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Abstract

There has been recent interest in the relationships between semigroups and a ge-
ometric object called the Kunz cone. In this paper we will explore a specific type
of numerical semigroup called a symmetric numerical semigroup. We uncover and
identify the characteristics of the faces of the Kunz cone where symmetric numerical
semigroups lie, named Ripley faces. We look to characterize Ripley faces and discover
the relationships between them.
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1 Introduction

A numerical semigroup is a set S ⊂ Z≥0 that is cofinite and closed under addition. Every
numerical semigroup S has a finite list of generators, g0 < g1 < g2 < . . . < gk, and can be
expressed in the following set notation:

S = ⟨g0, . . . , gk⟩ = {a0g0 + · · ·+ akgk | ai ∈ Z≥0}.

In [1], the authors studied semigroups that lied on the faces of different polyhedra. In this
paper, we focus on a specific type of numerical semigroup called a symmetric numerical
semigroup and determine which faces of the polyhedra contain these semigroups. We do this
by studying the Apéry sets of different symmetric numerical semigroups and using partially
ordered sets to represent their Apéry sets.

This paper begins with the necessary background information needed to understand
semigroups and their geometric representations. We will then introduce symmetric numer-
ical semigroups. To gather a better understanding of this specific type of semigroup, we
will look at their geometric properties by studying their Kunz posets. After introducing
symmetric numerical semigroups, we will shift our focus towards identifying relationships
between different semigroups. We will determine when two different symmetric numerical
semigroups are combinatorially isomorphic and create functions connecting them up to bi-
jectivity. Finally, the last section of the paper explores the characteristics of the faces and
facets that follow from these symmetric numerical semigroups.

2 Background

Suppose we have the semigroup S = ⟨g0, . . . , gk⟩. The smallest generator, g0, is called the
multiplicity, denoted m. The Apéry set of S with respect to the multiplicity is a subset of S
with the form

Ap(S;m) = {n ∈ S : n−m /∈ S}.

For example, take S = ⟨4, 6, 7⟩. The resulting Apéry set of S with respect to the multi-
plicity can be written as Ap(S; 4) = {0, 13, 6, 7}. Notice that each element of the Apéry
set is the smallest number in the semigroup that represents a mod class with respect to
the multiplicity (i.e. 0 = 0 mod 4, 13 = 1 mod 4, 6 = 2 mod 4, etc.). Because S has a
finite complement, there exists an element in S in each equivalence class modulo m, and
by construction of Ap(S;m) and the minimality of each n ∈ Ap(S;m), there are exactly m
elements in Ap(S;m).

One way in which we can graphically represent Apéry sets is by using partially ordered
sets, also called posets. For example, suppose we have the semigroup S = ⟨4, 6, 7⟩ and
Ap(S; 4) = {0, 13, 6, 7}. This Apéry set can be represented by the poset in Figure 1a.

These Apéry posets allow us to establish a hierarchy between the elements of the Ap(S;m).
Given that each equivalence class modulo m is represented once in the Ap(S;m), we can
replace elements of the Apéry poset with their corresponding value modulo m, resulting in
a particular type of poset: a Kunz poset. Looking back at our Apéry set in Figure 1a, the
Kunz poset associated with that Apéry set is shown in Figure 1b.
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Figure 1: The poset (left) and the Kunz poset (right) associated with Apéry set {0, 13, 6, 7}

Kunz posets make it easier to work with the Apéry sets in comparison to Apéry posets
when dealing with Apéry sets that have large orders.

Throughout this paper, one important geometric object that appears is a polyhedron. A
polyhedron is the intersection of finitely many inequalities. When some subset of those orig-
inal inequalities become equalities, we obtain a face of the polyhedron. A face may be any
dimension from 0 to the dimension of the polyhedron itself (in fact, the entire polyhedron is
itself a face). We use the term codimension to mean “dimensions less than that of the poly-
hedron”; If a polyhedron is n-dimensional, a face with codimension 3 is (n− 3)-dimensional.
We use the term facet to describe a face with codimension 1.

In this paper, we focus on a particular polyhedron called the Kunz cone, denoted Cm

where m is the multiplicity (in [2] this is denoted C(Zm)). The Kunz cone is defined by all
of the points (x1, . . . , xm−1) ∈ Rm that satisfy

xi + xj ≥ xi+j for all 1 ≤ i ≤ j ≤ m− 1.

In [1], the authors found a natural correspondence between faces of the Kunz Cone Cm and
tuples (H,⪯) where H is a subgroup and ⪯ is a partial ordering on Zm/H.

Theorem 2.0.1. There is an injective function

F 7→ (H,⪯)

sending each face F of C(G) to a pair (H,⪯), where

H = {0} ∪ {h ∈ G : xh = 0 for all x ∈ F} ⊂ G

is a subgroup of G and ⪯ is the Kunz-balanced poset on G/H with minimal element 0 and
the property that xa + xb = xa+b is a facet equation for F if and only if a ⪯ a+ b.

Given an Apéry set of a semigroup, we can construct a point in Rm−1. By construction,
the point will satisfy certain inequalities, and some may be satisfied with strict equality.
The inequalities that are satisfied with strict equality will indicate what face the semigroup
lies on. Even though not every face has a numerical semigroup, every numerical semigroup
corresponds to a point in the polyhedron.
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Figure 2: Kunz poset representing Qm,b

For a poset to have a maximal element, there has to exist an element that does not precede
any of the other elements. If the Kunz poset of a numerical semigroup has a single maximal
element, then we classify that numerical semigroup as a symmetric numerical semigroup.
The faces of the Kunz cone can sometimes be made up of symmetric numerical semigroups.
If the Kunz cone is made up of a symmetric numerical semigroup, then we denote these faces
as Qm,b where m is the multiplicity and b is the maximal element of the Kunz poset. So for
example, suppose we have Q5,4. This can be represented by the following poset.

0

2 3 1

4

3 Ripley faces

Just as all numerical semigroups are represented as points that live in the Kunz cone, sym-
metric numerical semigroups also exist within the Kunz cone. Specifically, symmetric nu-
merical semigroups live on faces of the Kunz cone that are represented by posets with a
unique maximal element. We call these faces with symmetric numerical semigroups Ripley
faces and denote them as Qm,b, where m is the multiplicity and b is the maximal element.
Recall that faces of the Kunz cone are defined by equalities of the form xi + xj = xk where
i + j ≡ k mod m. All of the equalities that define Qm,b are of the form xi + xj = xb as b
is the maximal element of the poset representing Qm,b. When b ̸= 0, the poset representing
Qm,b is shown in Figure 2. Otherwise, Qm,0 is the 0-dimensional face of the Kunz cone i.e.
the vertex of the Kunz cone.
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Theorem 3.0.1. Given m, b, the dimension of Qm,b is given by

dimQm,b =

{
⌊m

2
⌋ − 1 m is even, b is even

⌊m
2
⌋ else.

Proof. To prove dimension, we will first count the number of equations that define Qm,b, then
prove that those equations are linearly independent. Every linearly independent equation
that defines Qm,b brings the dimension down by one, allowing us to then determine the
dimension of Qm,b. When counting the number of equations in Qm,b, we must consider cases
based on the parity of m and b.

1. Let m be odd. The equations that define Qm,b either sum two distinct coordinates
to b mod m or sum the same coordinate twice to b mod m. We will show there exists
exactly one equation that sums the same coordinate twice to equal b mod m.

Since m is odd, there exists at least one number, i, such that

2i ≡ b mod m.

If 2i = b, then b is an even number, and if 2i = b + m, b is an odd number. Since
i ∈ Zm, b and b+m are the only possible sums and since these produce unique values
for b, there is only one coordinate, xi, such that 2xi = xb.

By definition of Qm,b, every atom sums with another atom to b. Thus, for every
atom j ∈ Zm\{0, i, b} there exists k ∈ Zm\{0, i, b} such that xj + xk = xb. Note that
j ̸= k since we have omitted i which we showed above is the only coordinate index
such that 2xi = xb. We have also omitted 0 and b because they are not atoms. Since
there are m− 3 possible values for j and the equations sum pairs of j and k, there are
m−3
2

face equality equations of Qm,b in addition to 2xi = xb. Therefore there are

m− 3

2
+ 1 =

m+ 1

2
− 1 =

⌈
m

2

⌉
− 1

face equality equations of Qm,b.

2. Let m be even. When m is even, we must consider the parity of b as well.

(a) First let us consider when when b is odd. If there were an i such that 2i ≡
b mod m, then m | 2i− b. This cannot hold because m is even and 2i− b is odd.
Therefore, all m− 2 atoms must sum with distinct atoms to b. This results in

m− 2

2
=

⌈
m

2

⌉
− 1

equations.

(b) When m and b are both even, there exist two index values, b
2
and b

2
+ m

2
, that

when doubled are congruent to b. If there were a third such index, it would be
expressed as b

2
+ m

2
+ m

2
= b

2
+m. However this is congruent to b

2
mod m, so we

have already considered it. Thus, there are only two such indices.
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Since we cannot use 0 or b, this leaves m − 4 atoms with which to construct
equations that sum two distinct elements, thus there are m−4

2
such equations.

This brings the total number of equations in this case to

m− 4

2
+ 2 =

m

2
=

⌈
m

2

⌉
.

Now, we will show that the face equations of Qm,b are linearly independent. First, we
will verify that no xi, for some i ∈ Zm\{0, b}, appears in more than one equation. Once we
choose xi, xj in the equation xi + xj = xb is uniquely determined. Specifically, if i > b then
j = m + b − i otherwise i < b then j = b − i. Since every xi appears in only one equation,
no equation can be a linear combination of other face equality equations of Qm,b. Thus, the
face equations of Qm,b are linearly independent.

This allows us to conclude that the dimension of Qm,b is dimCm minus the number of
face equations that define Qm,b. Recall that the dimension of Cm is m−1. So, when m and b
are both even, the dimension of Qm,b is (m− 1)−⌈m

2
⌉ = ⌊m

2
⌋− 1. Otherwise, the dimension

of Qm,b is (m− 1)− (⌈m
2
⌉ − 1) = ⌊m

2
⌋.

Example 3.0.2. Consider the Kunz Cone C12 and the symmetric face Q12,11. We define
Q12,11 by the following face equalities

x1 + x10 = x11

x2 + x9 = x11

x3 + x8 = x11

x4 + x7 = x11

x5 + x6 = x11.

We can see that these five equations are linearly independent, thus the dimension is five less
than the dimension of C12, so the dimension of Q12,11 is dim(C12)− 5 = 11− 5 = 6 = ⌊m

2
⌋.

Now let us consider the face Q12,10 within the Kunz cone C12. Its face equalities are

x1 + x9 = x10

x2 + x8 = x10

x3 + x7 = x10

x4 + x6 = x10

2x5 = x10

2x11 = x10.

Here we can see the instance of two equations doubling an element when m and b are both
even. We can also see that all six equations are linearly independent and conclude that the
dimension is dim(C12)− 6 = 11− 6 = 5 = ⌊m

2
⌋ − 1.

Theorem 3.0.3. The equalities stated in the definition of Qm,b comprise its H-description
as a face of Cm.
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Proof. To prove this, we will locate a point x on the interior of Qm,b - namely it satisfies
the additional equalities of Qm,b, and no others. We claim that x ∈ Rm−1 with xi = 1 for
i ̸= b and xb = 2 is such a point. Notice that if i + j ≡ b mod m and i, j ∈ [1,m− 1], then
xi + xj = 1 + 1 = 2 = xb. If i + j ̸≡ b mod m, then xi + xj = 1 + 1 > xi+j = 1, so we have
equality only for those specified by Qm,b.

Next we will investigate the existence of numerical semigroups on Qm,b.

Theorem 3.0.4. There is a numerical semigroup S with S ∈ Qm,b iff one of m, b is odd.

Proof. Here we will construct example numerical semigroups that live on the interior of Qm,b.
Suposing m, b have different parities, we have the following construction: let xb = 3m + b.
For b

2
≤ i ≤ m

2
+ b

2
, set xi = m + i. Otherwise, let xj = xb − xi whenever j + i ≡ b mod m.

To see that the set S = {m} ∪ {xi : i ∈ [1,m− 1] \ {b}} generates the numerical semigroup
with the desired property, notice that

i+ j ≡ b mod m =⇒ xi + xj = xi + (3m+ b− xi) = 3m+ b = xb

i+ j ̸≡ b mod m ∧ i+ j <
b

2
=⇒ xi + xj ≥ 2m+ i+ j > 2m+ (i+ j mod m) ≥ xi+j

i+ j ̸≡ b mod m ∧ i+ j >
b

2
=⇒ xi + xj ≥ 2m+ i+ j > 2m ≥ xi+j.

We see that there is equality if and only if the equation corresponds to Qm,b. Hence, S
generates the desired numerical semigroup.

Suppose m and b are both odd. Notice that in this case that the solution to 2t ≡ b mod m
has 2x = m+ b. Let xb = 3m+ b, and set xi = m+ b for b

2
≤ i ≤ m+b

2
, and set xj = xb − xi

for j yet unassigned, where i+ j ≡ b mod m. By choice, we have

i+ j ≡ b mod m =⇒ xi + xj = xi + (3m+ b)− xi = 3m+ b = xb

i+ j ̸≡ b mod m ∧ i+ j <
b

2
=⇒ xi + xj ≥ 2m+ i+ j

Suppose m and b are both even. Both

2x b
2
= xb and 2x b

2
+m

2
= xb

are equations specified by Qm,b, which forces x b
2
= x b

2
+m

2
, though they must be different

modulo m.

Remark 3.0.5. The above proof constructs a numerical semigroup which lives on the interior
of Qm,b. Lemma 1 in [3] constructs numerical semigroups living on Qm,b for b odd, but
generally not on the interior of Qm,b.

Example 3.0.6. Looking at the symmetric face Q12,11, we can construct a semi group from
the previous proof with the case when m, b have different parities. We obtain the semigroup

S = ⟨12, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34⟩

which has the correct poset structure. See Figure 3.
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Figure 3: Kunz poset corresponding to Q12,11

Figure 4: The poset of Q4,1 maps to the poset of Q4,3

4 Relationships

It is clear to see that the action of (Zm)
∗ ∼= Aut(Zm) takes the group cone onto itself. We

know hence that any of these actions take faces to faces, and analagously the action maps
Kunz Posets to Kunz Posets with the same structure but permuted elements. For example,
the action by 3 ∈ (Zm)

∗ maps the poset of Q4,1 to the poset of Q4,3. See Figure 4.

Theorem 4.0.1. If gcd(m, a) = gcd(m, b), then Qm,a and Qm,b are combinatorially isomor-
phic.

Proof. Identify Qm,a, Qm,b with the tuples (Ha,⪯a), (Hb,⪯b) respectively, as guaranteed by
Theorem 3.4. It is simple to see that both Ha, Hb are trivial (as long as neither a, b = 0). Let
x ∈ (Zm)

∗ be such that ax = b, as guaranteed by the hypothesis. Suppose that i ⪯a i+j = a,
we wish to show that xi ⪯b xi + xj = xa = b, which follows since x ∈ (Zm)

∗. Thus, Qm,a

and Qm,b are combinatorially isomorphic.

Notation 4.0.2. For simplification, we will adopt the convention of prepending a ”0” entry
to each point in C(G), indexed by the identity element of G. More precisely, we write each
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(x1, x2, . . . ) ∈ C(G) in the form (x0, x1, x2, . . . ) with x0 = 0, effectively replacing C(G) with
{0} × C(G).

Next, we will discuss injections from Cd to Cm. Suppose d | m, and define ϕd,m : Cd → Cm

by wi = xi where x ∈ Cd maps to w ∈ Cm. It was seen in Corollary 3.7 [2] that the map
ϕd,m gives an injection on the face lattices Cd → Cm. We explore the action of this map on
Qd,b.

Theorem 4.0.3. Given that d | m, the injection ϕd,m : Cd → Cm when d | m has ϕ(Qd,b) =
ϕ(Cd) ∩Qm,b.

Proof. Notice that both ϕ(Qd,b, ϕ(Cd) ∩Qm,b are faces of Cm, so we identify them with
(H1,⪯1), (H2,⪯2) respectively. It is clear that ϕ(Qd,b) ⊆ ϕ(Cd), so we first show that
ϕ(Qd,b) ⊆ Qm,b.

Suppose that i+ j = b for i, j ∈ Zm. Take w = ϕ(x) ∈ ϕ(Qd,b). By construction,

wi + wj = wi + wj = xi + xj = xb

as i+ j = b since d | m. This shows that ⪯1 is a refinement of ⪯2.
Next, we will see that H1 = H2. It is clear that H1 = ⟨d⟩, and that ⟨d⟩ ⊆ H2 as

ϕd,m(Cm) ∩Qm,b ⊆ ϕd,m(Cm). As we saw ϕd,m(Qd,b) ⊆ ϕ(Cd) ∩Qm,b, we have ⟨d⟩ ⊇ H2 and
hence H1 = H2.

Finally, we must show that ⪯2 is a refinement of ⪯1. Suppose that i ⪯1 i + j = b is a
relation of ⪯1. Take x ∈ ϕ(Cd)∩Qm,b. Since x ∈ Qm,b we have xi+xb−i = xb. Then, because

d | m and H2 = ⟨d⟩, it follows that b− i = j and i ⪯2 i+ j = b.

Example 4.0.4. The rays of Q8,3 with a zero in the middle index are (1, 2, 3, 0, 1, 2, 3) and
(1, 0, 1, 0, 1, 0, 1). The former appears from the injection ϕ4,8(Q4,3), where (1, 2, 3) is a ray of
Q4,3, and the latter appears from the injection ϕ2,8(Q2,1) where (1) is a ray of Q2,1.

Example 4.0.5. The rays of C10 with a zero coordinate are

(1, 2, 3, 4, 0, 1, 2, 3, 4) (2, 4, 1, 3, 0, 2, 4, 1, 3) (4, 3, 2, 1, 0, 4, 3, 2, 1)

(4, 3, 2, 6, 0, 4, 3, 2, 6) (6, 2, 3, 4, 0, 6, 2, 3, 4) (3, 1, 4, 2, 0, 3, 1, 4, 2)

(2, 4, 6, 3, 0, 2, 4, 6, 3) (3, 6, 4, 2, 0, 3, 6, 4, 2) (1, 0, 1, 0, 1, 0, 1, 0, 1)

which come from injections from C2 and C5. The rays of C5 are:

(1, 2, 3, 4) (2, 4, 1, 3)

(4, 3, 2, 1) (3, 1, 4, 2)

(4, 3, 2, 6) (6, 2, 3, 4)

(2, 4, 6, 3) (3, 6, 4, 2)

and the ray on C2 is (1). Notice some of these rays are permuted versions of others - this
comes from Theorem 4.0.1.
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Corollary 4.0.6. Given Qm,b and Qm,b′, let d = gcd(b − b′,m). Then Qm,b ∩ Qm,b′ =
ϕd,m(Qd,b) where ϕd,m : Cd 7→ Cm.

Proof. By application of the previous theorem, we have the following.

ϕd,m(Qd,b) = Qm,b ∩Qm,b′ ∩ Im ϕd,m

Note that b = b′, so b and b′ can be assigned arbitrarily. It suffices to prove that Qm,b∩Qm,b′ ⊆
Im ϕ. We will show that the subgroup H of Qm,b ∩Qm,b′ is ⟨d⟩.

We know that any point x ∈ Qm,b∩Qm,b′ must satisfy both xb+xb−b′ = xb′ and xb′+xb−b′ =
xb. Substituting xb we get xb−b′ + xb′−b = 0. Since coordinates are non-negative integers, we
have that xb−b′ = xb′−b = 0. The subgroupH is comprised of the coordinates whose values are
zero, consequently, b− b′ ∈ H and ⟨b− b′⟩ ⊆ H. Now we will show ⟨b− b′⟩ = ⟨gcd(b− b′,m)⟩.

Let s = b − b′. Since gcd(s,m) | s, we know that ⟨s⟩ ⊆ ⟨gcd(s,m)⟩. To show the other
direction of containment, note that, by Bezout’s Theorem gcd(s,m) = n1s+n2m where n1, n2

are integers. Thus, gcd(s,m) ≡ n1s mod m and so ⟨s⟩ ⊇ ⟨gcd(s,m)⟩. Since we have shown
both directions of containment, ⟨s⟩ = ⟨gcd(s,m)⟩. By Theorem 2.0.1 since our subgroup is
⟨gcd(s,m)⟩, the intersection of Qm,b and Qm,b′ is equal to ϕd,m(Qd,b).

Example 4.0.7. Let us consider the intersection of the faces Q12,1 and Q12,9 in the Kunz
cone C12. Take the face equalities x3 + x8 = x2 from Q9,2 and x2 + x6 = x8 from Q9,8.
Substituting in x2, we get

x3 + x8 + x6 = x8 and x3 + x6 = 0.

Since all coordinates in the Kunz cone are non-negative integers, x3 = x6 = 0. Thus,
the subgroup of coordinates whose values are zero is {3, 6}. By Theorem 2.0.1, the poset
resulting from the subgroup {3, 6} is the following:

0, 3, 6

1, 4, 7

2, 5, 8

The poset above is injective to the poset Q3,2 below.

0

1

2
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5 Facets of Ripley faces

Definition 5.0.1. Define Fi,j,k to be the intersection of all equations of Qm,b with the
additional equations

xi + xj = xi+j

xj + xk = xj+k (1)

xi + xk = xi+k

for every i, j, k ∈ {Zm} \ {0, b} with i+ j + k ≡ b mod m.

Theorem 5.0.2. Each Fi,j,k is a face of Qm,b, and any given Fi,j,k is a facet if and only if
the following two conditions hold:

1. If, without loss of generality, there exists i such that 2i ≡ b mod m, then j = k.

2. If 3 | m and 3 | b, then without loss of generality, no more than one of the following
can be true: i = b

3
, j = m+b

3
, and k = 2m+b

3
.

Proof. We will first prove that Fi,j,k is indeed a face of Qm,b by identifying a point in the
face that satisfies all face equations with equality and all other Kunz inequalities of Cm with
strict inequality. We have two cases.

First suppose that 2i ̸≡ b mod m, 2j ̸≡ b mod m, and 2i ̸≡ b mod m. Consider the point
x ∈ Rm−1 with

xi = xj = xk = 2

xi+j = xi+k = xj+k = 4

xb = 6,

and all other coordinates equal to 3. For each of the equations in (1), we have equality
with 2 + 2 = 4. Since 2i ̸≡ b mod m, the equation 2xi = x2i holds only when x2i = xi+j or
x2i = xj+k. If x2i = xi+j, then i = j and thus this is the equation xi + xj = xi+j, which has
already been addressed. If x2i = xj+k, this implies 2i ≡ j + k, which is not a valid choice by
the second condition. By symmetry, the same holds for 2j and 2k. Otherwise if x2i is any
other coordinate, we have strict inequality with 2(2) > 3. Keeping in mind that i+j+k = b,
we also have the following equations involving xi, xj, and xk:

xi + xj+k = xb

xj + xi+k = xb (2)

xk + xi+j = xb.

It can easily be seen that each of these are indeed satisfied with equality since 2 + 4 = 6.
Any other equations of Fi,j,k involve two coordinates other than xi, xj, xk, xi+j, xi+k, and xj+k

summing to xb. That is, we have 3+3 = 6 and so we again have equality. Finally, note that
the list of inequalities for Cm not describing Qm,b all have two coordinates summing to some
coordinate other than xb. However, the possible integer sums of 2, 3, 4, and 6 are 4, 5, 6, 8, 9,
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10, and 12. Since the sum cannot be xb, and no coordinates are 5, the only actually possible
chance of equality is with a sum of 4. But that forces us to consider exactly the equations
in (1). Therefore all other inequalities of Cm must be satisfied with strict inequality. So
x ∈ Fi,j,k.

Next suppose, again without loss of generality, that 2i ≡ b mod m. By the first condition,
we know j = k. As a consequence, we find 2j = 2k = i. For the duration of this paragraph,
we will use j to represent both j and k. Consider the point x ∈ Rm−1 with xi = 6, xj = 3,
xi+j = 9, xb = 12, and all other coordinates are equal to 6. The first and third equations in
(1) are equivalent and so the two distinct equations become 6+ 3 = 9 and 3+ 3 = 6 and are
clearly satisfied with equality. The last two equations in (2) are equivalent so we have the two
equations 6+6 = 12 and 3+9 = 12, both again clearly satisfied with equality. The inequality
2xi ≥ x2i = xb becomes 2(6) = 12, and the inequality 2xj ≥ x2j = xi becomes 2(3) = 6, and
thus both hold with equality. Any other equations of Fi,j,k involve two coordinates other
than xi, xj, and xi+j, summing to xb. That is, we have 6 + 6 = 12 and so we again have
equality. Finally, we consider the list of inequalities for Cm not describing Qm,b. These all
have two coordinates summing to some coordinate other than xb. The possible integer sums
of 3, 6, 9, and 12 are 6, 9, 12, 15, 18, 21, and 24. Since the sum cannot be xb and xb is the
largest coordinate, the available sums for equality are 6 and 9. A sum of 6 arises from the
equation 2xj ≥ xi, which has already been considered. A sum of 9 arises from xi+xj ≥ xi+j,
which has also already been considered. Thus any other equations must be satisfied with
strict inequality. So x ∈ Fi,j,k and we can confirm that Fi,j,k is indeed a face of Qm,b.

Now we suppose Fi,j,k is a facet and we will show that the given conditions must apply. We
will proceed by contradiction. First, let us assume that there exists i such that 2i ≡ b mod m
and j ̸= k. Then we know

xi + xj + xk = xb

2xi = x2i = xb

xj + xk = xj+k = xi.

Further, once we set those equalities, four more equalities come out when making the poset
for this face.

2xj = x2j

2xk = x2k

xj + x2k = x2k+j = xi+k

x+ k + x2j = x2j+k = xi+j.

Since the existing equations defining Qm,b are already known to be linearly independent (see
proof of Theorem 3.0.1), we can construct a submatrix of the H-description with only the
equations involving xi, xj, xk, x2j, x2k, xi+j, xi+k, and xb. Our list of relevant equations
then, is:

2xi = xb xi + xj = xi+j xj + x2k = xi+k

xj + xi+k = xb xi + xk = xi+k xk + x2j = xi+j

xk + xi+j = xb xj + xk = xi 2xj = x2j

x2j + x2k = xb 2xk = x2k.
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Note that the first four come from Qm,b, the middle three from the definition of Fi,j,k, and
the remaining four from the poset structure. Forming a matrix with these equations, we
have

xi xj xk x2j x2k xi+j xi+k xb



2 −1
1 1 −1

1 1 −1
1 1 −1

1 1 −1
1 1 −1

−1 1 1
1 1 −1

1 1 1
2 −1

2 −1

.

After row reduction, we obtain
2 −1

1 1 −1
2 −2 1

1 2 −2
1 −2 1

2 2 −3

 .

This matrix has rank 6, so of the eleven original equations, there exist a set of six that are
linearly independent. Note that only four linearly independent equations came from Qm,b,
so the remaining two linearly independent equations came from the seven new equations.
Therefore the dimension of Fi,j,k is codimension 2 with respect to Qm,b. Since this is a lower
dimension than codimension 1, this contradicts the assumption that Fi,j,k is a facet. So if
there exists i such that 2i ≡ b mod m, we must have j = k.

Next, let us assume that 3 | m and 3 | b. We will again proceed by contradiction. First,
note that for the equation i+j+k = b with fixed b, choosing two of i, j, k uniquely determines
the third. As a consequence, since

b

3
+

m+ b

3
+

2m+ b

3
≡ b mod m,

choosing two of

i =
b

3
j =

m+ b

3
k =

2m+ b

3
(3)

to be true is equivalent to all of them being true. So we will suppose they are all true.
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Notice

i+ j ≡ b

3
+

m+ b

3
≡ m+ 2b

3
+

3m

3
≡ 2

(
2m+ b

3

)
≡ 2k

j + k ≡ m+ b

3
+

2m+ b

3
≡ 3m+ 2b

3
≡ 2

(
b

3

)
≡ 2i

i+ k ≡ b

3
+

2m+ b

3
≡ 2

(
m+ b

3

)
≡ 2j,

so i + j ≡ 2k mod m, j + k ≡ 2i mod m, and k + i ≡ 2j mod m. Combining these
three equations with the three equations from the definition of Fi,j,k and the three relevant
equations from Qm,b (listed in (2)), we have the list

xi + xj+k = xb xi + xj = xi+j 2xi = xj+k

xj + xi+k = xb xi + xk = xi+k 2xk = xi+j

xk + xi+j = xb xj + xk = xj+k 2xj = xi+k,

which comprises the H-description for Fi,j,k. Forming a matrix from these equations, we
have

xi xj xk xi+j xi+k xj+k xb



1 1 −1
1 1 −1

1 1 −1
1 1 −1
1 1 −1

1 1 −1
2 −1

2 −1
2 −1

.

Using row reducing operations we can transform our original matrix into the following
3 −1

3 −1
3 −1

3 −2
3 −2

3 −2

 .

The above matrix has rank 6, so there are six linearly independent equations from the
original nine. Three of these come from Qm,b and are known to be linearly independent, but
the three additional equations reduce the dimension of Fi,j,k to codimension 3, which is less
than the required codimension 1 for a facet. This contradicts the assumption that Fi,j,k is a
facet. Thus when 3 | m and 3 | b, no more than one of (3) can hold.
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Now suppose that the two conditions apply, and we will show Fi,j,k is a facet of Qm,b. Let
α be the number of linearly independent equalities describing Qm,b. The dimension of Qm,b

is equal to dim(Cm) − α = (m − 1) − α. We will construct a matrix for the H-description
of Fi,j,k. Knowing that the equalities representing Qm,b are linearly independent, the only
equations in which dependence could arise are those involving xi, xj, xk, xi+j, xi+k, and
xj+k. So we can create a submatrix involving only these equations. Further, because of the
conditions applied, we know that the only additional equations are those listed in (1). We
have

xi xj xk xi+j xi+k xj+k xb


1 1 −1

1 1 −1
1 1 −1

1 1 −1
1 1 −1

1 1 −1

.

Using row reducing operations, we can transform our original matrix into the following
1 1 −1

1 1 −1
1 1 −1

1 −1 −1 1
1 −1 −1 1

1 1 −1

 ∼


1 1 −1

1 1 −1
1 1 −1

−1 −1 −1 2
1 −1 −1 1
1 −1 −1 1

 ∼


1 1 −1

1 1 −1
1 1 −1

−1 −1 −1 2
−1 −1 −1 2
−1 −1 −1 2

 ∼


1 1 −1

1 1 −1
1 1 −1

1 1 1 −2

 .

Clearing the pivot columns, we obtain our final matrix:
1 1 −1

1 1 −1
1 −1 −1 1

1 1 1 −2

 . (4)

The above matrix has rank 4 indicating that there is one additional linearly independent
equality in addition to the three linearly independent equalities inherited from Qm,b. That
means there are α + 1 linearly independent equalities, so the dimension of F is

dim(Cm)− (α + 1) = (m− 1)− α− 1,

which is one less than the dimension of Qm,b, implying the face is a facet.
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Theorem 5.0.3. For each facet F on Qm,b with at least one of m, b odd, there is a numerical
semigroup S living on F .

Proof. Take Fi,j,k, and write i + j + k = sm + b, for s ∈ {0, 1, 2}. We will consider three
cases.

1. Suppose i, j, k ̸= b
2
and m, b are of different parities. We have two subcases.

(a) When m is odd, b is even, and s ̸= 1, or when m is even and b is odd, we put

xi = 2m+ i xi+j = 4m+ i+ j xb = (6 + s)m+ b

xj = 2m+ j xi+k = 4m+ i+ k xl =
(
3 +

⌊s
2

⌋)
m+ l

xk = 2m+ k xj+k = 4m+ j + k xp = xb − xl

with

b

2
≤ l ≤ b

2
+

m

2
, p ̸= i, j, k, b, i+ j, i+ k, j + k, l, and p+ l ≡ b mod m.

It is a quick check to see each of the Qm,b equalities hold; notice that

xi + xj+k = xj + xi+k = xk + xi+j = xb

since i+ j + k ≡ b mod m. The equalities

xi + xj = xi+j xj + xk = xj+k xi + xk = xi+k

are all satisfied directly by construction. To see that no other equalities hold we
check that given r, s such that r + s ̸≡ b mod m, and not both r, s ∈ {i, j, k}, we
have that

xr + xs > (2 + 3 + ⌊s/2⌋)m+ r + s > 5m+ r + s > 5m > xr+s,

so we have a numerical semigroup on Fi,j,k.

(b) When m is odd, b is even, and s = 1. Put

xi = 3m+ i xi+j = 7m+ i+ j xb = 12m+ b

xj = 4m+ j xi+k = 7m+ i+ k xl = 6m+ l

xk = 4m+ k xj+k = 8m+ j + k xp = xb − xl

with

b

2
≤ l ≤ m

2
+

b

2
, p ̸= i, j, k, b, i+ j, i+ k, j + k, l and l + p ≡ b mod m.

It is similar as above to check these equalities are the only ones satisfied.
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2. When, without loss of generality, i = b
2
, j = k. Here i+j+k = sm+b for s ∈ {0, 1, 2, 3}.

Put

xk = 3m+ k xi+k = 9m+ 3kxl = 6m+ l

xi = 2xk = 6m+ 2k xb = (12 + s)m+ bxp = xb − xl

with
b

2
< l <

m

2
+

b

2
and l + p ≡ b mod m.

As before, it is easy to check that the desired equalities hold. To see that none other
hold, we check that given r, s such that r+ s ̸≡ b mod m, and not both r, s ∈ {i, j, k},
we have that

xr + xs > 3m+ k + 6m+ s > 9m > xr+s,

so a numerical semigroup exists on Fi,j,k.

3. When m, b both odd, since any facet of Qm,m−b falls in the previous cases, and since
Qm,b

∼= Qm,m−b by Theorem 4.0.1, we conclude that every facet of Qm,b must contain
a numerical semigroup on its interior.

We conclude that for each facet with at least one of m, b odd, there is a numerical semigroup
S living on F .

Example 5.0.4. Figure 5 is a poset representation of a facet of Q9,2. The set i, j, k of this
facet is {5, 7, 8} and s = 2, so this facet is covered by Case 1a, and the numerical semigroup
constructed is S = ⟨9, 37, 23, 25, 26⟩.

0

5

2

7 8
1

3 4 6

Figure 5: Kunz poset corresponding to a facet of Q9,2 with set {5, 7, 8}

Example 5.0.5. The poset in Figure 6 represents another facet of Q9,2, with a set {1, 5, 5}
and because b

2
= 1, this facet is covered by Case 2. The numerical semigroup constructed

for this facet is S = ⟨9, 32, 57, 58, 70, 71⟩.

We will now consider the number of facets of Qm,b, by appealing to the triple character-
ization given by 5.0.2. We will give a counting for b = 1, and for m ≥ 3.
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0

5

1

6

2

43 7 8

Figure 6: Kunz poset corresponding to a facet of Q9,2 with set {1, 5, 5}

Theorem 5.0.6. For m ≥ 2, the number of facets of Qm,1 is given by
1
6
(m2 − 3m) m ≡ 0 mod 6

1
6
(m2 − 6m+ 17) m ≡ 1 mod 6, 5 ≡ mod6

1
6
(m2 − 3m+ 2) m ≡ 2 mod 6, 4 ≡ mod6

1
6
(m2 − 6m+ 15) m ≡ 3 mod 6

Proof. Given m, b arbitrary, write

t = #{x ∈ [m− 1] : 2x ≡ b mod m} = #C b
2

q = #{x ∈ [m− 1] : 2x = m} = #Cm
2

r = #{x ∈ [m− 1] : 3x ≡ b mod m} = #C b
3

To count the number of triples, we will count those with and without duplicates separately.
To count those with duplicates, notice each such triple takes the form (i, i, b − 2i) where
i /∈ {0, b} ∪ C b

2

∪ Cm
2
. Hence there are

m− 2− q − t

valid triples of this form. To count the number of triples with distinct entries - we will
proceed by counting the number of pairs (i, j) with:

1. i ̸= j, as this would give a triple with duplicates which has been counted already

2. i, j ̸= 0, b

3. i, j /∈ C b
2

, as if one of these were it would two elements of the triple to be the same

4. i+ j ̸= b, as this would force the third element of triple k = 0.

5. i+ j ̸= m, as this would force the third element of the triple k = b.
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6. k = b− i− j /∈ C b
2

, as this would force i = j.

7. k = b− i− j must not be equal to i, j, otherwise we get a duplicate which we already
counted.

The number of pairs (i, j) satisfying the first three conditions is easily seen to be
(m − 2 − t)(m − 3 − t). Of these, we must remove the pairs not satisfying item 4, namely
that i+ j = b. It is clear to see that any choice i /∈ {0, b} ∪C b

2

will work, as if x ∈ C b
2

, then

j = b−x = x which was not a counted distinct pair. Thus, there are m− 2− t of these pairs
to remove.

To count the number of pairs (i, j) with distinct entries satisfying i + j = m, we must
disallow i, j ∈ {0, b} ∪ Cb/2. Hence we cannot have i = m− b or m− x for x ∈ Cb/2. We see
that i = m

2
is also disallowed, since j = m− i = i. If it were true that b = m

2
, then we would

have double counted this pair. Since m ≥ 3, this is not the case. In total, the number of
such pairs is

m− 1− 2− 2t− q.

To count the number of pairs (i, j) with distinct entries having i+ j /∈ C b
2

, we will count

the number of i such that (i, b
2
− i) doesn’t take values in the set {0, b}∪C b

2

∪C b
4

. If, without

loss of generality, i ∈ C b
4

, then j = i, and there this doesn’t correspond to a distinct pair

we’ve already counted - so these do not need to be subtracted off. However, i can indeed
take values in any of the other specified values to get a bad pair. The other thing to check
is that b

2
− i is in the specified values, and this occurs for i = m− b

2
or m

2
. Hence, there are

t(m− 2− 3t)

additional pairs to be subtracted off from our count. Of course, if m
2
exists, since b = 1,

we have that t = 2, so this accounts for no appearance of q in the previous formula. The
multiplication by t accounts for symmetry in the cases where t = 2, and m

2
+ b

2
exists.

We need only count the cases now where b − i − j = i or b − i − j = j. Here we must
ensure that we do not count pairs already subtracted off in previous cases. By symmetry,
we will only count those cases where b− i− j = i, and j = b− 2i. We can count these pairs
(i, j) with b − i − j = i by counting the pairs (i, b − 2i) where i can take values such that
i /∈ {0, b} ∪ C b

2

∪ C b
4

, and also disallowing b − 2i ∈ {0, b} ∪ C b
2

. b − 2i ̸= 0 as this would

imply i ∈ C b
2

which is disallowed already. So, b−2i ̸= b as this would imply i = 0 or i ∈ Cm
2

which is disallowed. This implies b− 2i /∈ C b
2

implies that i = 3b
2
or i = m

2
+ 3b

2
, which does

not exist for b = 1, but does for other values. Furthermore, there are r choices of i that set
i = b− 2i, which must get subtracted off as these were not counted as part of items 1, 2, 3.
In total - this gives rise to

2(m− 2− 2t− r − q)

such pairs we need to subtract off, where the multiplication by 2 comes from symmetry with
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the other condition b− i− j = j. Thus, this gives a total of

1

6
[(m− 2− t)(m− 3− t)− (m− 2− t)− (m− 1− 2− 2t− q)

− t(m− 2− 3t)− 2(m− 2− 2t− r − q)] + (m− 2− q − t)

triples corresponding to facets of Qm,b. The result follows from evaluating the quantities
t, q, r for m mod 6.

6 Code

Throughout the program, we wrote methods in Sage to aid us with our exploration into
symmetric numerical semigroups. A compilation of these appears in: https://github.

com/GeorgeTsoukalas/symmetricFaceFunctions. There are dependencies on both nums-
gps.sage and KunzPoset.sage. We will give some discussion of these functionalities here:

1. generateSymmetricPosetInequalities : Inputs integers m, b and outputs the array of
Kunz Inequalities that Qm,b satisfies.

INPUT: generateSymmetricPosetInequalities(4,2)

OUTPUT: [[0, 2, -1, 0], [0, 1, 1, -1], [0, -1, 1, 1],

[0, 0, -1, 2], [0, -2, 1, 0], [0, 0, 1, -2]]

2. maximalSymmetricPoset : inputs integers m, b and outputs the cover relations for the
Kunz Poset of Qm,b to be used to construct a FinitePoset object.

INPUT: maximalSymmetryPoset(4,2)

OUTPUT: ([0,1,2,3,4],

[(0, 1), (1, 3), (0, 2), (2, 3), (0, 4), (4, 3)])

3. generateSymmetricFace: inputs integers m, b and creates Qm,b as a Polyhedron object.

INPUT: generateSymmetricFace(4,3)

OUTPUT: A 2-dimensional polyhedron in QQ^3 defined as

the convex hull of 1 vertex and 2 rays (use the .plot() method to plot)
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4. dimensionData: inputs integer m and outputs the dimension and f-vector of Qm,b for
each b ∈ [1,m− 1]. We ran this up to m = 18, and the results of those computations
can be accessed here.

5. facetEqualities : inputs face as a Polyhedron object and integer m, returns those in-
equalities from the Kunz inequalities which are satisfied with equality.

INPUT: facetEqualities(generateSymmetricFace(4,3), 4)

OUTPUT: [[0, 1, 1, -1]]

6. returnKunzPoset : inputs face as a Polyhedron object of Cm and integer m, returns the
corresponding Kunz Poset object.

INPUT: returnKunzPoset(face: Polyhedron, 4)

OUTPUT: KunzPoset with multiplicity 4

7. findRaysForSymmetryFaces : inputs an integer m and outputs the rays of Qm,b for each
b ∈ [1,m− 1].

INPUT: findRaysForSymmetryFaces(4)

OUTPUT: Q41 has rays [(3, 2, 1), (1, 0, 1)]

Q42 has rays [(1, 2, 1)]

Q43 has rays [(1, 0, 1), (1, 2, 3)]

8. posetElementDepth: inputs face as a Polyhedron object and an integer m, outputs an
array of integers where the index corresponds to the element of the corresponding Kunz
Poset of the face and the value at that index is the element’s height. Height is defined
as the maximal length of a chain from 0 to the element.

INPUT: posetElementDepth(generateSymmetricFace(12,7).facets()[0],12)

OUTPUT: [0, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1]

9. getTuple: inputs facet as a Polyhedron object and an integer m, outputs an array
indexed by height of the number of elements of the facet’s KunzPoset with that height.

10. getTypesOfTuples : inputs integers m, b and outputs the number of each facet type for
each facet of Qm,b. In order, the facet types are single-boost, double-boost, triple-boost,
boost-boost, and other (we proved no ”other”s exist. This method utilizes getTuple.
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INPUT: getTypesOfTuples(7,1)

OUTPUT: Q7,1 with tuple (1, 2, 1, 0, 0)

11. qmbFacetPosets : inputs m, b and builds a symmetric polyhedron and prints the posets
of its facets. This method utilizes generateSymmetricFace, facetEqualities.

INPUT: qmbFacetPosets(8,3)

OUTPUT: 7 KunzPosets corresponding to the 7 facets of $\Qmb$

12. findTriples : inputs m, b and returns a list of all allowed triples covered in Theorem
5.0.2.

INPUT: findTriples(8,3)

OUTPUT: [[1, 1, 1], [1, 4, 6], [1, 5, 5], [2, 2, 7],

[2, 4, 5], [5, 7, 7], [6, 6, 7]]

13. tripleToEq : inputs m and a list and returns a list of each corresponding equation in
the format used by KunzPoset and Polyhedron objects.

INPUT: tripleToEqs(8,[1, 4, 6])

OUTPUT: [[0, 1, 0, 0, 1, -1, 0, 0],

[0, 1, 0, 0, 0, 0, 1, -1],

[0, 0, -1, 0, 1, 0, 1, 0]]

14. findTriplesDiffFormat : inputs m, b. finds allowed triples and uses it to return a list
holding each facet’s list of equalities corresponding equations in the format used by
KunzPoset and Polyhedron objects. Utilizes tripleToEqs

INPUT: findTriplesDiffFormat(6,1)

OUTPUT: [[[0, 0, 1, 0, -1, 0], [0, 0, 1, 1, 0, -1], [0, 0, 1, 1, 0, -1]],

[[0, 0, -1, 1, 0, 1], [0, 0, -1, 1, 0, 1], [0, 0, 0, 0, -1, 1]],

[[0, 0, -1, 0, 1, 0], [0, 0, 0, -1, 1, 1], [0, 0, 0, -1, 1, 1]]]

15. intersectionRays : inputs m, b, b′ and returns a list of rays that define the face of the
intersection of Qm,b and Qm,b′ . Utilizes generateSymmetricFaces

INPUT: intersectionRays(8, 3, 7)

OUTPUT: (A ray in the direction (1, 0, 1, 0, 1, 0, 1),

A ray in the direction (1, 2, 3, 0, 1, 2, 3))

16. intersectionZeroes : inputs a list of rays and returns a list of all ray coordinates that
are 0 in all rays.

INPUT: intersectionZeroes(intersectionRays(8,3,7)

OUTPUT: [4]

17. intersectionPoset : inputs m, b, b′ and prints the poset corresponding to the intersection
Qm,b and Qm,b′ .

INPUT: intersectionPoset(8, 3, 7)

OUTPUT: KunzPoset of the intersection
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