorticity is taken into account, it usually enters in a standard way, such
as a background flow or in the boundary layer.

In the current contribution, a numerical method for the simulation of the simultaneous
evolution of a free-surface wave and an existing vortex patch is developed. The method uses the
formulation of the free-surface problem due to [1] in connection with point-vortex methods and
numerical tools based on asymptotic development of the Dirichlet-to-Neumann operator for the
free surface.

Simulations of shallow-water waves propagating over vortex patches of various strengths are
then presented, and it is shown that the vortex patches can have strong, destabilizing effects
on relatively low amplitude waves while their impact on surface profiles of larger amplitude is
much weaker. It is also observed that very strong vortex patches are self-destabilizing when
interacting with a free surface.
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1 Introduction

The modeling of free-surface waves is a well studied and central area in several areas within applied
mathematics, fluid mechanics and oceanography. Analytical concerns have motivated almost two-
hundred years of work with a corresponding slew of techniques both formal and rigorous that have
found use throughout applied mathematics. The free-surface problem also appears as a fundamental
problem in both old [2] and modern [3] classics on fluid mechanics. Perhaps the greatest role that
the problem plays though is in formulating the foundation for spectral-wave modelling, which forms
the core of much of modern data-driven oceanography [4].
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A long standing issue however in the modeling of free-surface waves is the impact that vorticity
has on wave dynamics. This has been considered an especially difficult problem for general vorticity
profiles given that the momentum equation cannot be readily integrated up to the surface via the
use of a harmonic potential. Much progress has been made by making the simplifying assumption of
the vorticity being constant leading to insightful numerical and analytic studies of these problems;
see [5, 6, 7] among many others. In a similar vein, one can see the stability theory of shear profiles
[8, 9, 10] as another means of addressing the impact of vorticity on free surface flows. This approach
has been pushed to higher-order-nonlinear models with corresponding numerical implementations
in [11].

However, in neither case can one track the evolution of an arbitrary vortex profile. As shown in
experiment [12, 13, 14], the motion of solitary waves over bathymetric features induces the formation
of vortex patches. Likewise, it is clear that accurate near shore modeling involves an understanding
of the fluid vorticity profile and its interactions with the free surface. Progress in this direction
has been made by assuming shallow-water scalings and deriving various Boussinesq-like models
[15, 16, 17] or Green-Naghdi models [18, 19, 20]. These approaches, while limited to near-shore
conditions, allow markedly enhanced modeling of shoaling and can be coupled to phenomenological
models of wave-breaking induced turbulence to allow for very accurate near-shore computation.

In contrast to the above work, a body of numerical methods has developed within computational
fluid mechanics known as Point-Vortex Methods (PVMs). These are numerical schemes which track
the evolution of compactly supported vorticity profiles via direct discretizations of the vorticity
profile; see [21, 22, 23, 24, 25, 26, 27] among several others. These schemes are especially attractive
in that they do not place any strong restrictions on the flow and are suitable for simulations across
a wide range of scales and geometries [28, 29]. It was then shown in [30] that, by incorporating
the methodology for reformulating the free-surface problem as found in [1], that PVMs could be in
effect merged with Dirichlet-to-Neumann Operator (DNO) based methods [31, 32] for solving the
free-surface problem.

However, in [30], simulations with at most four vortices were studied, preventing the modeling
of more complicated vortex patches underneath free surface waves. Thus, in this paper we present
simulations of vortex patches involving several thousands of vortices. To do so, we incorporate into
the formulation in [30] many of the techniques for error control and computational efficiency that
have been developed in the PVMs community. In particular the use of a Fast-Multipole Method [33]
and Lagrangian-to Eulerian regridding [22] play critical roles in obtaining our results. Using this
machinery in the shallow-water context, we are able to then study the impact of vortex patches
on the evolution of free surfaces waves which are approximated by the cnoidal-solutions of the
Korteweg–de Vries equation. This is a canonical model for nonlinear, shallow-water free surface
waves, and it thus serves as an excellent source for the generation of families of initial conditions for
the free-surface state. While used in the context of shallow water and periodic boundary conditions
in the present work, the approach to the inclusion of vorticity used in this paper is versatile enough
to be applicable to arbitrary depth and arbitrary modeling accuracy, thus providing a distinct
complement to the Boussinesq and Green-Naghdi models described above.

As we show via extensive numerical simulation, the free surface and vortex patch form a highly
complex coupled nonlinear system. In particular, we show that vortex patches may have a signif-
icant destabilizing influence on small-amplitude traveling-surface waves. While this effect is pre-
dictably augmented by increasing patch strength, there also appears to be a critical patch strength
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Figure 1: Definition sketch and schematic of a vortex patch approximated by a number of point vortices.
In reality hundreds of point vortices are used in the computations.

above which the impact of the patch becomes markedly stronger than linear scaling arguments
would imply. This instability manifests itself as very strong distortions, and even amplifications, of
the surface-wave height, significant changes in the relative energy input from the vortex patch into
the surface, and the net displacement and distortion of the patch itself. The impact of the vortex
patch is lessened relative to larger amplitude, more nonlinear, traveling free-surface waves moving
over the patch.

In all, we show lower amplitude surface deformations are potentially unstable with respect to
the impact of a vortex patch moving underneath, while larger amplitude, more nonlinear pro-
files appear relatively robust to the influence of a vortex patch. Such results, and the modeling
techniques used, could be pertinent to coastal engineering projects for which underwater vortex
patches, generated say by relatively sharp bathymetric features, would then induce larger ampli-
tude nonlinear waves than would be predicted from irrotational modeling, thereby changing safety
margins in design. Likewise, when considering near wave-energy extraction device design, a more
sophisticated understanding of the impact of vortex patches on surface wave dynamics could allow
for more efficient exploitation of the surrounding wave field. In this vein, a future direction of this
research will be to assess the impact of vortex patches on the statistical properties of random wave
fields, thus providing a deeper appreciation of how overall wave energy responds to underwater
eddies.

An overview of the paper is as follows. In Section 2, the model, numerical scheme, and imple-
mentation details are presented. Section 3 presents our numerical results, while in Section 4 we
summarize our results and speak to future directions of research. Some technical details about the
DNO are collected in the Appendix.

2 Mathematical model, numerical approach and implementation
details

Throughout, we are attempting to describe the simultaneous evolution of a free surface y = η(x, t)+
H, and a compactly supported patch of vorticity ω(x, y, t) underneath the free surface. Note in
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particular that we do not make any supposition about any particular coupling between the free
surface and the vortex patch such as a traveling wave ansatz [27].

We suppose along the curve y = 0 that we have a solid boundary so that the normal velocity
is identically zero. In an inviscid, incompressible fluid, we can represent the fluid velocity u(x, y, t)
generated by a vortex patch characterized by vorticity profile ω(x, t), x = (x, y), over the compact
domain Ω(t) via the integral equation

u(x, t) =

∫
Ω(t)

K(x− x̃)ω(x̃, t)dx̃ +∇φ̃, ∆φ̃ = 0.

where ω is the vorticity, and K is the standard Biot-Savart kernel given by

K(x) =
x⊥

2πr
, x⊥ = (−y, x), r2 = x2 + y2.

The harmonic function φ̃ is used to address boundary conditions as explained in [34]. An attractive
means for discretizing this equation as summarized in [21] is to approximate the vorticity ω via
the expression ωd which is given by a collection of N point-vortices at positions xj(t) via the PVM
expansion

ωd(x̃, t) =
N∑
j=1

Γj
δ2
χ

(
x̃− xj(t)

δ

)
, xj(t) = (xj(t), yj(t)) , (1)

where χ is some appropriately chosen mollifier, see [25], and Γj is the circulation associated with
the point vortex at xj(t). Thus, we can reduce the problem of tracking the evolution of the vortex
patch to describing the motion of the point vortices via the system of ODE’s

dxj
dt

=

N∑
l 6=j

ΓlKδ (xj − xl) +∇φ̃ (xj , t) , Kδ(x) =
1

δ2

∫
R2

K(x− x̃)χ

(
x̃

δ

)
dx̃.

Choosing, as in [25], the mollifier χ to be the fourth-order kernel

χ(r) = 2e−r
2 − 1

2
e−r

2/2,

introducing periodic boundary conditions in the lateral direction and enforcing the presence of
a solid boundary along the curve y = 0 through the method of images then modifies the above
dynamical system to be

i
dz∗j
dt

=
1

2π

 N∑
l 6=j

Γl

∞∑
m=−∞

χ̃(zj − zl − 2Lm; δ)

zj − zl − 2Lm
−

N∑
l=1

Γl

∞∑
m=−∞

χ̃(zj − z∗l − 2Lm; δ)

zj − z∗l − 2Lm

+ ∂yφ̃+ i∂xφ̃,

where zj = xj + iyj , the period in x is given by 2L, and

χ̃(r; δ) =
(

1− e−r2/2δ2
)(

1 + 2e−r
2/2δ2

)
.

We evaluate the corresponding sums over the image points zj − z∗l so as to keep the zero flow
through y = 0 condition strictly enforced.
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Following the arguments in [30], and again emphasizing the compact support of the vorticity
ω(x, y, t), leads to the coupled nonlinear system

∂tη = −∂xη∂xφ̃+ ∂yφ̃+ Pv,

and

∂tφ̃+
1

2

∣∣∣∇φ̃∣∣∣2 + Im {Qv} ∂xφ̃+ Re {Qv} ∂yφ̃+ gη = Ev −
1

2
|Qv|2 (2)

where we have defined
c(η, zj) = cot

( π
2L

(η +H − zj)
)
,

so that
Pv = Re {Qv} − Im {Qv} ∂xη,

Qv =
1

4L

N∑
j=1

Γj
(
c(η, zj)− c(η, z∗j )

)
,

and

Ev =
1

4L

N∑
j=1

Γj
(
ẋjIm

{
c(η, zj)− c(η, z∗j )

}
+ ẏjRe

{
c(η, zj) + c(η, z∗j )

})
We present a brief derivation of Equation (2) in the Appendix for the sake of completeness. Note
that we have ignored the mollification given the separation between the surface and the point
vortices used to approximate the vortex patch.

Defining q = φ̃|z=η+H , standard arguments [31, 30] allow for the derivation of series represen-
tations to the Dirichlet-Neumann operator G(η) so that

ηt = Gq + Pv,

and

∂tq +
1

2
(∂xq)

2 + gη − Ev +
1

2
|Qv|2 =

− 1

1 + (∂xη)2

((
Pv + Re {Qv} −

1

2
(Gq + ∂xη∂xq)

)
(Gq + ∂xη∂xq) + Im {Qv} (∂xq − ∂xηGq)

)
.

Note, in the numerics, it is more convenient and in some ways more physically relevant to solve
for the variable Q = qx. We note that the DNO can readily be factored so that G(η)q = G̃(η)Q,
and throughout the remainder of the paper, it is this version of the DNO we work with, though we
drop the tilde for the sake of brevity. See the Appendix for a more complete description of details
about the DNO.

Thus, the surface-boundary conditions can be recast entirely in terms of surface variables alone.
This then leaves the problem of evaluating the derivatives of φ̃ at the vortex positions. To do this
in a way which closes the system of equations in terms of η, q, and zj , we repeat the arguments in
[30], where it was shown that

∂yφ̃+ i∂xφ̃
∣∣∣
zj

= − 1

4L

∫ L

−L

(
(c(η, zj)− c∗(η, z∗j ))∂xq − i(c(η, zj) + c∗(η, z∗j ))G(η)q

)
dx
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Implementation details for the Fast-Multipole Method

As can be seen, the presence of the mollifier prevents the closed form evaluation of the sums in
m, thereby potentially adding significant overhead in numerical computations, even if fast Fourier
transforms are used to evaluate the sums. We note however that

χ̃(r; δ) = 1 + χ̄(r), χ̄(r) =
(

1− 2e−r
2/2δ2

)
e−r

2/2δ2

which tacitly explains the role of mollification, which is to remove singularities in the determination
of particle velocities when |zj − zl| . δ. Thus, when we know that |zj − zl| > δ, we take χ̃(r; δ) ∼ 1
so that

1

2π

∞∑
m=−∞

χ̃(zj − zl − 2Lm; δ)

zj − zl − 2Lm
≈ 1

4L
cot
( π

2L
(zj − zl)

)
,

where the sum is taken in the principal value sense. In the case that |zj − zl| . δ, we use instead

1

2π

∞∑
m=−∞

χ̃(zj − zl − 2Lm; δ)

zj − zl − 2Lm
≈ 1

4L
cot
( π

2L
(zj − zl)

)
+

1

2π

χ̄(zj − zl; δ)
zj − zl

.

The error incurred in these approximations is only exponentially small.
However, even in the best case scenario, the evaluation of the particle velocities is an O(N2)

operation, and as we show later, we should anticipate there being large numbers of vortices in order
to maintain the accuracy of our simulation. That being said, by employing a multi-level Barnes-
Hut algorithm, which is an example of a Fast-Multipole Method (FMM) [33], we can reduce the
evaluation of the sums used to compute particle velocities to an O(N logN) operation. Further, our
use of a FMM for the evaluation of the velocities żj in effect determines all points either far or close
to zj , and thus it naturally selects when to use approximations appropriate for the cases |zj−zl| ≤ δ
or |zj − zl| > δ. The method relies crucially on the rapid convergence of the approximation

cot (z̃j − z̃l) ≈
(1− tan(z̃j − c) tan(c− z̃l))

tan (z̃j − c)

p∑
m=0

(−1)m
tanl (c− z̃l)
tanl (z̃j − c)

,

where
z̃ =

π

2L
z, |z̃l − c| < |z̃j − c| .

Throughout the remainder of the simulations, we choose p = 10, which provides the necessary speed-
up without sacrificing any significant accuracy in the computation of the point-vortex velocities.

Shallow-water scalings and the KdV equation

In the present work, the focus is on waves in shallow water. We therefore introduce the scalings

x̃ =
x

λ
, ỹ =

y

H
, t̃ =

√
gH

L
t, η = dη̃, φ̃ = µL

√
gH

˜̃
φ, Γ̃j =

Γj
Γ
,

where we define the non-dimensional parameters

µ =
d

H
, γ =

H

λ
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in terms of the undisturbed depth H and a length scale λ which is a dominant wavelength. Using
the scalings defined above, it can be seen that the vorticity ω should be scaled as

ω =
µ
√
gH

H
ω̃,

so that by using Stokes’ theorem, we see the net circulation Γ can be written as

Γ = µL
√
gHΓ̃, Γ̃ =

∫
Ω̃
ω̃dÃ.

Throughout the paper, we make reference to the non-dimensional Froude number F to characterize
the strength of the vortex patch. In these coordinates, it is given by

F =
Γ

µλ
√
gH

.

In the absence of vorticity, one can readily show that in the traveling coordinate ξ = x− t that
the long time evolution of the tangential surface velocity Q = qx and the surface η are found via
the Korteweg–de Vries (KdV) equation,

2∂τQ+ 3Q∂ξQ+
1

3
∂3
ξQ = 0.

As is known, the KdV equation has a family of periodic traveling wave solutions of the form

Q(x, t) ∼ q0 + 8m̃2κ2cn2 (κ (x− (1 + µc̃) t) ; m̃) , (3)

where

c̃ =
2

3
κ2(2m̃2 − 1) +

3

2
q0,

and where 0 ≤ m̃ < 1 is the elliptic modulus of the cnoidal function cn(·; m̃) and where K(m̃)
represents the complete elliptic integral of the first kind. This then implies that the surface profile
is to leading order given by η ∼ Q. We then choose initial conditions in our numerical simulations
of free surface waves over vortex patches consistent with the traveling wave solutions of the KdV
equation. Throughout the remainder of the paper, q0 = 0.

Implementation details for the Lagrangian to Eulerian regridding

As noted in [25] and examined in [21] and related papers, a major source of error in PVMs is the
implicit grid distortion induced by the Lagrangian flow of the particles xj(t). In particular, we
can interpret the mollification parameter δ as setting an effective radius of influence for each point
xj(t). The convergence theory associated with the PVM approximation, see [35], requires that if
the particles xj start on a uniform mesh with mesh spacing h, then h < δ, and this ‘overlapping’
must be maintained for all times of the simulation.

An especially effective means to ensure this was introduced in [22], where at some fixed number
of time steps, the set of potentially irregular point positions and circulations, say

{xj(t),Γj}Nj=1
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are mapped onto a new, regularly h-spaced set of positions and corresponding circulations, say{
x̃l, Γ̃l

}Ñ
l=1

.

This is done through the choice of a compactly supported interpolation kernel Λ(·) so that

Γ̃l =
N∑
j=1

ΓjΛ

(
x̃l − xj
h

)
Λ

(
ỹl − yj
h

)
.

As in [22], we choose the kernel Λ(x) so that

Λ(u) =


1− u2, 0 ≤ |u| < 1

2
1
2(1− u)(2− u), 1

2 ≤ |u| ≤
3
2

0, |u| > 3
2

This choice ensures that the net circulation and the associated first and second moments are
preserved after regridding. It should be noted however that regridding in this way generically
increases the total particle count so that Ñ > N . This is largely due to having to add points x̃l
relative to the distorted points xj furthest from the interior of the support of ω(x, t).

We now model the initial vorticity via the circularly symmetric, compactly supported vorticity
profile

ω0(r) =

{
ωm

(
1− r2

R2
v

)3
, r ≤ Rv

0, r > Rv

Given the circular symmetry of the profile, in the absence of a free surface or solid boundary, we
know that ω(x, t) = ω0(r). Using Equation (1), we can define a relative error E(t) via the formula

E(t) =

(∑Ñ
l=1 |ωd(x̃l, t)− ω(x̃l, t)|2∑Ñ

l=1 |ω(x̃l, t)|2

)1/2

.

After introducing the shallow-water scalings described above, we choose µ = .2, γ =
√
µ, ωm = 1,

and we run the simulations for 0 ≤ t ≤ tf = 10 = 2/µ. Choosing a sampling rate of six time
steps with dt = .05 and δ = 2h, we produce the following error profiles for h = .005, .0067, and
.01 in Figure 2. As can be seen, while the overall error percentages are quite small in all cases,
as one would expect, choosing h = .005 and then maintaining that throughout the length of the
simulation produces the most stable error profile.

However, the accuracy of the method must be contrasted against the computational expense
incurred by introducing greater number of point-vortices at each regridding event. If we define
Ns to be the initial number of point vortices and Nf to be the final number, we get the following
table for differing values of h over the time interval 0 ≤ t ≤ tf . Likewise, for the range of vorticity
strengths we wish to examine, we see by comparing Figures 2 (a) and (b) that choosing h = .0067
provides a relatively high-degree of accuracy while keeping the number of point vortices in the
simulation at a more manageable level. We therefore stick with this particle spacing throughout
the rest of the paper.
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Figure 2: Error profiles for h = .005, .0067, and .01 with δ = 2h, ωm = 1 (a), ωm = 10 (b), and regridding
done at every six time steps of the simulation.

h Ns Nf

.005 1252 12971
.0067 698 8938
.01 308 5911

Table 1: For varying grid spacings, h, with ωm = 10, the starting particle count Ns and the ending particle
count Nf . The increase is a consequence of the regridding procedure, which in this case is done every six
time steps of the simulation.

The increase in particle count and also position relative to the interior of the vorticity profile
also raises the question of newly introduced points running into either the solid boundary at y = 0
or the free surface at y = εη(x, t)+1. We therefore modify the interpolation scheme so that vortices
do not propagate past either z = 0 or z = .9. Thus, while maintaining the accuracy of the PVM,
this approach introduces significant overhead in the computation of particle velocities, which again
is ameliorated through the use of a FMM.

3 Numerical results

Throughout this section, we take L = λM , where M counts the number of characteristic wave-
lengths included in the computational domain. Correspondingly, we take M = K(m̃)/κ, so that the
period of the numerical simulation is equal to the period of the cnoidal wave. We note that this does
place some limits on the overall elliptic modulus we may pick since as m̃ → 1−, the solitary wave
limit moves the periodic copies of the vortices in the lateral direction off to infinity. This creates
a series of source terms in the free boundary equations which decay only quadratically, thereby
radically limiting the efficacy of a spectral method for modeling the surface. This is a complication
beyond the scope of the present paper, but one that will be explored in future research.

With regards to the details of the simulations, we let µ = .2, γ =
√
µ, which is consistent with

the KdV approximation, and tf = 2/µ, so that nonlinearity has enough time to have a significant
impact. Twenty terms are taken in the recursive computation of the DNO, and a total of KT = 512
modes are used for the pseudospectral approximation of the free surface. A Runge-Kutta 4 method
with integrating factors, cf. [36], is used with a time-step of δt = .05. We then have for our choice
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of vortex patch that the parameter F is given by

F =
πωmR

2
v

4γ
.

The radius of the patch, Rv, is chosen so that

Rv =
γ

2
min{1− yc, yc}

where yc is the initial vertical displacement of the patch. We choose yc = .35, so that Rv ≈ .1565.
The initial horizontal displacement is xc = 0. The initial position of the wave is at x = −M/2.

With these choices fixed, we note that the unscaled amplitude of the cnoidal wave initial con-
ditions is given by 8(m̃κ)2. Throughout our simulations we have chosen κ for a given choice of
elliptic modulus m̃ so as to make this unscaled amplitude as close to unity as possible while still
maintaining convergent numerical simulations. The issue for convergence in the DNO is a com-
plicated one [32, 37], though the issue then can be mollified by reducing the size of µ. This of
course adds further choices in parameters, which are already numerous as is. While in this paper
we have chosen to stick the with DNO approach due to its relative ease of implementation, there
are similar but more stable approaches such as the Transformed Field Expansion [38] which should
be adaptable to this problem. Exploring this issue is a subject of future research.

In each of the following plots, we look at both the evolution of the vortex patch, and a com-
parison of the evolution of the free surface from the same initial conditions. Solid lines correspond
to results in which F 6= 0 while dashed lines correspond to the zero vorticity, or F = 0, case. To
better understand the impact of vortex patches on the cnoidal wave profiles examined in this work,
we also provide a more quantitative measure of the impact of the vortex patch. This is done by
plotting a relative comparison of the total energy in the surface, where the total energy in the
surface in the shallow-water coordinates is given by

E(t;F ) =
1

2

∫ M

−M

(
qG(η)Q+ η2

)
dx, Q = qx,

where we have emphasized the role of the patch through the implicit inclusion of the parameter
F . In the absence of a vortex patch, i.e. F = 0, E(t; 0) is a conserved quantity of the flow since it
serves as the Hamiltonian of the dynamical system describing the surface dynamics [39]. Thus, in
the following figures, we plot the relative difference in energy δE(t;F ) where

δE(t;F ) =
E(t;F )− E(t; 0)

E(t; 0)
.

We likewise compute the mean relative-energy input δEm where

δEm =
1

tf

∫ tf

0
δE(t;F )dt =

1

E(t; 0)

(
1

tf

∫ tf

0
E(t;F )dt− E(t; 0)

)
,

where in the last equality we have used the fact that E(t; 0) = E(0; 0) since it is a conserved
quantity of the flow. Finally, we also track the horizontal center-of mass of the vortex patch, say
xc(t), defined by the formula

xc(t) =

∫
Ω̃(t) xω̃(x, y, t)dÃ∫
Ω̃(t) ω̃(x, y, t)dÃ

,
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Figure 3: Profile (a), energy input (b), final vortex patch position and shape (c), and motion of the patch’s
horizontal center-of mass (d) for an initially still surface. Here F = .1, µ = .2, γ =

√
µ, and tf = 2/µ.

thereby allowing us to better understand the impact of the traveling wave on the motion of the
patch.

Initially quiescent free surface

To develop intuition and establish base line metrics with which to compare later results, we study
an initially quiescent surface so that η(x, 0) = 0, and φ̃(x, 0) is chosen so as to make the initial
surface velocity identically zero. We take the domain to be −4 ≤ x ≤ 4, which is comparable to
the later domain sizes. Taking F = .1, representing the high end of the cases we examine later in
the paper, we then generate Figure 3.

As seen, the patch induces significant deformations of the surface, though they are relatively
small. Interestingly, the energy input rapidly saturates and then decreases while the patch slowly
moves from left to right. The fact that the displacement of the horizontal center-of mass of the
patch only reaches to about x = .07 for tf = 2/µ = 10 shows that the impact of the image points
due to the solid boundary at y = 0 is relatively weak.

Elliptic modulus m̃ = .3

Taking m̃ = .3 and κ = .5 corresponds to M ≈ 3.3, and taking KT = 512 gives δx = .013. The
unscaled amplitude of the cnoidal initial conditions is given by 8(m̃κ)2 ≈ .18. From both the
pointwise comparisons in Figure 4 and the relative energy inputs in Figure 4, we see that stronger
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F δEm
.01 −1× 10−3

.05 −3.6× 10−3

.1 −3.7× 10−3

.5 1.3× 10−1

Table 2: Mean relative-energy input for m̃ = .3 and κ = .5.

vorticity corresponds to greater deformation of the surface wave relative to the undisturbed case,
and comparing across Figures 6 and 8, we see that the vortex patch has the strongest impact on
the least nonlinear waves.

As seen though in Figure 4, a ten-fold increase in F from F = .01 to F = .1 induces a relatively
linear change in the response of the vortex patch and free surface system. The modification of the
surface is relatively mild; see Figures 4 (a), (c), and (e), with slight differences seen in the vortex
patch position and shape; see Figures 4 (b), (d), and (f). Likewise, the difference in the relative
energy inputs plotted in Figures 5 (a), (c), and (e) show changes following a linear increase in the
Froude number. Where one can see a nonlinear coupling between the surface and the patch is in
the mean-energy input compiled in Table 2. Clearly increasing the Froude number from F = .01 to
F = .1 does not induce a linear change in δEm. We also see that δEm < 0 in these cases, reflecting
a loss of energy from the surface to the patch.

We also see the impact of this energy transfer from the surface wave to the vortex patch in the
patch displacement measured by the horizontal center-of-mass xc(t) plotted in Figures 5 (b), (d),
(f) and (h). As can be seen, the displacement is far greater in this case relative to the quiescent
surface example shown in Figure 3. Indeed, examining Figure 5, we see that the center-of-mass of
the patch has been displaced on average about .25 non-dimensional units relative to its starting
position, which is significantly further than in the quiescent surface case examined above. The
periods of acceleration seen by examining the center-of-mass positions in figures 5 (b), (d), (f) and
(h) correspond to the wave crest moving over the patch. The difference in final displacement of the
patch increases with increasing Froude number, which is to be expected due to the influence of the
solid boundary and the corresponding image points (see the left-hand side of Figure 5). However,
it is clear that the solid boundary as a means of patch transport has minimal influence.

However, when the Froude number is increased to F = .5, a threshold representing the non-
linear coupling of the patch to the surface has been crossed. Aside from the markedly stronger
deformations of both the surface, see Figure 4 (g) in which wave amplitude is amplified as opposed
to attenuated, and the patch, see Figure 4 (h), we see the relative mean energy input is positive
and two orders of magnitude larger than for F = .1; see Table 2. Likewise, the time dynamics of
the relative energy input in Figure 5 (g) is, as expected, far more biased towards the patch putting
energy into the surface. However, we see from Figure 5 that the vortex patch also travels two to
three times further than in the lower Froude number cases examined above.

Elliptic modulus m̃ = .6

Taking m̃ = .6, we find that κ = .43, and this corresponds to M ≈ 4.4. Taking KT = 512, this gives
δx = .0172. The unscaled amplitude of the cnoidal initial conditions is given by 8(m̃κ)2 ≈ .53. As
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Figure 4: Comparisons of a cnoidal wave over a vortex patch(-) to a cnoidal wave over an irrotational fluid
(- -) are shown on the left for various values of the Froude number F , while the final position, shape, and
strength of the vortex patch is shown on the right. Here µ = .2, γ =

√
µ, tf = 2/µ, m̃ = .3, κ = .5.
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Figure 5: The relative energy input into the free surface is shown on the left, while the motion of the
horizontal center of mass xc(t) is shown on the right for m̃ = .3 and κ = .5.
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F δEm
.01 −1.7× 10−4

.05 −7× 10−4

.1 −1.1× 10−3

.5 8.8× 10−3

Table 3: Mean relative-energy input for m̃ = .6 and κ = .43.

seen in Figure 6, we see that the larger elliptic modulus and larger amplitude makes the surface wave
less responsive to the impact of vorticity. Nevertheless, the patch consistently lowers maximum
amplitudes, and when its strength is large enough, induces significant oscillations in the surface
profile.

However, in contrast to the m̃ = .3 case above, we see that the response of the relative energy
input δE(t;F ) is far more linear in nature, with peaks and troughs being enhanced about equally
with rising values of F until a threshold is crossed which leads to a net positive input of energy
into the surface for F = .5. The mean relative-energy inputs δEm listed in Table 3 bear this more
linear response out, though again the values are always negative implying again that energy is lost
from the wave and put into the patch.

In Figure 7 (b), (d), (f) and (h) we see that a relatively larger amplitude, wider surface wave is
able to displace the patch significantly further, with mean displacement about .525 non-dimensional
units for F ≤ .1. Again, while the impact of the solid wall along the bottom allows for greater
displacement due to larger Froude number, this is nowhere near as significant as the impact of the
wave on the patch. We see in Figure 7 (h) for F = .5 that the patch displacement is markedly
further than for lower Froude numbers, again showing the implicit threshold for the Froude number
after which the patch has more impact on the surface, and we observer far greater deformations of
both.

Elliptic modulus m̃ = .9

Taking m̃ = .9, we find that κ = .35, this corresponds to M ≈ 7.4. Taking KT = 512, this gives
δx = .029. The unscaled amplitude of the cnoidal initial conditions is given by 8(m̃κ)2 ≈ .8. Thus,
somewhat surprisingly, we could use the largest amplitude wave when the initial condition was
closest to that of a solitary wave profile. Likewise, aside from causing a slight broadening and thus
decrease in maximum amplitude of the near solitary wave, vorticity has the least relative impact
on the wave. Thus, if we treat the m̃ = .9 as the ‘most’ nonlinear of the three cases examined,
since this corresponds to the case closest to that of a nonlinear solitary wave, we see vorticity has
the least overall impact on the most nonlinear of waves.

This is especially seen by the weak response of δE(t;F ) plotted in Figure 8. We also get the
clearest correlation between the loss in amplitude seen in Figure 8 and the relative energy input,
which is largely negative though stretched out over a longer time scale than in comparison to the
energy dynamics seen above. Looking at the relative energy-input in Table 4, we see the most linear
response to increasing Froude number compared to the more linear waves examine above, even for
F = .5 which in the previous surface wave cases studied above corresponded to dynamics being far
more nonlinear. However, for F = .5, we do see in Figure 8 (h) that significant a impact of the
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Figure 6: Comparisons of a cnoidal wave over a vortex patch(-) to a cnoidal wave over an irrotational fluid
(- -) are shown on the left for various values of the Froude number F , while the final position, shape, and
strength of the vortex patch is shown on the right. Here µ = .2, γ =

√
µ, tf = 2/µ, m̃ = .6, κ = .43.
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Figure 7: The relative energy input into the free surface is shown on the left, while the motion of the
horizontal center of mass xc(t) is shown on the right for m̃ = .6 and κ = .43.
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Figure 8: Comparisons of a cnoidal wave over a vortex patch(-) to a cnoidal wave over an irrotational fluid
(- -) are shown on the left for various values of the Froude number F , while the final position, shape, and
strength of the vortex patch is shown on the right. Here µ = .2, γ =

√
µ, tf = 2/µ, m̃ = .9, κ = .35.
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F δEm
.01 −3.87× 10−4

.05 −1.9× 10−3

.1 −3.7× 10−3

.5 −1.5× 10−2

Table 4: Mean relative-energy input for m̃ = .9 and κ = .35.

waves on the vortex patch has occurred. Moreover, the net patch displacement is markedly larger
than the linear increase in F should account for, so there is still an aspect of threshold behavior
for when m̃ = .9.

We also see in Figure 9 that the center of the patch is displaced at the greatest distance relative
to its starting position, showing the strong effect that relatively large amplitude, wide nonlinear
waves have on the patch. Note, across the values of m̃ and κ used throughout this section, the KdV
cnoidal wave speed c̃ varies from c̃ = −.1367 for m̃ = .3, κ = .5, to c̃ = .0506 for m̃ = .9, κ = .35.
Thus, working in the fast coordinate and taking µ = .2, we have a net wave speed of .9727 on the
low side to 1.0101 on the high side. Therefore, there does not appear to be a significant enough
variation in wave speed to explain the differences in the relative displacements of the vortex patches
across all the cases studied in this paper. Thus, it appears that wave amplitude and width are the
better determining factors for patch displacement, though the full nature of how these parameters
interact with the Froude number is a subject of future study.

4 Conclusion

Based on previous work in [30], it has been shown that the reformulation of the free-surface problem
due to [1] can be coupled with existing point-vortex methods in order to simulate the simultaneous
development of a free surface interacting with a vortex patch in an incompressible inviscid fluid.
The numerical discretization is based on Dirichlet-to-Neumann operator methods such as detailed
in [31, 32] coupled with an approximation of the vortex patch by hundreds or thousands of point
vortices each carrying a small amount of the total circulation.

The main focus in the present paper has been on detailed numerical simulations of a vortex
patch evolving under certain types of shallow-water free-surface waves. Via our simulations, we have
shown how these vortex patches induce non-trivial deformations of propagating nonlinear waves
coming from the shallow-water limit. One finding which deserves note is that the deformations of
the free surface are especially significant when the waves are of low amplitude, near linear modes.

Our simulations allow for greater quantitative insight by tracking the relative energy transfer
and center-of-mass motion of the vortex patches, the dynamics and features of which are shown
to correlate strongly with the presence or absence of significant deformations in the surface wave.
One finding which is less surprising by nevertheless interesting is that large Froude numbers lead
to rapid decomposition of the otherwise coherent vortex patch.

Possible non-trivial extensions of the present work include the use of transformed field expan-
sions [38] in order to further stabilize the numerical computations, and modification of our approach
in order to enable the treatment of vortex patches interacting with waves in deep water. Another
important future direction will be understanding to what extent the presence of vortex patches
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Figure 9: The relative energy input into the free surface is shown on the left, while the motion of the
horizontal center of mass xc(t) is shown on the right for m̃ = .9 and κ = .35.
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influences the properties of breaking waves. The diagnostic parameters used for example in [41]
can be readily implemented in our method.
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Appendix

Details about the Derivation of Bernoulli’s Equation

To derive Equation (2), we make use of a result in [40], which shows, making no assumption on the
behavior of the vorticity, that the following conservation law holds at the free surface y = η(x, t)

∂tC + ∂x

(
uC + gη − 1

2
|u|2

)
= 0, C = u · (1, ∂xη) , u = (u,w).

Assuming the compactly supported vortex patch ω(x, y, t) does not intersect the free surface, we
can then write the fluid velocity u = ∇φ̄, where

φ̄ = φv + φ̃, φv(x, t) =

∫
Ω
K̃(x, x̃)ω(x̃, t)dx̃

where K̃ is the associated harmonic conjugate to the stream function which defines the Biot-Savart
kernels and the periodic extensions thereof. We readily see then that

C = ∂x φ̄
∣∣
y=η

.

Integrating the conservation law in x and setting the associated integration constant to zero then
gives us the Bernoulli equation for φ̄ at y = η i.e.

∂tφ̄+
1

2

∣∣∇φ̄∣∣2 + gη = 0, y = η(x, t).

Using the PVM to discretize ω and ignoring the mollifaction then gives Equation (2), though see
[30] for more details.

Details about the DNO

We here provide details about the Dirichlet-to-Neumann Operator (DNO) for the sake of complete-
ness; see [31, 32] for greater details. The DNO G(η) in the shallow-water scalings used throughout
the body of the paper is found via expading in powers of η so that the kinematic condition becomes

ηt −
1

γ
Pv(x, 1 + µη, t) =

(
G0 + µG1 + µ2G2 + · · ·

)
Q.
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Defining the Fourier transform of a periodic function f(x) to be f̂ , so that

f̂(k) =
1

2M

∫ M

−M
f(x)e−iπkxdx, k ∈ Z,

we define, for a linear operator L, its associated symbol L̂(k) by way of the formula

L̂(k)f̂(k) =
1

2M

∫ M

−M
Lf(x)e−iπkx/Mdx.

We then get

Ĝ0(k) = − i
γ

tanh(πγk),

and, for m ≥ 1,

GmQ =−
bm/2c∑
j=1

1

(2j)!
D2j
γ

(
η2jGm−2jQ

)
− γ2∂xG0

b(m−1)/2c∑
j=0

D2j
γ

(2j + 1)!

(
η2j+1Gm−2j−1Q

)
− 1

m!
Lm∂xD

m−1
γ (ηmQ) ,

where
D̂γ = πγk,

and

L̂m =

{
1, m is odd,

iγĜ0(k), m is even.

This recursive formula is readily computable, and for the shallow-water scalings we pick, achieving
machine-precision is relatively straightforward.
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