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Abstract

In this technical report, we introduce a method of generalization to factorization length in
atomic semigroups. Using this new computation, we present a study of factorization length
of iterated powers of elements through the study of several families of semigroups, including
numerical semigroups, block monoids, and ACMs. Our results range from asymptotic behavior
to complete, quasi-polynomial characterizations of factorization length.
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Semigroup
Family

Values of t
Max/Min t = 0 t = 1 t = ∞

Numerical
Semigroups

Lt(xn)
Θ(1) Θ(n) Θ(n)
p: 1 p: g1 p: g1

lt(xn)
Θ(1) Θ(n) Θ(n)
p: g∗ p: gk p: g

Regular
ACMs &
Block
Monoids

Lt(x
n)

Θ(1) Θ(n) Θ(n)
p: 1 p → ∞

lt(x
n)

Θ(1) Θ(n) Θ(n)
p → ∞

Singular
ACMs

Lt(x
n)

Θ(n1/2)? Θ(n) Θ(n)

lt(x
n)

Θ(1) Θ(n)? Θ(n)?

Figure 1: This table summarizes our results across different monoids and t values. Θ(·) describes
the growth rate of Lt and lt and p refers to the period of Lt and lt.

1 Introduction

In the study of atomic monoids and their factorizations, the length set L(x) for an element x is
crucial to the development of invariants such as delta sets and elasticity [7][4]. In this paper, we
introduce a generalized factorization length known as t−length, with which the usual definition of
factorization length is simply the 1−length. To motivate this generalization, it is first useful to
think of a factorization in vector form.

Let S be an atomic, cancellative, commutative monoid and let x ∈ S be a nonunit. We may
write some factorization of x as x = an1

1 ◦an2
2 ◦· · ·◦ank

k , where each ai ∈ S are (finitely many) distinct
atoms and ni ∈ Z≥0. We can think of this factorization as a vector v⃗ = (n1, n2, . . . , nk) ∈ Zk

≥0.
Working in this vector notation, we can define the factorization length of x in terms of the

length of the corresponding factorization vector |v⃗|t for a given t ∈ [0,∞]. Formally, we define the
t-length of a factorization v⃗ of x as follows:

Definition 1.0.1. For t ∈ [0,∞), the t-length of a factorization v⃗ of x ∈ S is:

|v⃗|t =

{
(nt

1 + · · ·+ nt
k)

1/t, for t ∈ [1,∞)

nt
1 + · · ·+ nt

k, for t ∈ [0, 1]

This definition for the t-length of a factorization requires us to conventionally assume 00 = 0 in
order for the formula to hold when t = 0. In particular, when t = 0, this formula yields the total
number of nonzero coordinates in v⃗. We also define |v⃗|∞ to be the maximum coordinate in v⃗.

Under this definition of a generalized norm, we may define the length set of a given element
x ∈ S with respect to t:

Definition 1.0.2. The length set of x ∈ S with respect to t is

Lt(x) = {|v⃗|t | v⃗ ∈ Z(x)}, (1)

where Z(x) is the set of all factorizations of x.
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We also define the max t-length of x as Lt(x) = max{Lt(x)} and the min t-length of x as lt(x) =
min{Lt(x)}. There currently exists sparse literature discussing t−lengths other than t ̸= 1, and
such literature is restricted to only numerical monoids [1] [4] . Along with introductions to several
families of atomic monoids, including numerical monoids, block monoids, and ACMs [3] [2] [8] [6],
we provide various results characterizing various t−lengths of factorizations, with a primary focus
on t = 0 and t = ∞.

Definition 1.0.3. A quasi-polynomial is a function of the form

f(x) =


p0(x), if x ≡ 0 (mod q)

p1(x), if x ≡ 1 (mod q)
...

pq−1, if x ≡ q − 1 (mod q)

(2)

where pi are polynomials and q ∈ Z+. We call q the period of f .

We can also write a quasi-polynomial f recursively as

f(x) = f(x− q) + k (3)

where q is the period. We will express our results about the periodicity of Lt and lt in terms of
this recursive formula.

Lastly, throughout the report we will denote N to refer to the natural numbers not including 0
and N0 to refer to the natural numbers including 0.

2 Background: Numerical Semigroups

Definition 2.0.1. Given a set of natural numbers g1 < g2 < ... < gk whose collective gcd is 1, we
define a numerical semigroup (S,+) ⊆ (N0,+) to be

S = {n ∈ N0 | n = g1a1 + g2a2 + · · · gkak for ai ∈ N0} (4)

Intuitively, S is comprised of all linear combinations of g1, . . . , gk, which we will call the gener-
ators of S. We say a numerical semigroup S is generated by g1, . . . , gk and we can write S in terms
of its generators as follows:

S = ⟨g1, . . . , gk⟩ (5)

If we have that gi = 1 for some gi, it follows that S = N0, so we assume for the rest of this
report that gi ≥ 2 for all gi. Further, we assume that g1, . . . , gk is a minimal generating set of S.

Definition 2.0.2. The Frobenius number of a numerical semigroup S is defined as

F (S) = max{n ∈ N0 | n /∈ S} (6)

Definition 2.0.3. The Apéry Set of a numerical semigroup S with respect to m ∈ N0 is defined as

Ap(S,m) = {n ∈ S | n−m /∈ S} (7)
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Definition 2.0.4. Let S = ⟨g1, g2, . . . , gk⟩ be a numerical semigroup and let g⃗ = (g1, g2, . . . , gk) be
the vector of the generators of S. We define the set of all factorizations of x ∈ S as

Z(x) = {v⃗ ∈ Nk
0 | x = v⃗ · g⃗} (8)

The current literature that establishes quasi-polynomial characterizations of Lt(x) and lt(x) for
arbitrary S is currently limited to t = 1 and arbitrary elements x ∈ S. In [4], Barron offers full
characterizations of L1(x) and l1(x):

Theorem 2.0.5. Given a numerical semigroup S = ⟨g1, . . . , gk⟩, x ∈ S,

L1(x) = L1(x− g1) + 1 (9)

for all x > (g1 − 1)gk.

Theorem 2.0.6. Given a numerical semigroup S = ⟨g1, . . . , gk⟩, x ∈ S,

l1(x) = l1(x− gk) + 1 (10)

for all x > (gk − 1)gk−1.

This report will extend their results to different values of t, including t = 0 and t = ∞, and
will include characterizations of Lt(x

n) and lt(x
n) as functions of n for fixed values of t and x in an

arbitrary numerical semigroup S. Note that as numerical semigroups are under addition, powers
of an element x are written multiplicatively, so xn is an arbitrary nth power of x.

Throughout the section on numerical semigroups, we will assume, unless otherwise stated, that

S = ⟨g1, g2 . . . , gk⟩ for gi ∈ Z≥2, g1 < g2 < · · · < gk, and that S has k generators. Also, let g =
k∑

i=1
gi

be the sum of the generators of S and g∗ =
k∏

i=1
gi be the product of the generators of S.

3 Results in Numerical Semigroups

3.1 Characterizing t = 1 in Numerical Semigroups

We will extend Theorem 2.0.5 and Theorem 2.0.6 to powers of x using a preliminary lemma defined
in [4].

Lemma 3.1.1. Let k ≥ 0, and fix c1, c2, . . . , cr ∈ Z with r ≥ k. There exists T ⊊ {1, . . . , r}
satisfying

∑
i∈T ci ≡

∑r
i=1 ci (mod k).

Using this lemma, we get:

Theorem 3.1.2. Given a numerical semigroup S, x ∈ S, and n ∈ N,

L1(xn) = L1(x(n− g1)) + x (11)

for all xn > (x− 1)g1 + (g1 − 1)gk.

Proof. Fix a factorization a⃗ for xn, and suppose that a2 + · · ·+ ak ≥ g1. We will show that on this
condition, a⃗ is not maximal. Since a1g1+a2g2+· · ·+akgk = xn, we have that a2g2+· · ·+akgk ≡ xn
(mod g1). Viewing this sum as a2 + · · · + ak many integers selected from {g2, . . . , gk}, we can
apply [4, Lemma 4.1], taking k = g1 and r = a2 + · · · + ak. As such, we are guaranteed the
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existence of b2, . . . , bk ≥ 0 such that (i) bi ≤ ai for each i > 1, (ii)
∑k

i=2 ai >
∑k

i=2 bi, and (iii)
b2g2+· · ·+bkgk ≡ xn (mod g1). Note that (i) and (ii) imply that b2g2+· · ·+bkgk < a2g2+· · ·+akgk,
and with (iii), we can add copies of g1 to b2g2+ · · ·+bkgk to get xn. Specifically, there exists b1 ≥ 0
so that b⃗ = (b1, b2, . . . , bk) ∈ Z(xn). This gives

(b1 − a1)g1 = b1g1 − a1g1 = xn−
k∑

i=2

bigi −

(
xn−

k∑
i=2

aigi

)
=

k∑
i=2

(ai − bi)gi >
k∑

i=2

(ai − bi)g1,

(12)

and canceling g1 from the left and right sides yields |⃗b|1 > |⃗a|1. Thus, a⃗ is not maximal.
Now, suppose that a⃗ ∈ Z(xn) is maximal. By the contrapositive of the above argument,

a2 + · · ·+ ak < g1. In particular, consider xn > (x− 1)g1 + (g1 − 1)gk. Observe that

(x− 1)g1 + (g1 − 1)gk < xn = a1g1 + a2g2 + · · ·+ akgk (13)

≤ a1g1 + (a2 + · · ·+ ak)gk ≤ a1g1 + (g1 − 1)gk, (14)

and manipulating the far left and right sides gives a1 ≥ x. Thus, we attain a factorization for
x(n− g1) as follows: a⃗− xe⃗1 = (a1, a2, . . . , ak)− (x, 0, . . . , 0) ∈ Z(xn− xg1) = Z(x(n− g1)), and so
L1(x(n− g1)) ≥ |⃗a|1 − x. Further, since a⃗ has maximal length, it cannot be that L1(x(n− g1)) >
|⃗a|1 − x, as this would imply we could construct a factorization of xn with length greater than a⃗
simply by adding back x copies of gi. Therefore, we have that L1(x(n−g1)) = |⃗a|1−x = L1(xn)−x,
and so L1(xn) = L1(x(n− g1)) + x.

1 2 3 4 5 6 7 8
5n

5

10

15

20
L_1(5n)

Figure 2: For an example of this periodicity, take the semigroup ⟨2, 3⟩ and the element x = 5
as we take powers of 5, and notice that the period is g1 = 2. The equation for this graph is
L1(5n) = L1(5(n− 2)) + 5.

Theorem 3.1.3. Given a numerical semigroup S = ⟨g1, . . . , gk⟩, x ∈ S, and n ∈ N,

l1(xn) = l1(x(n− gk)) + x (15)

for all xn > (x− 1)gk + (gk − 1)gk−1.

Proof. Fix a factorization a⃗ for xn, and suppose a1 + · · · + ak−1 ≥ gk. We will show that on this
condition, a⃗ is not minimal. Since a1g1 + · · · + akgk = xn, we have that a1g1 + · · · + ak−1gk−1 ≡
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xn (mod gk). Viewing this sum as a1 + · · · + ak−1 integers selected from {g1, . . . , gk−1}, we can
apply [4, Lemma 4.1], taking k = gk and r = a1 + · · · + ak−1. As such, we are guaranteed the
existence of b1, . . . , bk−1 ≥ 0 such that (i) bi ≤ ai for each i > 1, (ii)

∑k−1
i=1 ai >

∑k−1
i=1 bi, and (iii)

b1g1 + · · · + bk−1gk−1 ≡ xn (mod gk). Note that (i) and (ii) imply that b1g1 + · · · + bk−1gk−1 <
a1g1 + · · · + ak−1gk−1 and with (iii), we can add copies of gk to b1g1 + · · · + bk−1gk−1 to get xn.
Specifically, there exists bk ≥ 0 such that b⃗ = (b1, · · · , bk−1, bk) ∈ Z(xn) (in terms of trades, we can
think of this as performing a sequence of trades that reduce {a1, . . . , ak−1} and increase ak, thus
reducing the length of a⃗, and these trades are possible because r ≥ k). This gives

(bk − ak)gk = bkgk − akgk = xn−
k−1∑
i=1

bigi −

(
xn−

k−1∑
i=1

aigi

)
=

k−1∑
i=1

(ai − bi)gi <
k−1∑
i=1

(ai − bi)gk,

(16)

and canceling gk from the left and right sides yields |⃗b|1 < |⃗a|1. Thus, a⃗ is not minimal.
Now, suppose that a⃗ ∈ Z(xn) is minimal. By the contrapositive of the above argument, a1 +

· · ·+ ak−1 < gk. In particular, consider xn > (x− 1)gk + (gk − 1)gk−1. Observe that

(x− 1)gk + (gk − 1)gk−1 < xn = a1g1 + · · ·+ ak−1gk−1 + akgk (17)

≤ (a1 + · · ·+ ak−1)gk−1 + akgk ≤ (gk − 1)gk−1 + akgk, (18)

and manipulating the far left and right sides gives ak ≥ x. Thus, we attain a factorization for
x(n− gk) as follows: a⃗− xe⃗k = (a1, a2, . . . , ak)− (0, . . . , 0, x) ∈ Z(xn− xgk) = Z(x(n− gk)), and so
l1(x(n−gk)) ≤ |⃗a|1−x. Further, since a⃗ has minimal length, it cannot be that l1(x(n−gk)) < |⃗a|1−x,
as this would imply we could construct a factorization of xn with length less than a⃗ simply by adding
back x copies of gk. Therefore, we have that l1(x(n− gk)) = |⃗a|1 − x = l1(xn) = l1(x(n− gk)) + x.

1 2 3 4 5 6 7 8
5n2

4

6

8

10

12

14
l_1(5n)

Figure 3: To illustrate the periodicity of l1(x
n), take n powers of the element x = 5 in the numerical

semigroup ⟨2, 3⟩ and notice that the period is g2 = 3. The equation for this graph is l1(5n) =
l1(5(n− 3)) + 5.

3.2 Characterizing t = 0 in Numerical Semigroups

Now that we are working with values of t ̸= 1, we will first characterize Lt(x) and lt(x) and then
provide characterizations of Lt(xn) and lt(xn).
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Theorem 3.2.1. Given a numerical semigroup S and x ∈ S,

L0(x) = k

for all x ≥ F (S) + g + 1.

Proof. Let s = F (S). It follows that s + 1 ∈ S, which has arbitrary factorization (a1, . . . , ak) for
a1, . . . , ak ∈ Z≥0. Adding g to s+ 1 allows us to write s+ g + 1 as (a1 + 1, . . . , ak + 1), which we
can see is a factorization with full support. As such, for any x ≥ F (S) + g + 1, L0(x) = k.

5 10 15 20
x

0.5

1.0

1.5

2.0
L_0(x)

Figure 4: For large enough x, L0(x) caps out at 2, the number of generators in ⟨2, 3⟩ for x ∈ ⟨2, 3⟩.

Lemma 3.2.2. Given a numerical semigroup S, x ∈ S and n ∈ N, L0(xn) is increasing with n.
That is,

L0(xn) ≤ L0(x(n+ 1)).

Proof. Let xn ∈ S. Let a⃗ ∈ Z(x) such that a⃗ induces the largest possible support. Then, xn =∑
ai∈a⃗ naigi. Then, x(n+ 1) has the factorization

x(n+ 1) =
∑
ai∈a⃗

(n+ 1)aigi.

Therefore, L0(xn) ≤ L0(x(n+ 1)).

Theorem 3.2.3. Given a numerical semigroup S, x ∈ S, and n ∈ N,

L0(xn) = k

for xn ≥ F (S) + g + 1.

Proof. The proof is essentially the same as the proof for Theorem 3.2.1.

Definition 3.2.4. Given a semigroup S, let F̄ (S) = max{dn | n ∈ N0, dn /∈ S}.

Lemma 3.2.5. Given a semigroup S and x ∈ N0 with x > F̄ (S), x ∈ S if and only if d | x.

Proof. First, suppose that x ∈ S. Thus, x = c1g1 + · · · + cjgj for ci ∈ N0. Note that each gi is
divisible by d, and therefore d | x.

Now, suppose d | x, so x = dm for somem ∈ N0. We have that dm > max{dn | n ∈ N0, dn /∈ S},
and so x = dm ∈ S.

7
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Theorem 3.2.6. Given a numerical semigroup S and x ∈ S,

l0(x) = l0(x+ g∗)

for all x > max{F̄ (G′
S) | G′

S ⊆ GS}.

Proof. To begin, note that since the length of any factorization under t = 0 is the number of
generators used, l0(x) is the minimum number of generators required to sum to x. Thus, finding
l0(x) is equivalent to finding the size of the smallest subset of the generators, G′′

S ⊂ GS , such that x
is in the semigroup ⟨G′′

S⟩. Since we picked x > max{F̄ (G′
S) | G′

S ⊆ GS}, we can apply Lemma 3.2.5
to say that this condition is equivalent to finding the size of the smallest subset of the generators,
G′′

S ⊂ GS , such that gcd(G′′
S) | x. Then, l0(x) = |G′′

S |. Let α = |G′′
S |.

We will now argue that l0(x + g∗) = α. Note that x + g∗ can be written as
(
c1 +

g∗

g1

)
g1 +

c2g2 + · · · + cαgα, and so l0(x + g∗) ≤ α. However, since we can always write g∗ as copies of
a single generator, having l0(x + g∗) < α would imply that l0(x) < α, a contradiction. Thus,
l0(x) = l0(x+ g∗).

5 10 15 20 25 30
x

0.5

1.0

1.5

2.0
l_0(x)

Figure 5: Let x ∈ ⟨2, 3⟩, this graph illustrates how l0(x) has period 6 = 2 · 3.

Theorem 3.2.7. Given a numerical semigroup S, x ∈ S, and n ∈ N,

l0(xn) = l0(x(n+ g∗))

for all xn > max{F̄ (G′
S) | G′

S ⊆ GS}.

Proof. We follow the same structure as the proof for l0(x). Since we picked

xn > max{F (G′
S) | G′

S ⊆ GS}

we can apply Lemma 3.2.5 in order to find the size of the smallest subset of the generators, G′′
S ⊂ GS ,

such that gcd(G′′
S) | xn. Then, l0(xn) = |G′′

S |.
Let α = |G′′

S |. We will show that l0(x(n + g∗)) = α. Note that x(n + g∗) can be written as(
c1 + xg∗

g1

)
g1 + · · ·+ cαgα, so l0(x(n+ g∗)) ≤ α. However, since we can always write xg∗ as copies

of a single generator, having l0(x(n+g∗)) < α would imply that l0(xn) < α, a contradiction. Thus,
l0(xn) = l0(x(n+ g∗)).
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3.3 Characterizing t = ∞ in Numerical Semigroups

Lemma 3.3.1. Given a numerical semigroup S, for all x ∈ S and c ∈ Z+, if x > cg, then
l∞(x) > c.

Proof. We prove the statement by contrapositive. Let x ∈ S, and suppose l∞(x) ≤ c. The largest
factorization which satisfies this condition is the one with all of its coefficients equal to c, resulting
in a factorization with value cg1 + cg2 + · · ·+ cgk = cg. So the largest possible value of x is cg.

Lemma 3.3.2. Let S be a numerical semigroup with 0 < g1. Choose x ∈ S such that x > g21 ·g and
a factorization a⃗ ∈ Z(x). If |⃗a|∞ = am for some m ∈ {2, 3, · · · , k}, then there exists a factorization
b⃗ ∈ Z(x) such that |⃗b|∞ > |⃗a|∞.

Proof. We have x > g21 · g, so by Lemma 3.3.1, |⃗a|∞ = am > g21. We now write am = qg1 + r for
q, r ∈ Z and 0 ≤ r < g1. Now since m ̸= 1, there is a trade between g1 and gm which involves
exchanging g1 copies of gm for gm copies of g1. So we create a new factorization b⃗ of n by applying
the trade from gm to g1 a total of q times. We then have b1 = a1+ qgm and bm = am− qg1 = r ≥ 0.
The last equation ensures that b⃗ is a valid factorization vector. We now show that |⃗b|∞ > |⃗a|∞.
First note that

qg1 + g1 > qg1 + r > g21 ⇒ q + 1 > g1 ⇒ q ≥ g1.

We then get

a1 + qgm ≥ qgm ≥ q(g1 + 1) = qg1 + q ≥ qg1 + g1 > qg1 + r = am.

Hence b1 > am, and therefore |⃗b|∞ ≥ b1 > am = |⃗a|∞.

Theorem 3.3.3. Given a numerical semigroup S and x ∈ S,

L∞(x) = L∞(x− g1) + 1

for all x > g21 · g.

Proof. Let a⃗ be a factorization of x, and suppose that |⃗a|∞ is maximal. Then by the contrapositive
of Lemma 3.3.2, we get |⃗a|∞ = a1. Now consider a⃗ − e⃗1 ∈ Z(x − g1). Since a1 > ai for all
i ∈ {2, 3, · · · , k}, we have that

L∞(x− g1) ≥ |⃗a− e⃗1|∞ = |⃗a|∞ − 1.

Suppose by way of contradiction that there is a factorization z⃗ ∈ Z(x− g1) such that

|z⃗|∞ > |⃗a|∞ − 1.

If |z⃗|∞ = z1, then |z⃗ + e⃗1|∞ > |⃗a|∞, which is impossible because |⃗a|∞ was maximal. If instead
|z⃗|∞ = zi for some i ∈ {2, 3, · · · , k}, then |z⃗+ e⃗1|∞ = zi ≥ |⃗a|∞ > g21. Then by Lemma 3.3.2, we can

construct a factorization b⃗ ∈ Z(x) with |⃗b|∞ > |z⃗+ e⃗1|∞ ≥ |⃗a|∞. But this is also impossible, because
|⃗a|∞ was maximal. By contradiction, we must have L∞(x− g1) = |⃗a|∞ − 1 = L∞(x)− 1.

Theorem 3.3.4. Given a numerical semigroup S, let Ap(S; g1) = {a0, a1, . . . , ag1−1}, where ai ≡ i
(mod g1). Choose x ∈ S, and pick i ∈ {0, 1, · · · , g1 − 1} such that i ≡ x (mod g1). Then,

L∞(x) =
x− ai
g1

for all x > g21 · g.

9
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5 10 15 20 25 30
x

2

4

6

8

10

12

14

L_oo(x)

Figure 6: To illustrate the periodicity of L∞(x), take the numerical semigroup ⟨2, 3⟩ and let x ∈
⟨2, 3⟩. Notice that this graph has period g1 = 2.

Proof. We have that L∞(x) is the maximum of the set M = {max{zi} : z⃗ ∈ Z(x)}. Let z⃗ ∈ Z(x)
have maximal ∞-norm. Then since x > g21 · g, the contrapositive of Lemma 3.3.2 tells us that
|z⃗|∞ = z1. So we do not need to consider any of the zi where i ∈ {2, 3, · · · , k} when we look for
the maximum element of M , since any factorization with the maximum ∞-norm will attain that
maximum in its first coordinate. Hence

L∞(x) = max(M) = max{z1 : z⃗ ∈ Z(x)}.

Now consider g1 · x. This has the factorization (x, 0, 0, · · · , 0). We would like to find a different
factorization of g1 · x where all the coefficients are multiples of g1. To achieve this, we write x
as qg1 + ai where q ∈ Z+ and i ≡ x (mod g1). Then x − ai is a multiple of g1. Now let c⃗ be a
factorization of ai. Note that because ai is an Apéry set element, we have c1 = 0. We also see that
g1c⃗ is a factorization of g1ai, so (qg1, g1c2, g1c3, · · · , g1ck) is a factorization of g1 · x where all the
components are multiples of g1. Therefore

x = (q, c2, c3, · · · , ck) .

Finally, since ai is an Apéry set element, we see that q is the largest possible first component in a
factorization of x, and so

L∞(x) = max{z1 : z⃗ ∈ Z(x)} = q =
x− ai
g1

.

Theorem 3.3.5. Given a numerical semigroup S, x ∈ S, and n ∈ N,

L∞(xn) = L∞(x(n− g1)) + x

for all xn > g21 · g + (x− 1)g1.

Proof. By Theorem 3.3.3, we know that L∞(x) = L∞(x− g1) + 1 for all x > g21g. Since xn ≥ x for
all n ∈ N, it follows that

L∞(xn) = L∞(xn− g1) + 1,

10
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for all xn > g21g Similarly, if xn− g1 > g21g, then

L∞(xn− g1) = L∞(xn− 2g1) + 1,

so we can write
L∞(xn) = L∞(xn− 2g1) + 2.

Continuing this process and applying Theorem 3.3.3 to L∞(xn− α · g1), α = x− 1 times, we find
that

L∞(xn) = L∞(xn− xg1) + x,

for all xn− (x− 1)g1 > g21g, as required.

Lemma 3.3.6. Let S be a numerical semigroup. Choose x ∈ S such that x > gk · g, and a
factorization a⃗ ∈ Z(x) such that |⃗a|∞ is minimal. Then if |⃗a|0 < k, there exists a factorization
b⃗ ∈ Z(x) such that |⃗b|∞ = |⃗a|∞ and |⃗b|0 > |⃗a|0.

Proof. Let am be the largest component of a⃗. We have x > gk · g, so by Lemma 3.3.1, l∞(x) =
|⃗a|∞ = am > gk. Also, because |⃗a|0 < k, there is a j in {0, 1, · · · k} such that aj = 0. Now let

b⃗ = a⃗ + gme⃗j − gj e⃗m. Note that bm = am − gj > am − gk > 0, so b⃗ is a valid factorization vector.

Also, since the values of gme⃗j and gj e⃗m are both gmgj , b⃗ is also a factorization of x. Now since

bj = gm > 0, while aj = 0, we have |⃗b|0 = |⃗a|0 + 1.

We now show that |⃗b|∞ = |⃗a|∞. Note that |⃗b|∞ ≥ |⃗a|∞ because |⃗a|∞ is minimal. Now by the
definition of the ∞-norm, we have ai ≤ |⃗a|∞ for all i; therefore bi ≤ |⃗a|∞ for all i ̸= j. But then
bj = aj + gm = gm < gk < |⃗a|∞. Since bi ≤ |⃗a|∞ for all i, we conclude that |⃗b|∞ ≤ |⃗a|∞. Hence

|⃗b|∞ = |⃗a|∞.

Theorem 3.3.7. Given a numerical semigroup S and x ∈ S,

l∞(x) = l∞(x− g) + 1

for all x > gk · g.

Proof. Let x > gk · g, and let A(x) be the set of factorizations of x with minimal ∞-norm. By
Lemma 3.3.6, there is a factorization a⃗ ∈ A(x) with full support. Let am be the largest component
of a⃗, i.e. am ≥ ai for all i ∈ {1, · · · , k}. Now consider b⃗ such that bi = ai − 1 for all i ∈ {1, · · · , k}.
We see that b⃗ is a factorization of x − g. We also have bm = am − 1 ≥ ai − 1 = bi for all
i ∈ {1, · · · , k}, so |⃗b|∞ = bm = am − 1. Since there is a factorization of x with ∞-norm am − 1, we
get that l∞(x− g) ≤ am − 1.

Suppose by way of contradiction that there is a u⃗ ∈ Z(x − g) such that |u⃗|∞ < am − 1. Then
there is a v⃗ ∈ Z(x) such that vi = ui + 1 for all i ∈ {1, · · · , k}. By similar reasoning as above, we
see that |v⃗|∞ < am, which is impossible because |⃗a|∞ = am was minimal. By contradiction, we
must have l∞(x− g) = am − 1 = l∞(x)− 1.

Lemma 3.3.8. If b ∈ Ap(S; g), then l∞(b) < g.

Proof. We prove the statement by contrapositive. Suppose l∞(b) ≥ g. Then there is a factorization
z⃗ ∈ Z(b) such that bi ≥ g for some i ∈ {1, 2, · · · , k}. We can now construct a factorization z⃗′ of b by
applying trades between bi and every other component of z⃗. These trades are possible because they
involve subtracting each of a set of distinct generators from bi exactly once, so that the amount
subtracted from bi will not exceed g. It follows that z⃗′ has full support. But then we can subtract
1 from each component of z⃗′ to produce a factorization of b− g. Hence b /∈ Ap(S; g).
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Figure 7: To illustrate the periodicity of l∞(x), take the numerical semigroup ⟨2, 3⟩ and let x ∈
⟨2, 3⟩. Notice that this graph has period g = 5.

Theorem 3.3.9. Given a numerical semigroup S, let Ap(S; g) = {b0, b1, . . . , bg−1}, where bi ≡ i
(mod g). Choose x ∈ S, and pick j ∈ {0, 1, · · · , g − 1} such that j ≡ −x (mod g). Then

l∞(x) =
x+ bj

g

for all x > g2.

Proof. We first note that x can be written as qg−bj for some q ∈ Z+. We then get that l∞(x+bj) =
l∞(qg) = q, which is achieved with a factorization where every coefficient is q. Now consider a
factorization b⃗ of bj . Since bj is an Apéry set element with respect to g, b⃗ will contain at least one

zero component. Also, if x > g2, then q > g, and by Lemma 3.3.8, all components of b⃗ will be less
than q. Subtracting the two factorizations then gives a factorization of x with all components less
than or equal to q. Hence l∞(x) ≤ q = l∞(x+ bj).

Suppose by way of contradiction that l∞(x) < q. Then there is a factorization a⃗ of x with all
components of a⃗ less than q. Now let q⃗ be the vector with all its components equal to q. This is a
factorization of qg, so q⃗− a⃗ is a factorization of qg−x = bj . But since all components of a⃗ were less
than q, we get that all components of q⃗− a⃗ ∈ Z(bj) are greater than 0, which is impossible because
bj is an Apéry set element with respect to g. By contradiction, we see that

l∞(x) = l∞(x+ bj) = q =
x+ bj

g
.

Theorem 3.3.10. Given a numerical semigroup S, x ∈ S, and n ∈ N,

l∞(xn) = l∞(x(n− g)) + x

for all xn > gk · g + (x− 1)g.

Proof. By Theorem 3.3.7, we know that l∞(x) = l∞(x− g) + 1 for all x > gk · g, and since xn ≥ x
for all n ∈ N, this means that

l∞(xn) = l∞(xn− g) + 1,

12
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for all xn > gk · g. Similarly, if xn− g > gk · g, then Theorem 3.3.7 implies

L∞(xn) = (L∞(xn− 2g) + 1) + 1 = L∞(xn− 2g) + 2.

Continuing this process and applying Theorem 3.3.7 to l∞(xn− α · g), α = x− 1 times, it follows
that

l∞(xn) = l∞(xn− xg) + x,

for all xn− (x− 1)g > gk · g, as required.

3.4 Characterizing t ∈ (0, 1) in Numerical Semigroups

For t = 1/2, while the growth rate of L1/2(x) can be characterized, L1/2(x) is believed to not be
periodic. The table below illustrates this non-periodic behavior where S = ⟨2, 3⟩, and x ∈ S:

5 10 15 20
x

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L_1/2(x)

Figure 8: This graph illustrates the graph for L1/2(x) in ⟨2, 3⟩. Notice that while the L1/2 eventually
stabilizes to a square root growth rate, the exact periodicity is not clear from the graph, nor is it
clear from a table of points (x, L1/2(x)).

Theorem 3.4.1. Let S be a numerical semigroup and x ∈ S. Then L1/2(x) →
√
ax as x → ∞

such that a =
k∑

j=1

1
gj
.

Proof. We will apply Lemma 2.14 from [5] and by letting t = 1/2, we get that q = −1, and by
letting a⃗ be the factorization such that |⃗a|1/2 = L1/2(x), we obtain equality. Then we have that

L1/2(x) =

(
x

|⃗g|−1

)1/2

.
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Expanding the denominator gives us

|⃗g|−1 = (g−1
1 + · · ·+ g−1

k )−1

=
1

1
g1

+ · · ·+ 1
gk

=
g∗

k∑
j=1

g∗

gj

=

k∑
j=1

g∗

gj

g∗

=
k∑

j=1

1

gj

As such, the growth rate of L1/2(x) is
√
ax where a =

k∑
j=1

1
gj
.

Lemma 3.4.2. Let S = ⟨g1, g2⟩ be a numerical semigroup minimally generated by g1 < g2, and
x ∈ S. If a⃗ ∈ Z(x) has minimal t = 1 length, then a⃗ has minimal t = 1

2 length.

Proof. Let a⃗ be a factorization of x ∈ S and suppose a⃗ has minimal t = 1 length. Then, for any
factorization b⃗ of x, we have a1 + a2 < b1 + b2. We wish to show that

√
a1 +

√
a2 <

√
b1 +

√
b2.

Indeed, given any factorization b⃗ of x, we have a1g1 + a2g2 = b1g1 + b2g2, and since a⃗ has minimal
t = 1 length, we know that a2 ≥ b2 (so that,

√
a2 ≥

√
b2). Combining these results, it follows that

a1 < b1. Now, consider the following inequality,
√
a1 +

√
b2 ≤

√
a1 +

√
a2 <

√
b1 +

√
a2.

This implies
√
a1 ≤

√
a1 +

√
a2 −

√
b2 <

√
b1 +

√
a2 −

√
b2 <

√
b1 +

√
a2 −

√
a2 =

√
b1.

Thus,

0 ≤
√
a2 −

√
b2 <

√
b1 −

√
a1,

which means that
√
a1 +

√
a2 <

√
b1 +

√
b2, as desired.

Corollary 3.4.3. Let S = ⟨g1, g2⟩ be a numerical semigroup minimally generated by g1 < g2, and
x ∈ S. If a⃗ ∈ Z(x) has minimal t = 1 length, then a⃗ has minimal t length for all t ∈ (0, 1].

Theorem 3.4.4. Let S = ⟨g1, g2⟩ be a numerical semigroup minimally generated by g1 < g2, and
x ∈ S. Denote the Apéry set of S with respect to g2 by Ap(S; g2) = {0, a1, . . . , ag2−1}. Then

lt(x) =



(
x
g2

)t
if x ≡ 0 (mod g2)(

x−a1
g2

)t
+
(
a1
g1

)t
if x ≡ 1 (mod g2)

...(
x−ag2−1

g2

)t
+
(
ag2−1

g1

)t
if x ≡ (g2 − 1) (mod g2),

for all t ∈ (0, 1].
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Proof. Let x ∈ S, and suppose x ≡ i (mod g2). Write x = α2 · g2 + ai, where ai ∈ Ap(S; g2).
Since g1 | ai, we can write ai = α1 · g1, for some α1 ∈ Z≥0. Substituting this into the equation
x = α2 · g2 + ai, gives

x = α2 · g2 + α1 · g1,

so we see that (α1, α2) =
(
x−ai
g2

, aig1

)
, is a factorization of x. In particular, since ai ∈ Ap(S; g2), we

see that α1 · g1 is the smallest multiple of g1 that we can add to a multiple of g2 to get an element
of S. This means that for any factorization β⃗ of x, we have α2 ≥ β2, which means that α⃗ has
minimum t = 1 norm. By Corollary 3.4.3, this implies that or all t ∈ (0, 1], α⃗ also has minimum t
norm. Thus,

lt(x) =

(
x− ai
g2

)t

+

(
ai
g1

)t

.

Since i ∈ [0, g2 − 1] was arbitrary, this completes the proof.

4 Background: Arithmetic Congruence Monoids and Block Monoids

Definition 4.0.1. An arithmetic congruence monoid, or ACM, is a submonoid of (N,×) of the
form

Ma,b = {a+ bk | k ∈ N0} ∪ {1}

where a, b ∈ N, 0 < a ≤ b, and a2 ≡ a (mod b).

We require a2 ≡ a (mod b) so that this set is closed under multiplication.

Definition 4.0.2. When a = 1, we refer to M1,b as a regular ACM.

Definition 4.0.3. When a > 1, we refer to Ma,b as a singular ACM.

Factoring in an ACM is comprised of taking an element x in an ACM, and first finding its prime
factorization in Z. This is,

x = p1p2 · · · pk (19)

for primes pi. Next we can find primes that are already atoms, or combine primes to form atoms.
For example, in the ACM M1,4 (also known as the Hilbert Monoid), take the element 441. In

the integers, 441 has prime factorization 441 = 32 · 72. Neither 3 nor 7 is 1 (mod 4), therefore they
are not atoms. Thus we need to multiply them to obtain atoms. It follows that we can factor 441
in M1,4 in two ways:

1. 441 = 21 · 21

2. 441 = 9 · 49

and notice that 9, 21, and 49 are all 1 (mod 4), thus they are atoms of M1,4.

Definition 4.0.4. Let M1,b be a regular ACM. We define the set A to be the set of all atoms of
M1,b.

We will now give preliminary background knowledge about block monoids. Block monoids relate
to ACMs because there is a homomorphism from any regular ACM to a block monoid over a cyclic
group. Since block monoids contain only finitely many atoms, they are easier to characterize than
ACMs, and so it is simpler to work with block monoids than to work with regular ACMs directly.
Unfortunately, no such transformation can be applied to singular ACMs.
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Definition 4.0.5. Let G be an abelian group under the operation +. We define a block in G as
a multisubset of G, whose elements sum to zero. The block monoid B(G) is the monoid of blocks
over G, under the operation of multiset union. This can be thought as concatenation of blocks, with
the empty set as the identity.

For example, let G = Z4. Then [1][1][2], [1][1][1][3][3][3], and [0][0][2][3][3] are blocks in B(G).
Notice that [1][1][1][3][3][3] can be factored into smaller blocks of B(G), i.e. ([1][3])3, while [1][1][2]
cannot be factored into smaller blocks.

Definition 4.0.6. Let B(G) be a block monoid and let S ⊆ G. We define B(G,S) ⊆ B(G) to be
the set of blocks of G using only the characters in S, under the operation of multiset union.

Definition 4.0.7. Let B(G,S) be a block monoid. We define AS to be the set of all atoms of
B(G,S).

5 Results in Regular ACMs and Block Monoids

5.1 Characterizing t = 1 in Regular ACMs and Block Monoids

It is known that M1,3, M1,4, and M1,6 are half-factorial, meaning that for any of their elements,
the 1-norms of every factorization of that element are all the same. It follows that for any element
x in one of these ACMs, L1(x

n) and l1(x
n) are linear in n.

In this section we present a few results specific to M1,5, namely, characterizing L1(x) with a
corollary that L1(x

n) grows linearly. Then we will present some results on the growth rates for
Lt(x

n) and lt(x
n) for all regular ACMs and block monoids.

To provide some intuition for the following proof, consider the element x = [1]3[2]7[3]9 ∈ B(Z4).
We will try to construct a factorization attaining maximum 1-length. For reference, the atoms we
have available to us are {[1]4, [3]4, [1][3], [2]2, [1]2[2], [2][3]2} (these happen to be all of the atoms
in B(Z4) besides [0]). It turns out that the key to constructing the max length factorization
is to maximize the copies of the [1][3] atom. In particular, for this example we can write x =
([1][3])3([2][3]2)([2]2)3([3]4). This factorization has length 8, which is maximal. A formula for the
max length of an arbitrary element of B(Z4) is now provided.

Theorem 5.1.1. Given an element x = [1]a[2]b[3]c ∈ B(Z4),

L1(x) =

{
3a+2b+c

4 if a ≤ c
a+2b+3c

4 if a ≥ c.

Proof. Suppose we have a factorization (a1) · · · (ap) of an element x ∈ B(Z4), where x = [1]a[2]b[3]c.
Through trades that either increase the factorization length or keep it the same, emphasizing the
introduction of shorter atoms, we will give a general form for the factorization of x that attains
maximal length. Without loss of generality, suppose a ≤ c. If the factorization contains an atom
ai = ([1][g2] · · · [gr]), and another atom aj = ([3][h2] · · · [hs]), observe that

([1][g2] · · · [gr])([3][h2] · · · [hs]) = ([1][3])([g2] · · · [gr][h2] · · · [hs]),

where the latter term on the RHS is either an atom itself or can be factored into atoms. Thus, we
can create a new factorization of x, (a′1) · · · (a′q), in which we replace ([1][g2] · · · [gr])([3][h2] · · · [hs])
with ([1][3])([g2] · · · [gr][h2] · · · [hs]). So, |(a′1) · · · (a′q)|1 ≥ |(a1) · · · (ap)|1.
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We repeat this step until we reach a factorization ([1][3])a(b1) · · · (bt), where each bi is an atom
containing only copies of [2] and [3]. If (b1) · · · (bt) contains two or more copies of the atom

(
[2][3]2

)
,

we can create a new factorization of x, ([1][3])a(b′1) · · · (b′u), by replacing
(
[2][3]2

)2
with

(
[2]2
) (

[3]4
)
.

Since this trade preserves length, we still have that |([1][3])a(b′1) · · · (b′u)|1 ≥ |(a1) · · · (ap)|1.
We now repeat this step until we reach a factorization (c1) · · · (cv), comprised of a copies of

([1][3]), at most one copy of
(
[2][3]2

)
, and completed by as many copies of

(
[2]2
)
and

(
[3]4
)
as

necessary. Note that |(c1) · · · (cv)|1 ≥ |(a1) · · · (ap)|1, and since (a1) · · · (ap) was chosen arbitrarily,
|(c1) · · · (cv)|1 is the maximal factorization length of x. In particular, if b ≡ 0 (mod 2), observe that

the factorization ([1][3])a
(
[2]2
) b
2
(
[3]4
) c−a

4 has length

a+
b

2
+

c− a

4
=

3a+ 2b+ c

4
.

Then, if b ≡ 1 (mod 2), observe that the factorization ([1][3])a
(
[2][3]2

) (
[2]2
) b−1

2
(
[3]4
) c−a−2

4 also
has length

a+ 1 +
b− 1

2
+

c− a− 2

4
=

3a+ 2b+ c

4
.

Thus, (c1) · · · (cv), which has maximal factorization length, has length 3a+2b+c
4 .

Finally, note that since [1] and [3], along with [2] and itself, are additive inverses, we can run a
symmetric argument for the case that a ≥ c, which completes the proof.

Corollary 5.1.2. Let x ∈ M1,5, and α = L1(x). Then L1(x
n) = αn.

Proof. Since M1,5 is homomorphic to B(Z4), any arbitrary element x ∈ M1,5 corresponds to an
element x′ ∈ B(Z4) where x′ = [1]a[2]b[3]c for arbitrary a, b, c ∈ Z≥0 (where a, b, c are under the
constraint that they must produce an element in the block monoid). We now apply Theorem 5.1.1
to x′. Suppose a ≤ c, then α = L1(x

′) = 3a+2b+c
4 . Taking arbitrary n powers of x′ gives

L1

(
x′n
)
= L1

(
[1]an[2]bn[3]cn

)
=

3an+ 2bn+ cn

4
= L1

(
x′
)
· n

= αn

By homomorphism, we thus conclude xn ∈ M1,5 has maximum factorization length L1(x
n) = αn.

By the same justification in Theorem 5.1.1, we can apply a symmetric argument for the case a ≥ c
to show that L1(x

n) =
(
a+2b+3c

4

)
n = αn.

As it turns out, this strictly linear behaviour does not generalize. However, the behaviour
does seem to be quasi-linear, and we are able to determine linear bounds for the max and min
factorization lengths as functions of n, so can claim that these are asymptotically linear. To
illustrate the idea behind the following result, consider the example of x = [1][3][4]2 ∈ B(Z6).
We note that x contains 4 characters, and in general, xn will contain 4n characters. To create
a factorization with minimal factorization length, we might imagine splitting these 4n characters
between many atoms, each with a relatively low character count. Then, to create a factorization
with maximal factorization length, we might imagine splitting these 4n characters between fewer
atoms, each with a relatively high character count.
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Since, based on our choice of x, the atom available to us with the highest character count is
[1]6 (having 6 characters) and the one with the lowest is [3]2 (having 2 characters), we can argue
that that the length of any factorization of xn is bounded above by 4n

2 (if we were to only use the
atom with the lowest character count) and bounded below by 4n

6 (if we were to only use the atom
with the highest character count). These bounds are shown in Figure 9, which plots them alongside
the actual maximum and minimum factorizations of 260 ∈ M1,7, a corresponding element in the
corresponding ACM.

2 4 6 8 10
n

2

4

6

8

10

12

14

L_1(260^n)

Figure 9: L1(260
n) and l1(260

n) in M1,7

This argument is generalized below.

Theorem 5.1.3. Given a finitely generated Abelian group G, a subset S ⊆ G, x ∈ B(G;S), and
n ∈ N, l1(xn) ∼ n and L1(x

n) ∼ n.

Proof. It suffices to bound l1(x
n) and L1(x

n) above and below by functions both linear in n.
For S = {[s1], . . . , [sj ]}, suppose that x = [s1]

p1 · · · [sj ]pj . Then, let c =
∑j

i=1 pi, denoting the
number of characters in x. In general, xn will have cn characters. Also, let

AS = {[s1]q1,1 · · · [sj ]q1,j , . . . , [s1]qr,1 · · · [sj ]qr,j} and Q =

{
j∑

i=1

qt,i | 1 ≤ t ≤ r

}
.

To bound the functions below, let a = maxQ. Since the shortest possible length for xn is
achieved when xn can be written as copies of an atom with maximal character count, we have that
cn
a ≤ l1(x

n) ≤ L1(x
n).

Then, to bound the functions above, let b = minQ. Since the longest possible length for xn is
achieved when xn can be written as copies of an atom with minimal character count, we have that
l1(x

n) ≤ L1(x
n) ≤ cn

b .
Thus, since cn

a ≤ l1(x
n) ≤ L1(x

n) ≤ cn
b , we can conclude that l1(x

n) ∼ n and L1(x
n) ∼ n.

Based on our data, it seems that the period of L1(x
n) for a block monoid element x can be

arbitrarily large. The following results provide a starting point for proving such a result, by showing
that at regular multiples of n, a certain block monoid element can be factored without using atoms
of a specific form, and so its maximum 1-norm is greater than it is at other values of n.

Lemma 5.1.4. Let [a]p[b]q[−1]r be an atom in B(Zab), where a < b and p, q, r > 0. Then ap+bq =
ab+ r, p < b, and q, r < a.
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Proof. Since [a]p[b]q[−1]r is an atom, we must have p < b and q < a. Also, if r ≥ a, then
[a][−1]a would be a factor, so we must have r < a. Now since [a]p[b]q[−1]r is a block, we must have
ap+bq−r = kab for some k ∈ N0. The largest value of ap+bq is a(b−1)+b(a−1) = 2ab−a−b < 2ab,
so we get ap + bq = kab + r < 2ab → kab < 2ab → k < 2. If k = 0, then ap = r − bq, and since
p ≥ 1, we get a ≤ ap = r− bq ≤ r < a. By contradiction, k ̸= 0. Hence k = 1, and ap+ bq = ab+ r
as desired.

Theorem 5.1.5. Let a, b ∈ Z+ such that gcd(a, b) = 1 and a < b. Then the atoms in B(Zab, {a, b,−1})
are:

• [a]b, [b]a, [−1]ab

• [a][−1]a, [b][−1]b

• a− 1 atoms of the form [a]p[b]q[−1]r

Proof. For any x ∈ Zn, we have that [x]ord(x) is an atom in B(Zn). Here n = ab, so the order of a
is b and the order of b is a. Also, since the gcd of two consecutive integers is 1, we have that the
order of −1 is ab. So we see that the blocks [a]b, [b]a, and [−1]ab are atoms, and it is simple to
verify that they are the only atoms consisting of a single letter repeated some number of times.

We now characterize the two-letter atoms. We first note that the block [a][−1]a cannot be
factored into atoms, since one of those atoms would contain only the letter [−1] and there are fewer
than ab copies of [−1] in the block. So [a][−1]a is itself an atom. Now consider the block [a]m[−1]n

for some integer m > 1. If m ≥ b, then the block contains [a]b as a factor, so it is not an atom. If
instead m < b, then the sum of the [a] letters in the block is am < ab, so at least am copies of [−1]
are required in order for the block to sum to 0. But then the block contains [a][−1]a as a factor, so
it is not an atom. A similar argument shows that [b][−1]b is the only atom containing only [b] and
[−1].

Suppose that there is an atom of the form [a]p[b]q where p, q > 0. First, since [a]b and [b]a are
atoms, we must have p < b and q < a. Now the sum of the block is ap+ bq, which by assumption
is a multiple of ab, so bq must be a multiple of a. But b is not a multiple of a (since gcd(a, b) = 1),
and q is not a multiple of a, so bq cannot be a multiple of a. By contradiction, there are no atoms
of the form [a]p[b]q, and so [a][−1]a and [b][−1]b are the only two-letter atoms.

We now characterize the three-letter atoms. By the lemma, all atoms of the form [a]p[b]q[−1]r

must have 0 < p < b, 0 < q, r < a, and ap+ bq = ab+ r. Reducing the previous equation modulo
a gives bq ≡ r (mod a). Since gcd(a, b) = 1, this equation has a unique solution for q such that
0 ≤ q < a. Then since r ̸= 0, we also have q ̸= 0 as required. Similarly, reducing the equation
modulo b shows that there is a unique solution for p such that 0 < p < b. Hence there is exactly
one atom of the form [a]p[b]q[−1]r for each value of r.

Theorem 5.1.6. Let x = [a]p1 [b]q1 [−1] ∈ B(Zab), and suppose a < b. If a factorization of xma

uses an atom of the form [a]p[b]q[−1]r where p, q, r > 0, then there is another factorization of xma

which has a greater 1-norm.

Proof. Consider a factorization of xma which uses at least one atom of the form [a]p[b]q[−1]r. Then
this factorization contains the block ([a]p[b]q[−1]r)h where p, q, r > 0 and h > 1. Note that this
block contains qh copies of [b]. Now we can write qh as ak − g where 0 ≤ g < a. Since the total
number of copies of [b] must be a multiple of a, we know that there must be g copies of the atom
[b][−1]b in the factorization of xma. We can now construct another factorization of xma by replacing
the blocks ([a]p[b]q[−1]r)h and

(
[b][−1b]

)g
with other blocks. First, since qh + g = ak, we can use
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all of the copies of [b] from the original two blocks to construct the block ([b]a)k. We are left with
ph copies of [a] and rh+ bg copies of [−1].

We will now show that all the copies of [−1] can be used in atoms of the form [a][−1]a. We have
ap+ bq = ab+ r, so r = ap+ bq − ab → rh = aph+ bqh− abh. We also have g = ak − qh → bg =
abk−bqh. We then get rh+bg = aph+bqh−abh+abk−bqh = aph+ab(k−h). Also, since g < a and
q < a, we have ak = g+qh < a+ah = a(1+h); therefore k < 1+h → k ≤ h → k−h ≤ 0. Together,
these imply that we can construct ph + b(k − h) copies of the atom [a][−1]a, which together use
all the copies of [−1] from the original two blocks. We are left with h− k copies of the atom [a]b.
Hence we get our new factorization by performing the following exchange of blocks:

([a]p[b]q[−1]r)h
(
[b][−1b]

)g
⇔ ([b]a)k

(
[a]b
)h−k

([a][−1]a)ph+b(k−h) .

We will now show that the length of the right-hand side is greater than the length of the left-
hand side using some basic properties of cross numbers. For more information on cross numbers,
see [3]. First note that the total number of copies of ([b]a) and

(
[a]b
)
on the right-hand side is h,

the same as the number of copies of ([a]p[b]q[−1]r) on the left-hand side. Now the cross number of
any single-letter atom is 1, so the total cross number of all single-letter atoms on the right-hand
side is h. But the cross number of ([a]p[b]q[−1]r) is

p

b
+

q

a
+

r

ab
=

ap+ bq + r

ab
=

ab+ 2r

ab
= 1 +

2r

ab
> 1.

Since the cross numbers of the left-hand and right-hand sides must be equal, we see that the total
cross number of

(
[b][−1b]

)g
must be greater than the total cross number of ([a][−1]a)ph+b(k−h).

The cross number of [b][−1b] is 2
a , and likewise the cross number of [a][−1]a is 2

b . Now a < b by
assumption, so we get 2

a > 2
b . Then if the number of copies of [a][−1]a was g, we would have

k
(
([b][−1b])g

)
=

2g

a
>

2g

b
= k (([a][−1a])g) .

This would imply that the total cross number of ([a][−1]a)ph+b(k−h) was less than that of
(
[b][−1b]

)g
,

which is impossible by our earlier argument. So the number of copies of [a][−1]a is greater than g,
and the length of the factorization has increased.

5.2 Characterizing t = 0 in Regular ACMs and Block Monoids

The following results will mirror those found for numerical semigroups, in the sense that the maxi-
mal and minimal factorization lengths for powers of an element x will be bounded by some constant
independent of the power n. We will now present an example that illustrates the below argument
for max length being eventually constant.

As we did above, consider x = [1][3][4]2 ∈ B(Z6). Given a factorization of x2, ([1]3[3])([3]2)([4]3)2

(which has 0-length 3), we can construct a factorization of x3, ([1]3[3])([3]2)([4]3)2([1][3][4]2), using
the factorization of x2 and appending x (which in this case is an atom itself). In this way, we can
argue that the max length function will never decrease. Further, given that we only have a finite
number of atoms available to us, there is a limit to how long this factorization can get, within the
0-norm. Thus, we need only provide an example of xn for some n that can be factored in a way
that uses all available atoms to show that the max length factorization is constant as a function of
n, and x12 = ([1]6)([1]3[3])([3]2)5([1]2[4])([1][3][4]2)([4]3)6 is one such example.

Theorem 5.2.1. Let B(G) be a block monoid and let S ⊆ G. Let x ∈ B(G,S), then L0(x
n) = |AS |

for sufficiently large n.
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Proof. Let x ∈ B(G,S). To prove this, it suffices to show that: (1) L0(x
n) (as a function of n) is a

non-decreasing function, (2) |AS | is the largest value of L0(x
n) possible, and (3) L0(x

n) achieves a
value of |AS | for n large enough.

1. Let x = [a1]
n1 [a2]

n2 · · · [ai]ni be a maximum factorization of x for distinct atoms ai ≥ 0. This
yields a maximum 0-norm length of L0(x) = i. Now consider xn, which has some maximum
factorization [b1]

m1 [b2]
m2 · · · [bk]mk of distinct atoms bk where i ≤ k (with length L0(x

n) = k).
Take the element xn+1, which we can express as

xn+1 = ([b1]
m1 [b2]

m2 · · · [bk]mk)([a1]
n1 [a2]

n2 · · · [ai]ni)

and notice that the length of this factorization of xn+1 satisfies L0(x
n+1) ≥ L0(x

n).

2. For any x ∈ B(G,S), we have that the only possible atoms that x can contain are the atoms
in B(G,S), of which only use the characters in S. Since there are only finitely many atoms
in B(G,S) (because G is finitely generated), the largest possible value for L0(x

n) is |AS |.

3. Finally, we will show that there exists a value of n such that L0(x
n) = |AS |. Suppose that

S = {s1, . . . , sj}, x = [s1]
p1 · · · [sj ]pj ,

AS = {[s1]q1,1 · · · [sj ]q1,j , . . . , [s1]qr,1 · · · [sj ]qr,j},

and
A∗

S = [s1]
q1,1 · · · [sj ]q1,j [s1]q2,1 · · · [sj ]qr−1,j [s1]

qr,1 · · · [sj ]qr,j = [s1]
c1 · · · [sj ]cj .

Now, choose n =
∑j

i=1

⌈
ci
pi

⌉
. In this way, we guarantee that there will be enough of each

element in S to create a factorization of xn consisting of one copy of each atom in AS ,
followed by some large leftover string of characters which can be factored into atoms in some
way. Because we have guaranteed that xn can be factorized in a way that includes every atom
in AS , we have that L0(x

n) = |AS |.

Lemma 5.2.2. Let H be a homomorphism from M1,b to B(Zf ), where f = φ(b). For x ∈ M1,b, let
S be the set of characters in H(x) and let AS be the set of atoms of B(Zf , S). Finally, let AM be
the preimage of AS under H. Then AM is finite.

Proof. Let h be an isomorphism from (Z∗
b , ·) to (Zf ,+). Also, for 0 < i < b, let Pi be the number

of primes in the integer prime factorization of x which are congruent to i (mod b). Then every h(i)
corresponds to a letter in B(Zf ). Now let a = [0]q0 [1]q1 · · · [f − 1]qf−1 be an atom in AS . Then for
each letter [s] ∈ a, there are Pi primes in the factorization of x which map to [s] under h. It follows
that the number of atoms in M1,b constructed from prime factors of x which map to a under H is
at most

f−1∏
j=0

(
Ph−1(j)

)qj .
Repeating this argument for each a in AS shows that there are finitely many atoms in M1,b

constructed from prime factors of x which map to an atom in AS . Finally, by the definition of AM ,
we get that |AM | is finite.
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Theorem 5.2.3. Let M1,b be a regular ACM and x ∈ M1,b. Then L0(x
n) is constant for sufficiently

large n.

Proof. Let x ∈ M1,b and let AM be defined as in Lemma 5.2.2. To prove this, it suffices to show
that: (1) L0(x

n) (as a function of n) is a non-decreasing function, (2) |AM | is the largest value of
L0(x

n) possible, and (3) L0(x
n) achieves a value of |AM | for n large enough.

1. Let x = an1
1 an2

2 · · · ani
i be a factorization of x with maximum 0-norm, where the ai are dis-

tinct atoms in M1,b. Then L0(x) = i. Now consider xn, which has some maximum 0-norm
factorization bm1

1 bm2
2 · · · bmk

k , where the bk are distinct atoms in M1,b and i ≤ k. Then we have
L0(x

n) = k. Now take the element xn+1, which we can express as

xn+1 = (bm1
1 bm2

2 · · · bmk
k )(an1

1 an2
2 · · · ani

i )

and notice that the length of this factorization of xn+1 satisfies L0(x
n+1) ≥ L0(x

n).

2. Let H and S be defined as in Lemma 5.2.2. We have that the only possible atoms that H(x)
can contain are the atoms in B(Zf , S), which only use the characters in S. Therefore the only
possible atoms that x can contain are the atoms in AM . Since there are only finitely many
atoms in AM by Lemma 5.2.2, the largest possible value for L0(x

n) is |AM |.

3. Finally, we will show that there exists a value of n such that L0(x
n) = |AM |. Let x = sp11 · · · spjj

be the integer prime factorization of x, and let A∗
M be the product of all atoms in AM . Then

we have

A∗
M = sc11 · · · scjj .

Now, choose n =
∑j

i=1

⌈
ci
pi

⌉
. In this way, we guarantee that there will be enough of each si

to create a factorization of xn consisting of one copy of each atom in AM , followed by some
large leftover element of M1,b which can be factored into atoms in some way. Because we
have guaranteed that xn can be factorized in a way that includes every atom in AM , we have
that L0(x

n) = |AM |.

Since we have a constant bound for the max length factorization of xn, the min length factoriza-
tion function is guaranteed to be asymptotically constant as well. As it turns out, many examples
turn out to be precisely constant in n. However, it is possible to construct examples that do not
follow this behavior. One of these is x = [1][2][6][12][16][17] ∈ B(Z18), which is pictured in Figure
10 (which uses 513590 ∈ M1,19). Despite this function not being constant, it still does appear to
be periodic. The proof below demonstrates that this will hold in general.

Theorem 5.2.4. Given a finitely generated Abelian group G, a subset S ⊆ G, and an element
x ∈ B(G,S), l0(x

n) is periodic as a function of n.

Proof. Consider the function

P (x;n; a1, . . . , ak) =

{
1 if xn ∈ ⟨a1, . . . , ak⟩}
0 if xn /∈ ⟨a1, . . . , ak⟩},
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1.0
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3.0
l_0(513590^n)

Figure 10: l1(513590
n) in M1,19

where ai ∈ AS . Suppose, for fixed A = {a1, . . . , ak}, that

P (x; p;A) = P (x; q;A) = 1,

so xp = a
cp,1
1 · · · acp,kk and xq = a

cq,1
1 · · · acq,kk . Then, consider pi+ qj for i, j ∈ N0, not both 0. Now,

a
cp,1·i+cq,1·j
1 · · · acp,k·i+cq,k·j

k =
(
a
cp,1·i
1 · · · acp,k·ik

)(
a
cq,1·j
1 · · · acq,k·jk

)
= xpixqj = xpi+qj ,

so P (x; pi+ qj;A) = 1, and so the function is closed under addition. Now, consider the semigroup

T = {n | P (x;n;A) = 1} ⊆ (N,+).

Then, when n > F̄ (T ), we have that

P (x;n;A) =

{
1 if gcd(T ) | n
0 otherwise.

Thus, P (x;n;A) is an eventually periodic function.
Then, let

Q(x;n; k) = max{P (x;n;A) | A ⊆ AS , |A| = k}.

Note that since each P (x;n;A) is eventually periodic, Q(x;n; k) will also be periodic, having period
equal to the lowest common multiple of the periods of the individual P (x;n;A) functions.

Finally, observe that
l0(x

n) = min{k | Q(x;n; k) = 1},

which is also periodic itself.

5.3 Characterizing t = ∞ in Regular ACMs and Block Monoids

Theorem 5.3.1. Let x = [s][−s] ∈ B(Zk) where s has order k. Then l∞(xn) is quasi-linear with
period k + 1 for all n ≥ k(k + 1).

Proof. Note that the only atoms in B(Zk, {s,−s}) are [s]k, [−s]k, and [s][−s]. We now write n as
(k + 1)q − r where 0 ≤ r ≤ k. Since n ≥ k(k + 1), we have (k + 1)q ≥ (k + 1)q − r ≥ k(k + 1),
and therefore q ≥ k. So

(
[s]k
)q (

[−s]k
)q

([s][−s])q−r is a factorization of xn with ∞-norm q. In
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order to show that this factorization has the minimum ∞-norm, we will show that any change to
the factorization will result in a greater ∞-norm. The only way to change the factorization is to
apply the trade ([s][−s])k ⇔

(
[s]k
) (

[−s]k
)
. Applying this trade a times for a ∈ Z \ {0} gives the

factorization
(
[s]k
)q+a (

[−s]k
)q+a

([s][−s])q−r−ak, where negative values of a correspond to applying
the trade in reverse. If a > 0, then the ∞-norm of the factorization is q + a > q. If instead a < 0,
then the ∞-norm is q− r−ak ≥ q− r+ k ≥ q. In either case, the ∞-norm of the new factorization
is greater than or equal to q, so the minimum ∞-norm of xn is q. Finally, since n was arbitrary,
this shows that l∞(n+ k+1) = l∞((k+1)(q+1)− r) = q+1 = l∞(n)+ 1 for all n ≥ k(k+1).

Corollary 5.3.2. For x = [s][−s] ∈ B(Zk), we have l∞(xn) =
⌊

n
k+1

⌋
.

The following result is very similar to the one given in Theorem 5.1.3.

Theorem 5.3.3. Given a finitely generated Abelian group G, a subset S ⊆ G, x ∈ B(G;S), and
n ∈ N, L∞(xn) ∼ n.

Proof. It suffices to bound L∞(xn) above and below by functions that are both linear in n.
To bound the function below, note that given a factorization x⃗ ∈ Z(x) such that |x⃗|∞ = λ, we

can construct a factorization y⃗ ∈ Z(xn) such that |y⃗|∞ = λn, simply by using n copies of x⃗. Then,
since 1 ≤ λ, we have that n ≤ λn ≤ L∞(xn).

To bound the function above, for S = {[s1], . . . , [sj ]}, suppose that x = [s1]
p1 · · · [sj ]pj . Then, let

c =
∑j

i=1 pi, denoting the number of characters in x. In general, xn will have cn characters. Then,

given AS = {[s1]q1,1 · · · [sj ]q1,j , . . . , [s1]qr,1 · · · [sj ]qr,j}, let a = min
{∑j

i=1 qt,i | 1 ≤ t ≤ r
}
. Since the

longest possible length for xn is achieved when xn can be written as copies of an atom with minimal
character count, we have that L∞(xn) ≤ cn

a .
Thus, since n ≤ L∞(xn) ≤ cn

a , we can conclude that L∞(xn) ∼ n.

Lemma 5.3.4. Let x ∈ B(Zm, S) and s ∈ S. Suppose that the lowest power of [s] among all the
atoms of B(Zm, S) is p. Then the power of [s] in x is a multiple of p.

Proof. We will first show that all the powers of [s] among the atoms of B(Zm, S) are multiples of p.
Let A1 be an atom containing [s]p, and suppose by way of contradiction that there is an atom A2

containing [s]q, where p ∤ q. Since p is the lowest power of [s] in an atom, we must have p < q. It
follows that we can write q as pk+r, where 0 < r < p. Now consider A2/A1. This is not an element
of the block monoid, because A2 is an atom. We can still represent it, however, if we allow the
powers on the letters to be negative. We can then convert A2/A1 into a block monoid element B1

by multiplying by sufficiently many copies of [si]
m for each [si] which appears to a negative power

in A2/A1. Now since q > p, we see that B1 contains [s]q−p. This process can then be repeated a
total of k times, where k was defined above. The resulting block Bk contains [s]q−pk = [s]r. So
there is a block which contains fewer than p copies of [s]. Since B(Zm, S) is atomic, this implies
that there is an atom of B(Zm, S) which contains fewer than p copies of [s]. But this contradicts
the fact that p is the smallest power of [s] in an atom. By contradiction, the powers of [s] in all
atoms must be multiples of p. Finally, since x is an element of an atomic block monoid, it must
factor into atoms, all of which contain [s] a multiple of p times. Hence the power of [s] in x is also
a multiple of p.

Theorem 5.3.5. Let x = [s1]
p1 [s2]

p2 . . . [sk]
pk ∈ B(Zm). Then for n sufficiently large, l∞(xn) ∼ n.
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Proof. We will show that l∞(xn) is bounded above and below by linear functions of n. First, let
λ = l∞(x). Then for each n, there is a factorization of xn with ∞-norm λn, which is obtained
by multiplying the power of each atom in the minimum ∞-norm factorization of x by n. Hence
l∞(xn) ≤ λn.

We will now show that l∞(xn) is bounded below by a linear function of n. Let S = {[s1], [s2], · · · [sk]},
and let ai be the number of times that [si] appears in the atoms of B(Zm, S), counted with mul-
tiplicity. We now write npi as aiqi − ri, where 0 ≤ ri < ai. Consider a block B which consists of
exactly the atoms containing [si], each raised to the power of ai. This block contains aiqi copies
of [si] in total. Let Pi be the lowest power of [si] that appears in an atom of B(Zm, S). Then by
Lemma 5.3.4, we have that npi is a multiple of Pi, and that ai is a multiple of Pi. From here we get
that ri must be a multiple of Pi as well. We now create a sub-block B′ of B by removing ri

Pi
copies

of an atom containing sPi
i . To do this, we must have qi > ai, so we must have n > a2i . We note

that B′ contains aiqi − ri copies of [si]. Furthermore, there is at least one atom which appears in
B′ a total of qi times. This is because if every atom appeared fewer than qi times, the total number
of copies of [si] in B′ would be at most ai(qi − 1), and we would have ri ≥ ai. It follows that the
∞-norm of B′ is qi.

Suppose there is a factorization F of xn whose ∞-norm is less than qi. Then the powers on all
atoms in F are less than qi, including the atoms containing [si]. But then the number of copies of
[si] in F is less than ai(qi−1) = aiqi−ai < aiqi−ri. So there are fewer copies of [si] in F than there
are in xn. This is clearly impossible, so by contradiction, no such F exists. Thus l∞(xn) ≥ qi as
desired. Now since [si] was arbitrary, the above argument shows that l∞(xn) ≥ max{qi : 0 ≤ i ≤ k}.
Recall that npi = aiqi − ri, so qi =

npi+ri
ai

≥ npi
ai

. Since pi and ai are constant with respect to n,
we see that qi grows linearly with n. Hence l∞(xn) is bounded below by a linear function of n.
Together with the upper bound, this completes the proof.

6 Results in Singular ACMs

6.1 Characterizing t = 1 in Singular ACMs

Theorem 6.1.1. Let Ma,b be an Arithmetic Congruence Monoid, and let x ∈ Ma,b. Then L1(x
n)

has a linear growth rate.

Proof. We will show that L1(x
n) is bounded below and above by functions that both scale linearly.

Let x ∈ Ma,b, and write x as its prime factorization in Z, x = pm1
1 pm2

2 · · · pmk
k for some primes pi

and k ∈ Z≥0. If x is an atom in Ma,b, it follows that xn has length n in Ma,b, so n ≤ L1(x
n). If

every prime pi in the factorization of x is in Ma,b, then xn has maximum length
(∑k

i=1mi

)
· n,

therefore L1(x
n) ≤

(∑k
i=1mi

)
· n. Since n and

(∑k
i=1mi

)
· n scale linearly, we have that L1(x

n)

grows linearly as well.

6.2 Characterizing t = 0 in Singular ACMs

Theorem 6.2.1. Given an ACM Ma,b, x ∈ Ma,b, and n ∈ N0, l0(x
n) ≤ l0(x). In particular, l0(x

n)
is bounded independent of n.

Proof. It suffices to bound l0(x
n) above by a function that is constant in n. Suppose we have a

factorization x = ap11 · · · apkk , with all ai being atoms in Ma,b. Here, the length of this factorization
under the 0-norm is k. Then, we can construct a factorization xn = ap1·n1 · · · apk·nk , which also
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has length k. Therefore, we can choose a factorization of x which has minimal length l0(x), and
conclude that l0(x

n) ≤ l0(x).

Based on our data, we suspect that L0(x
n) has a square-root growth rate in singular ACMs.

Here we provide some bounds on L0(x
n) for certain classes of elements in the ACM M4,6. We first

characterize the atoms in this monoid.

Lemma 6.2.2. All atoms in M4,6 are of one of the following forms:

1. 22,

2. 2pa11 pa22 · · · pakk where the pi are primes congruent to 5 (mod 6), the ai are positive integers
whose sum is odd, and k ∈ Z+,

3. any of the above times any number of primes congruent to 1 (mod 6).

Proof. We first note that the only possible prime factors of an element in M4,6 are primes congruent
to 1, 2, or 5 modulo 6, and that the only prime congruent to 2 (mod 6) is 2.

1. Since 22 = 4 is the smallest nonunit in M4,6, it must be an atom.

2. We have that 2 · 5 ≡ 4 (mod 6), and that 5 · 5 ≡ 1 (mod 6). Hence every integer of the form
2 · pk, where p is a prime congruent to 5 (mod 6) and k is odd, is in M4,6. Now since all
elements of M4,6 are even, attempting to factor such an integer in M4,6 must involve factoring
it into two even integers. But all these integers only contain one factor of 2, and so cannot
be factored into two even integers. So we get that all such integers are atoms in M4,6.

3. Finally, since 1 is the multiplicative identity modulo 6, we see that any of the above atoms
multiplied by a prime congruent to 1 (mod 6) is an element of M4,6. In attempting to factor
one of these elements, one of the factors must be the original atom. But then the remaining
factor is odd, and so is not an element of M4,6. Hence all such elements are atoms in M4,6.
This process may be repeated indefinitely to create atoms containing any number of primes
congruent to 1 (mod 6).

We now show that the above are the only types of atoms in M4,6. We first note that all elements
of M4,6 are divisible by 2. Those which contain exactly one or two factors of 2 were considered
above. Now suppose an element x of M4,6 is a multiple of 23. Then it may be divided by 4, leaving
an even quotient. But since x ≡ 4 (mod 6), we must have x

4 congruent to 4 (mod 6). Hence
x
4 ∈ M4,6, and so x is not an atom in M4,6.

Theorem 6.2.3. Let x ∈ M4,6 such that x is not a power of 2. Then for all n ∈ Z+, there is some
i ∈ Z+ such that L0(x

n+i) > L0(x
n).

Proof. Let An be the set of atoms in the factorization of xn which gives the maximum 0-norm. We
now split the proof into two cases based on the prime factorization of x.

1. If x contains a 1-mod-6 prime, then let p be the maximum power of a 1-mod-6 prime among
the elements of An, and choose i = p + 1. We can now construct a factorization of xn+i by
starting with the maximum 0-norm factorization of xn and adding (among others) an atom
of the form 22 · ap+1

1 , where a1 is a 1-mod-6 prime. Note that since p ≥ 1, we have i ≥ 2, so
there will be sufficient copies of 2 in the prime factorization of xn+i. This atom was not in
the maximum 0-norm factorization of xn, so the 0-norm has strictly increased.
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2. If x does not contain a 1-mod-6 prime, then it must contain a 5-mod-6 prime. Let p be the
maximum power of a 5-mod-6 prime among the elements of An. Note that p must be odd,
since it is the power of a 5-mod-6 prime in an atom of M4,6. Now choose i = p + 2. Since
p+ 2 is odd, we can construct a factorization of xn+i by starting with the maximum 0-norm
factorization of xn and adding an atom of the form 2 · ap+2

5 , where a5 is a 5-mod-6 prime.
As before, this atom was not in the maximum 0-norm factorization of xn, so the 0-norm has
strictly increased.

We now present examples of elements in M4,6 for which L0(x
n) ∼ n1/2 and l0(x

n) ∼ n1/2.

Theorem 6.2.4. Let x = 28 ∈ M4,6, and n ∈ [Tk, Tk+1), where Tk denotes the k-th triangular
number. Then √

Tk−1 + Tk + 1 ≤ L0(x
n) ≤

√
Tk−1 + Tk + 2.

Proof. Let x = 28 ∈ M4,6, and suppose n ∈ [Tk, Tk+1), where Tk denotes the k-th triangular
number. We will show that L0(x

n) is bounded above and below by the functions
√
Tk−1 + Tk + 2

and
√

Tk−1 + Tk +1, respectively. To begin, note that the prime factorization of 28 over Z is given
by 28 = 22 · 7. In M4,6, however, 28 is irreducible, since 28 = 22 · 7 = 4 · 7 but 7 /∈ M4,6. The
fact that 7 /∈ M4,6, implies that for all n ≥ 1, 7n /∈ M4,6. As such, we see that any element of
the form 4 · 7n = (22) · 7n is irreducible in M4,6. Now, if we take k > 2, and n ∈ [Tk, Tk+1), then
n = 1 + 2 + · · ·+ k + i, for some 0 ≤ i < k + 1, so we can always write

xn = (22 · 7)n = (22)n7n = (22)(22 · 7)(22 · 72) · · · (22 · 7k)(22n−(2k+2) · 7i),

where the last term contains powers of (22)’s and 7’s which can be distributed amongst the first
(k+1) terms, (that is, by increasing the power of any of the preceding (22j · 7r) terms), to balance
out the factorization as needed. Since each of the first k + 1 factors in the above factorization is
irreducible and distinct in M4,6, we must have

L0(x
n) ≥ k + 1 =

√
Tk−1 + Tk + 1.

Similarly, notice that each of the first k elements of M4,6, whose prime factorization is made up
exclusively of powers of (22) and 7, appears as one of the first k + 1 factors in the factorization
of xn given above, (since each of these factors is irreducible and distinct). As such, it follows
that the (22)’s and the 7’s appearing in last “factor” of the given factorization, namely, the term
((22n−(2k+2) · 7i)), can only be distributed amongst the factors which have already been used (i.e.
it cant form a new irreducible element of M4,6 since i < k + 1). In particular, we see that since
i < k+1, any factorization of xn can’t have each of the first k+1 factors given in the factorization
above, and a factor of (22 · 7j), where k + 1 ≤ j ≤ Tk + i. Since, together, these make up all of the
factors of xn = (22)n7n, it follows that

L0(x
n) ≤ ∥(22)(22 · 7)(22 · 72) · · · (22 · 7k)(22 · 7k+1)∥0 = k + 2 =

√
Tk−1 + Tk + 2.

This completes the proof.

Theorem 6.2.5. Let x = 40 ∈ M4,6, and n ∈ [Tk−1 + Tk, Tk + Tk+1) = [k2, (k + 1)2), where Tk

denotes the k-th triangular number. Then√
Tk−1 + Tk + 1 ≤ L0(x

n) ≤
√

Tk−1 + Tk + 2.

27



FourForFour Theorems

Proof. Let x = 40 ∈ M4,6, and suppose n ∈ [Tk−1+Tk, Tk+Tk+1) = [k2, (k+1)2), where Tk denotes
the k-th triangular number. We will show that L0(x

n) is bounded above and below by the functions√
Tk−1 + Tk + 2 and

√
Tk−1 + Tk + 1, respectively. To begin, note that the prime factorization of

40 over Z is given by 40 = 23 · 5. In M4,6, however, 40 only factors as 40 = 4 · 10 = (22) · (2 · 5).
Moreover, we point out that while 52 /∈ M4,6, since 52 ≡ 1 mod 6, it follows that, for all n ∈ Z≥1,
(2 · 5) · 52n is an irreducible element in M4,6. Thus, for any k ≥ 2, and n ∈ [Tk−1 + Tk, Tk + Tk+1),
we have n = Tk−1 + Tk + i, for some 0 ≤ i < 2k + 1, and we can always write

xn = (23 · 5)n = 23n5n = (22)(2 · 5)(2 · 5 · 52)(2 · 5 · (52)2) · · · (2 · 5 · (52)k−1)(23n−(k+2) · 5i),

where the last term consists of powers of (22)’s and 5’s which can be added to some preceding term
to balance out the factorization. Now, since the first k + 1 factors are all irreducible in M4,6, we
must have

L0(x
n) ≥ k + 1 =

√
Tk−1 + Tk + 1,

for all n ∈ [Tk−1 + Tk, Tk + Tk+1). Similarly, notice that each of the first k elements of M4,6,
whose prime factorization (over M4,6) is made up exclusively of positive powers of (22) and 5,
already appear as one of the first k + 1 factors in the factorization of xn given above. Moreover,
since i < 2k + 1, the remaining powers of 2’s and 5’s, which make up the last term, that is, the
term (23n−(k+2) · 5i), can only be distributed amongst the factors that have already been used. In
particular, this means that no factorization of xn can have each of the first k+1 factors used in the
factorization above, and a factor of (2 · 5j), where 2k + 1 ≤ j (as this would result in an element
greater than xn). Since, together, these encompass all of the factors of xn, we must have

L0(x
n) ≤ ∥(22)(2 · 5)(2 · 5 · 52) · · · (2 · 5 · (52)k−1)(2 · 5 · (52)k)∥0 = k + 2 =

√
Tk−1 + Tk + 2,

as desired.

Theorem 6.2.6. Let x = 2a5b7c ∈ M4,6. Then L0(x
n) = O(n2/3).

Proof. We first note that the prime factorization of xn contains (b + c)n total copies of 5 and 7.
Now consider the atoms of M4,6 of the form 2 · 5p · 7q, where p is odd. We wish to factor xn in a
way that contains as many distinct atoms of this form as possible. To do this, we must prioritize
selecting atoms with smaller values of p and q before those with larger values. If we modify the
allowed atoms by allowing p to take on even values, we could do this by first selecting the atom
2 · 5, then 2 · 52, then 2 · 5 · 7, then 2 · 53, then 2 · 52 · 7, and so on. In this way, we would select
i modified atoms such that p + q = i for each i ∈ Z+, up to some.integer k. The total number of
such modified atoms is

a1 =
k∑

i=0

i
k(k + 1)

2
,

and the total number of 5’s and 7’s in these modified atoms is

k∑
i=0

i2
k(k + 1)(2k + 1)

6
.

In actuality, the total number of 5’s and 7’s in the real atoms will be greater, since replacing the
power p of 5 with 2p− 1 will convert every modified atom into an atom while also not decreasing
the total number of 5’s. We now find an upper bound on k such that the total number of 5’s and
7’s in the modified atoms is at least (b+ c)n.
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k(k + 1)(2k + 1)

6
≥ (b+ c)n

⇒ k(2k)(3k)

6
= k3 ≥ (b+ c)n

⇒ k ≥ 3
√
(b+ c)n

Hence k =
⌈

3
√
(b+ c)n

⌉
provides the desired upper bound. Now since k ∼ n1/3, and a1 ∼ k2,

we get that a1 ∼ n2/3.
We now consider atoms of the form 22 · 7r. The maximum number of such atoms which can

be used in a factorization of xn is given by a2 = m + 1, where m is the largest integer such that
m(m+1)

2 ≤ cn. We see that a2 ∼ n1/2. In actuality, the maximum number of such atoms that can
be used may be less than m+1, because some of the atoms considered previously may also contain
7. However, the value of a2 obtained here still suffices to show an upper bound. We now obtain an
upper bound on L0(x

n) by summing a1 and a2. The growth rate of a1 + a2 is Θ(n2/3) +Θ(n1/2) =
Θ(n2/3), and since this is an upper bound for L0(x

n), we see that L0(x
n) = O(n2/3).

6.3 Characterizing t = ∞ in Singular ACMs

Theorem 6.3.1. Let Ma,b be an Arithmetic Congruence Monoid, and let x ∈ Ma,b. Then L∞(xn)
has a linear growth rate.

Proof. We will show that L∞(xn) is bounded below and above by functions that both scale linearly.
Let x ∈ Ma,b, and write x as its prime factorization in Z, x = pm1

1 pm2
2 · · · pmk

k for some primes pi
and k ∈ Z≥0. If x is an atom in Ma,b, then xn has infinity length n in Ma,b, so n ≤ L∞(xn). If every
prime pi in the factorization of x is in Ma,b, then xn has maximum infinity length max{mi} · n, so
L∞(xn) ≤ max{mi} ·n. Since n and max{mi} ·n scale linearly, we have that L∞(xn) grows linearly
as well.

Theorem 6.3.2. Given x ∈ M4,6 and n ∈ N, l∞(xn) has a linear lower bound.

Proof. Let x = 2a5b7c. Then, define the set of good atoms G = {2p5q7r ∈ A | a(q+ r) ≤ 3p(b+ c)}
and the set of evil atoms E = {2s5t7u ∈ A | a(t+ u) > 3s(b+ c)}, where A refers to the atoms of
M4,6 containing just copies of 2, 5, and 7. Suppose for the sake of contradiction that we can factor
xn for some n using more evil atoms than good atoms. Thus, for gi ∈ G and ei ∈ E,

xn = g1 · · · gle1 · · · em
= 2p15q17r1 · · · 2pl5ql7rl · 2s15t17u1 · · · 2sm5tm7um

= 2p1+···+pl+s1+···+sm5q1+···+ql+t1+···+tm7r1+···+rl+u1+···+um ,

where, by our supposition, l < m. Note that, by Lemma 6.2.2, each pi and each si will have value
either 1 or 2, so p1 + · · ·+ pl ≤ 2 · l and s1 + · · ·+ sm ≥ 1 ·m (so 2 ·m ≤ 2(s1 + · · ·+ sm)). Thus,

p1 + · · ·+ pl ≤ 2 · l ≤ 2l < 2m ≤ 2(s1 + · · ·+ sm).

Then, since the ratios between the number of copies of 2, 5, and 7 in xn will be the same as in x,
we have that

a(q1 + · · ·+ ql + t1 + · · ·+ tm + r1 + · · ·+ rl + u1 + · · ·+ um) = (b+ c)(p1 + · · ·+ pl + s1 + · · ·+ sm).
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Observe first that

(b+ c)(p1 + · · ·+ pl + s1 + · · ·+ sm) < (b+ c) · 3(s1 + · · ·+ sm).

Then, by the characterization of evil atoms (and because q1+ · · ·+ ql+ r1+ · · ·+ rl > 0), note that

a(q1 + · · ·+ ql + t1 + · · ·+ tm + r1 + · · ·+ rl + u1 + · · ·+ um)

> (b+ c) · 3(s1 + · · ·+ sm) + a(q1 + · · ·+ ql + r1 + · · ·+ rl)

> (b+ c) · 3(s1 + · · ·+ sm).

However, this implies that

(b+ c) · 3(s1 + · · ·+ sm) > (b+ c) · 3(s1 + · · ·+ sm),

which is a contradiction. Therefore, for an arbitrary factorization of xn, written as

xn = g1 · · · gLe1 · · · eM ,

we know that L ≥ M .
We will now briefly argue that there are finite atoms inG. To do so, notice thatG is constructed

by bounding the total copies of 2, 5, and 7, and so the total number of atoms in the set can be at
most the product of these bounds.

Now, for x = 2a5b7c, consider x
4(k·|G|+1)

a . The factorization of xn with minimal length will have
4(k ·|G|+1) copies of 2, and so will have between 2(k ·|G|+1) and 4(k ·|G|+1) atoms. Therefore, we
know that there will be at least k · |G|+1 good atoms in the factorization. Now, by the Pigeonhole
Principle, we know that there will be at least one good atom that is used at least k+ 1 times, and

so l∞(x
4(k·|G|+1)

a ) > k. Thus, we have a linear lower bound on l∞(xn).

7 Future Work

The following conjectures are constructed purely on empirical data.

Conjecture 7.0.1. Let S = ⟨g1, . . . , gk⟩. For all t ∈ Z with t ≥ 2,

L′
t(x) = g−t

1 (x−Ax)
t + L′

t(Ax),

where Ax ∈ Ap(S; g1) such that x ≡ Ax (mod g1).

The following is hinted at by Theorems 6.2.4 and 6.2.5.

Conjecture 7.0.2. For any singular ACM Ma,b and x ∈ Ma,b, L0(x
n) ∼ n1/2.

The following is suggested by Theorem 6.3.2.

Conjecture 7.0.3. For any singular ACM Ma,b and x ∈ Ma,b, l1(x
n) ∼ n and l∞(xn) ∼ n.
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