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Abstract

Recent research has focused on the relationship between numerical semigroups and
the group cone. Gluing is a process of building new numerical semigroups from old
numerical semigroups. This write up seeks to examine where in the group cone we
find glued numerical semigroups. We show a membership criterion for the Apéry sets
of glued semigroups as well as a description of their poset relations. We then connect
these results to the group cone using an injective map. We end by considering future
directions to extend our work.
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3.3 Apéry posets of monoscopic gluings with respect to arbitrary moduli . . . . 16

4 Background: Kunz posets and the group cone 20
4.1 Kunz posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 The group cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



5 Glued semigroups and the group cone 23
5.1 The face injection Φρ,S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Face-filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 A special case: n× 2 gluings . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Further questions 36

1 Introduction

A numerical semigroup is a subset N ⊆ Z≥0 which is closed under addition and has finite
complement. We can specify numerical semigroups using a list of generators {g1, g2, . . . , gk}
such that for a numerical semigroup S we have

S = {x | x = a1g1 + · · ·+ akgk, ai ∈ Z≥0}.

We then write S = ⟨g1, . . . , gk⟩. For each element µ in a numerical semigroup S there
exists a subset of S called the Apéry set of S with respect to µ. We write

Ap(S;µ) = {n ∈ S : n− µ /∈ S}.

Apéry sets give rise to a poset (Ap(S;µ),⪯) where for c, d ∈ Ap(S;µ) we say that c ⪯ d
if and only if d − c ∈ S (or equivalently d − c ∈ Ap(S;µ) by Lemma 3.1.4). Posets can be
described visually using a directed graph with edges representing covering relations.

One process of constructing new numerical semigroups from others is a process called
gluing which works by “scaling” two semigroups and combining them. The goal of this
paper is to provide a description of the Apéry posets of glued semigroups. We can then
connect this description to a geometric object called the group cone.

The group cone is a pointed rational cone described in [3]. Apéry sets of numerical
semigroups can be associated to integer points on the group cone. A previous paper [1]
characterized where monoscopic (and Arithmetical) numerical semigroups lie on the group
cone. Following from that, we seek to characterize where glued semigroups lie in the group
cone, and explore what other semigroups lie in faces with glued semigroups.

We begin this write up by introducing necessary background on numerical semigroups,
Apéry sets, posets, and gluings. This provides us with the background necessary to then
introduce a membership criterion for glued semigroups. From there we will explore two
special cases of the Apéry posets for general gluings: when we take the Apéry poset with
respect to a generator, and when we restrict one of the glued semigroups to be all of the non-
negative integers (monoscopic gluings). In both of these cases we provide a characterization
of their Apéry poset relations as well as their covering relations. Following this description
of Apéry posets, we move on to providing a more thorough background on the group cone,
which is a larger family of cones to which the Kunz cone belongs. We then move into an
attempt to generalize section 6 of [1] from monoscopic gluings to any gluing. We finally
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end by discussing remaining questions and what we would like to continue to look at in the
future.

2 Background: numerical semigroups

We will now provide additional background on numerical semigroups, Apéry sets, and gluings
which will be useful when we present our results in later sections.

2.1 Fundamental properties of numerical semigroups

Having introduced numerical semigroups in the introduction, we will now begin this section
with a few examples of numerical semigroups.

Example 2.1.1. Consider

⟨5, 7⟩ = {0, 5, 7, 10, 12, 14, 15, 17, 19, 20, 21, 22, 24, 25, 26, 27, 28 . . .}

Notice that 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18, 23 are the only non-negative integers not in the
semigroup. Additionally, since we know that 5 is in the semigroup, because we have
24, 25, 26, 27, 28 in the numerical semigroup, we can obtain any integer greater than 28 by
adding copies of 5 to one of these integers. So we have a finite complement.

We can also have numerical semigroups with more than 2 generators, consider

⟨6, 9, 20⟩ ={0, 6, 9, 12, 15, 18, 20, 21, 24, 26, 27, 29, 30, 32, 33,
35, 36, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49 . . .}

Notice that 43 is the largest integer not in the numerical semigroup. Since we know that 6 is
in the semigroup, and 44, 45, 46, 47, 48, 49 are in the semigroup, we can obtain every integer
greater than 49 by adding copies of 6 to one of these integers. So we have finite complement
here too.

We will now introduce an important result about numerical semigroups which is essential
to understanding gluings:

Theorem 2.1.2 (section 1.2 of [5]). Given a numerical semigroup S, there is a unique
minimal generating set A(S) for S.

Definition 2.1.3. We call elements of A(S) the minimal generators or atoms of S.

Example 2.1.4. Consider the numerical semigroup

⟨5, 7, 10⟩ = {0, 5, 7, 10, 12, 14, 15, 17, 19, 20, 21, 22, 24, . . .}

This is a valid numerical semigroup; however, notice that 10 = 2(5), so

⟨5, 7, 10⟩ = {0, 5, 7, 10, 12, 14, 15, 17, 19, 20, 21, 22, 24, . . .} = ⟨5, 7⟩

So {5, 7} is the minimal generating set for this numerical semigroup.
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For the purposes of this manuscript, when we refer to “a generator” of a numerical
semigroup S, we implicitly mean a minimal generator unless otherwise stated. We primarily
use “atom” when referring to posets, where generators always appear directly above 0.

We now make note of one final result about generating sets for numerical semigroups
which is useful for determining if a set is a generating set of a numerical semigroup:

Theorem 2.1.5 (section 1.2 of [5]). A set A(S) = {g1, g2, . . . , gk} ⊆ Z≥0 is the generating
set of a numerical semigroup if and only if gcd(g1, g2, . . . , gk) = 1.

2.2 Gluing

One process of constructing new numerical semigroups from others is a process called gluing.
Suppose S1 = ⟨a1, . . . , ak⟩ and S2 = ⟨b1, . . . , bℓ⟩ are numerical semigroups, and α, β are
nonnegative integers. We may then define the set

T = αS1 + βS2

where the usual definitions of adding sets and multiplying by a scalar are used. In particular,
this means that

T = ⟨αa1, . . . , αak, βb1, . . . , βbℓ⟩.

We next describe under what circumstances T is a numerical semigroup with the given
generating set:

Theorem 2.2.1 (section 8.3 of [5]). The set T is a numerical semigroup with the above
generating set minimal if and only if

1. gcd(α, β) = 1,

2. α ∈ S2 \ {b1, . . . , bℓ}, and

3. β ∈ S1 \ {a1, . . . , ak}.

Definition 2.2.2. If all three requirements above are met, we call T = αS1 + βS2 a gluing.

Example 2.2.3. Consider ⟨68, 75, 85, 105⟩, notice gcd(68, 85) = 17 and gcd(75, 105) = 15.
Additionally notice that gcd(15, 17) = 1. Thus we have a candidate for a gluing, which
would be:

⟨68, 75, 85, 105⟩ = 17⟨4, 5⟩+ 15⟨5, 7⟩.

The final condition that we need to check is that 17 ∈ ⟨5, 7⟩ and 15 ∈ ⟨4, 5⟩. Observe that
17 = 2(5) + 7 ∈ ⟨5, 7⟩. Also, we can see that 15 = 3(5) = ⟨4, 5⟩. So we have

⟨68, 75, 85, 105⟩ = 17⟨4, 5⟩+ 15⟨5, 7⟩

is a gluing.
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2.3 Apéry sets and posets

In the introduction we defined an Apéry set for an element of a numerical semigroup S. We
will repeat the definition again here:

Definition 2.3.1. The Apéry set of a numerical semigroup S with respect to an element
µ ∈ S is the set

Ap(S;µ) = {n ∈ S : n− µ ̸∈ S}.

Example 2.3.2. Consider the numerical semigroup S = ⟨6, 9, 20⟩. We can then build the
Apéry set Ap(S; 6) through the following method. The first element we can consider is 6.
Since 6− 6 = 0 ∈ S we know that 6 /∈ Ap(S; 6), but 0− 6 = −6 /∈ S, so 0 ∈ Ap(S; 6). Next
notice that 9− 6 = 3 /∈ S, so 9 ∈ Ap(6;S). Furthermore 20− 6 = 14 /∈ S, so 20 ∈ Ap(S; 6).
Continuing in this way we notice:

29− 6 = 23 /∈ S 40− 6 = 34 /∈ S 49− 6 = 43 /∈ S

So we have Ap(S; 6) = {0, 9, 20, 29, 40, 49}.

One important result about Apéry sets is that an Apéry set contains precisely one element
in each mod class for µ:

Theorem 2.3.3 (section 1.2 of [5]). The Apéry set of S with respect to µ ∈ S consists of
exactly µ elements, with each modulus class mod µ being represented exactly once. In fact,
we can give the equivalent characterization

Ap(S;µ) = {min(S ∩ [i]µ) : 0 ≤ i ≤ µ− 1}

or in other words, it consists of the minimal elements of each mod class mod µ which lie in
S.

The fact that each mod class modulo µ is represented exactly once in Ap(S;µ) means
that we can write the Apéry set in order of mod class, i.e.

Ap(S;µ) = {x0, x1, . . . , xµ−1}

where xi ≡ i mod µ. We traditionally write Apéry sets in this order whenever possible.

Example 2.3.4. Following from Example 2.3.2, Ap(S; 6) = {0, 9, 20, 29, 40, 49} can be re-
ordered as Ap(S; 6) = {0, 49, 20, 9, 40, 29} since

0 ≡ 0 mod 6 49 ≡ 1 mod 6 20 ≡ 2 mod 6

9 ≡ 3 mod 6 40 ≡ 4 mod 6 29 ≡ 5 mod 6

We now return to the concept of an Apéry poset. We assume the definition of a poset
and poset relation is known.
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Definition 2.3.5. For a numerical semigroup S and µ ∈ S, then the Apéry poset of Ap(S;µ),
is defined such that for c, d ∈ Ap(S;µ) we have c ⪯ d if and only if d− c ∈ S.

Additionally, we can define a specific type of precedence relation, the covering relation:

Definition 2.3.6. In a poset (P,⪯), we say an element b ∈ P covers an element a ∈ P if
a ≺ b and there does not exist c ∈ P such that a ≺ c ≺ b.

Theorem 2.3.7 (Prop. 3.10(a) in [3]). In the Apéry poset (Ap(S;µ),⪯S), b covers a if and
only if b − a ∈ A(S). Moreover, 0 is the unique minimal element of the poset, and it is
covered by the elements of A(S) \ {µ}.

We call the elements which cover 0 the atoms of an Apéry poset. These correspond to
the atoms (generators) of an Apéry set which are not µ. We now consider the graphical
representation of a (finite) poset i.e its Hasse diagram.

Example 2.3.8. Returning to S = ⟨6, 9, 20⟩, we know from Example 2.3.2 that

Ap(S; 6) = {0, 49, 20, 9, 40, 29}.

Notice that 9− 0 = 9 ∈ A(S) so 9 covers 0. Notice also 29− 9 = 20 ∈ A(S), so 29 covers 9.
If we try 49− 20 = 29 ∈ S, so 20 ⪯ 49, but 49 does not cover 20 because they do not differ
by a generator. If we continue to consider all combinations of elements of Ap(S; 6), we can
then build the following poset graph:

0

9 20

4029

49

3 Apéry posets of glued semigroups

In this first set of results, we characterize the Apéry sets of arbitrary gluings with respect
to arbitrary elements. We then characterize the Apéry posets of monoscopic gluings with
respect to arbitrary elements, and the Apéry posets of arbitrary gluings with respect to a
generator.

Our key tool in this endeavor is the idea of a canonical factorization for integers based on
a glued semigroup, which will lead to a convenient membership criterion for both the glued
semigroup and, by extension, its Apéry set, as well as allowing us to describe precisely when
elements precede each other in the Apéry poset.
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3.1 Canonical factorization and Apéry sets of general gluings

We first define the canonical factorization of an integer with respect to a glued semigroup
and prove its fundamental properties (existence, uniqueness, and membership criterion).
We then use the glued semigroup membership criterion to create an Apéry set membership
criterion.

To motivate canonical factorization, consider trying to determine whether an integer n
lies in the glued numerical semigroup T = αS1 + βS2. Unfortunately, there are infinitely
many ways to write n as a linear combination αc1 + βc2 of α and β, and only one of them
needs to satisfy c1 ∈ S1, c2 ∈ S2 for n to be in T .

To get insight into this, we can consider an element we know to be in T , namely αβ.
There are two ways to factor this in T , either as α(β)+β(0) or as α(0)+β(α). More generally,
we can observe that for any element of T with multiple factorizations, lowering the second
coefficient by α will raise the first coefficient by β, and vice versa. We might hope that by
requiring us to minimize the second coefficient, we can pick out a unique factorization.

It turns out that we can always make the second coefficient c2 small enough that it lies
in Ap(S2;α), and no smaller. Taking the equality n = αc1 + βc2 mod α and then dividing
by β, we see that c2 ≡ nβ−1 mod α, which fixes the mod class of c2 and guarantees we
cannot decrease c2 any further once c2 ∈ Ap(S2;α). This allows us to establish a canonical
factorization for elements in T : Every element of T has a unique factorization of the form
αc1 + βc2 where c2 ∈ Ap(S2;α).

This then allows us to answer our question of whether an arbitrary integer n lies in T ,
since the canonical factorization above is still valid for any integer n: Write n = αc1 + βc2,
where c2 is the unique element of Ap(S2;α) that is equivalent mod α to nβ−1. If c1 ∈ S1,
then n ∈ T by definition, whereas if c1 ̸∈ S1, then n can’t possibly be an element of T , since
it would have at least one factorization with the β coefficient c2.

We now prove this rigorously.

Theorem 3.1.1. Suppose T = αS1+βS2 is a gluing, and consider n ∈ Z. Then there exists
a unique pair of coefficients c1, c2 such that

n = αc1 + βc2

where c2 ∈ Ap(S2;α). Moreover, n ∈ T if and only if c1 ∈ S1.

Proof. Define c2 to be the unique integer solution in Ap(S2;α) to the equation c2 ≡ n mod α.
Then there is a unique integer solution c1 to the equation

n = αc1 + βc2.

This shows existence. To show uniqueness, notice that if

n = αc1 + βc2 = αc′1 + αc′2
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where c2, c
′
2 ∈ Ap(S2;α), then taking the difference gives

α(c′1 − c1) + β(c′2 − c2) = 0

Taking this mod α gives c′2 − c2 ≡ 0 mod α, forcing c′2 = c2, from which c′1 = c1 follows.
Suppose now that n has been written in canonical factorization n = αc1+βc2. If c1 ∈ S1,

then obviously n ∈ T . If c1 ̸∈ S1, then suppose that n ∈ S regardless, with factorization
n = αc′1 + βc′2, where c′1 ∈ S1 and c′2 ∈ S2. Then we have

n− n = α(c′1 − c1) + β(c′2 − c2) = 0

Taking this mod α, we see that c′2 = c2 +mα for some m > 0. But then c′1 − c1 = −mβ, or
equivalently c1 = c′1 + nβ ∈ S1, a contradiction.

Definition 3.1.2. Suppose T = αS1 + βS2 is a gluing, and n ∈ Z. We call the unique
factorization n = αc1 + βc2 with c2 ∈ Ap(S2;α) given above the canonical factorization of
n.

Example 3.1.3. Suppose T = ⟨4, 5⟩ = 4⟨1⟩+ 5⟨1⟩. Then

Ap(S2;α) = Ap(⟨1⟩; 4) = {0, 1, 2, 3}.

1. The element 13 has only a single factorization 4(2) + 5(1) in T , which is its canonical
factorization.

2. The element 25 has two factorizations, 4(5) + 5(1), and 4(0) + 5(5). Notice that the
two second coefficients, 1 and 5, are both 1 mod 4, but only 1 lies in Ap(S2; 4), so the
first factorization is the canonical one.

3. Suppose we wanted to know whether the integer 7 was an element of T . We notice
that 7 · 5−1 ≡ 3 · 1−1 ≡ 3 mod 4, so we pick out the element of Ap(⟨1⟩, 4) equivalent to
3 mod 4, namely 3, and write

7 = 4c1 + 5(3).

Solving, we find c1 = −2. Since −2 ̸∈ ⟨1⟩, we conclude that 7 ̸∈ ⟨4, 5⟩. We can see this
intuitively by writing

7 = 4(−2) + 5(3)

and trying to increase the coefficient −2. The only way to do so is to increase the −2
by 5 and decrease the other coefficient 3 by 4, giving

7 = 4(3) + 5(−1)

which now suffers from the problem that −1 ̸∈ S2.
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Canonical factorization is convenient because it gives us an inclusion criterion for a glued
semigroup T = αS1 + βS2. Since computing the elements of Ap(T ;µ) essentially reduces to
determining whether c− µ ∈ T for each element c of T , canonical factorization allows us to
define an inclusion criterion for Ap(T ;µ).

The strategy is to break an arbitrary element c ∈ T into canonical factorization αc1+βc2,
break the modulus µ ∈ T into canonical factorization αµ1 + βµ2, and then adjust the
coefficients of the difference c−µ = α(c1−µ1)+β(c2−µ2) by adding and subtracting copies
of αβ to put it in canonical factorization.

We include the complete result Theorem 3.1.6 below, but unfortunately it is not nearly
as nice as might be hoped. Taking the difference of two elements in canonical factorization
does not always give the canonical factorization of an element, and so far there seems no
intuitive way to tell how many copies of αβ have to be traded between the terms in order
to get back a canonical factorization other than directly taking differences.

Thankfully, things become much simpler in two special cases, which we will explore in
more depth later in subsection 3.2 and subsection 3.3, and turn out to be incredibly useful
on their own. These are µ ∈ αA(S1), where no trades are needed, and when S2 = ⟨1⟩, where
the number of trades n is at most 1.

Lemma 3.1.4. Suppose ai, aj ∈ Ap(S;µ). Then either ai − aj ̸∈ S or ai − aj ∈ Ap(S;µ).

Proof. Suppose neither is true. Then ai − aj − µ ∈ S. But this means that

ai − µ = (ai − aj − µ) + aj ∈ S,

contradicting ai ∈ Ap(S;µ).

Corollary 3.1.5. For two elements ai, aj ∈ Ap(S;µ), there exists a unique integer n ≥ 0
such that

ai − aj + nµ = ai−j ∈ Ap(S;µ).

Theorem 3.1.6. With T = αS1 + βS2, let

µ = αµ1 + βµ2 ∈ T

have canonical factorization (i.e. µ1 ∈ S1 and µ2 ∈ Ap(S2;α)). Let

c = αc1 + βc2 ∈ T

have canonical factorization. Then c ∈ Ap(T ;µ) if and only if c1 ∈ Ap(S1;µ1 + nβ) with n
the unique nonnegative integer such that c2 − µ2 + nα ∈ Ap(S2;α).

Proof. We begin by noting that n is unique by Corollary 3.1.5. We then move on to showing
that if these conditions are met, then c ∈ Ap(T ;µ). We have

c− µ = α(c1 − µ1) + β(c2 − µ2).
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So we have
c− µ = α(c1 − µ1 − nβ) + β(c2 − µ2 + nα).

Since we assume that c1 ∈ Ap(S1;µ1 + nβ) we know that c1 − µ1 − nβ /∈ S1. Furthermore,
since we assume c2 − µ2 + nα ∈ Ap(S2;α), by the uniqueness of the canonical factorization
we know that c− µ /∈ T . So c ∈ Ap(T ;µ).

On the other hand, suppose c− µ /∈ T . So we have

c− µ = α(c1 − µ1) + β(c2 − µ2) /∈ T.

Define n to be the unique nonnegative integer such that c2 − µ2 + nα ∈ Ap(S2;α) (which
exists by Corollary 3.1.5). Then the canonical factorization of c− µ is

c− µ = α(c1 − µ1 − nβ) + β(c2 − µ2 + nα)

and so c− µ ̸∈ T if and only if c1 − µ1 − nβ ̸∈ S1 that is,

c1 ∈ Ap(S1;µ1 + nβ).

So c ∈ Ap(T ;µ) if and only if c1 ∈ Ap(S1;µ1+nβ) with n the nonnegative integer such that
c2 − µ2 + nα ∈ Ap(S2;α).

Question 3.1.7. This theorem requires computing a family of Apéry sets Ap(S1;µ1 + nβ)
for n ranging from 0 to some maximal value. What is the maximal value of n required? Is
there an efficient way to generate this family of Apéry sets from only one of them?

Question 3.1.8. Generalize the Apéry poset descriptions of the two special cases found
later to give a description of the poset associated to the above Apéry set.

While the above result is a useful membership criterion for the Apéry sets of glued
semigroups with respect to arbitrary moduli, it is also useful to understand the poset and
covering relations corresponding to glued semigroups. We will now present two special cases
of glued semigroups with their poset and covering relations:

3.2 Apéry posets of general gluings with respect to generators

Firstly, we will describe the poset and covering relations for glued semigroups with respect
to generators. Apéry sets are often considered with respect to generators so this case is
especially useful.

Corollary 3.2.1 (of Theorem 3.1.6). For a gluing T = αS1 + βS2, with S1 = ⟨a1, . . . , ak⟩
and S2 = ⟨b1, . . . , bℓ⟩, then the canonically factored

c = αc1 + βc2 ∈ Ap(T ;αai)

if and only if c2 ∈ Ap(S2;α), and c1 ∈ Ap(S1; ai). A similar result follows for generators
resulting from S2.
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Proof. Observe that αai = α(ai) + β(0) in canonical factorization. So by Theorem 3.1.6 we
know that for all c = c1α+ c2β ∈ Ap(T ;αai), we need c2 − 0+ nα ∈ Ap(S2;α). This is only
true when n = 0. Thus we have that c1 ∈ Ap(S1; ai).

Example 3.2.2. Consider the gluing T = ⟨68, 85, 100, 140⟩ = 17⟨4, 5⟩ + 20⟨5, 7⟩. We can
determine Ap(T ; 17 · 4) by writing

Ap(T ;αa1) = αAp(S1; a1) + β Ap(S2;α)

Ap(T ; 17 · 4) = 17Ap(⟨4, 5⟩; 4) + 20Ap(⟨5, 7⟩; 17).

Iterating this process, we can quickly compute

Ap(⟨4, 5⟩; 4) = {0, 5, 10, 15}

and
Ap(⟨5, 7⟩; 17) = {0, 35, 19, 20, 21, 5, 40, 7, 25, 26, 10, 28, 12, 30, 14, 15, 33}

so by picking elements e1, e2 of these sets, computing the result of the expression 17e1+20e2,
and then sorting the result by mod class, we obtain the Apéry set

Ap(T ; 68) =

{ 0 , 885, 410, 955,
140, 685, 550, 755,
280, 485, 690, 555,
420, 285, 830, 355,

560, 85 , 970, 495,
700, 225, 770, 635,
500, 365, 570, 775,
300, 505, 370, 915,

100, 645, 170 , 1055,
240, 785, 310, 855,
380, 585, 450, 655,
520, 385, 590, 455,

660, 185, 730, 255 ,
800, 325, 870, 395,
600, 465, 670, 535,
400, 605, 470, 675,
200, 745, 270, 815}.

where the boxed elements are those that come from choosing e2 = 0, and those in the first
column come from choosing e1 = 0. We could also write this set as a 17× 4 array, in which
case the boxed elements would be the first elements of the four rows and the current first
elements of each column would be spaced out every four numbers throughout the table.
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We now characterize the precedence and covering relations of the Apéry poset. The
lemma below is a useful counterpart to Lemma 3.1.4, which will also be used.

Lemma 3.2.3. Suppose a ∈ Ap(S;µ) and a− c ∈ Ap(S;µ). Then c ∈ Ap(S;µ).

Proof. Let c′ be the element of Ap(S;µ) such that c′ ≡ c mod µ. Then observe

a− c ≡ a− c′ mod µ

and that a − c′ ∈ Ap(S;µ) by Lemma 3.1.4. This implies a − c = a − c′, or c = c′, and
therefore c ∈ Ap(S;µ) as desired.

Theorem 3.2.4. For a gluing T = αS1 + βS2, fix c, d ∈ Ap(T ;αa1) with canonical factor-
izations c = αc1 + βc2 and d = αd1 + βd2 (i.e. c1, d1 ∈ Ap(S1; a1) and c2, d2 ∈ Ap(S2;α)).

1. If β /∈ Ap(S1, a1) then c ⪯T d if and only if c1 ⪯S1 d1 and c2 ⪯S2 d2.

2. If β ∈ Ap(S1, a1) then c ⪯T d if and only if c1 ⪯S1 d1 and c2 ⪯S2 d2, or c1 +nβ ⪯S1 d1
and c2 ⪯S2 d2 + nα for some n ≥ 1.

Moreover, the additional allowed condition in the second case always result in additional
relations.

Proof. If c1 ⪯S1 d1 and c2 ⪯S2 d2, then d− c = α(d1 − c1) + β(d2 − c2) with d1 − c1 ∈ S1 and
d2 − c2 ∈ S2, so c ⪯T d.

If c1 + nβ ⪯S1 d2 and c2 ⪯S2 d2 + nα for n ≥ 1, then

d− c = α(d1 − c1) + β(d2 − c2) = α(d1 − c1 + nβ) + β(d2 − c2 − nα)

where the first coefficient is in S1 and the second is in S2.
Now assume that d− c ∈ T . We then know that

d− c = α(d1 − c1) + β(d2 − c2) ∈ T.

If c2 ⪯S2 d2 then d2 − c2 ∈ S2, and specifically in Ap(S2;α) by Lemma 3.1.4. So then
d1 − c1 ∈ S1, i.e. c1 ⪯S1 d1.

We know c2 ̸⪯S2 d2 if and only if d2 − c2 /∈ Ap(S2;α). By Corollary 3.1.5 we know that
there exists a unique n ∈ Z≥0 such that d2 − c2 + nα ∈ Ap(S2;α). If n = 0 we get the case
in the previous paragraph, so assume n ≥ 1. Observe

d− c = α(d1 − c1) + β(d2 − c2) = α(d1 − c1 − nβ) + β(d2 − c2 + nα).

Since d2−c2+nα ∈ Ap(S2;α) we know that c2 ⪯S2 d2+nα. So α(d1−c1−nβ)+β(d2−c2+nα)
is in canonical factorization, so d− c ∈ T if and only if d1 − c1 − nβ ∈ S1, i.e. c1 + nβ ⪯ d1.
On the other hand, the fact that c, d ∈ Ap(T ;αa1) also gives that d − c ∈ T if and only if
d−c ∈ Ap(T ;αa1), if and only if d1−c1−nβ ∈ Ap(S1; a1). By Lemma 3.2.3, nβ ∈ Ap(S1; a1).
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Since we know that β ∈ S1, therefore if we assume β − a1 ∈ S1 (that is β /∈ Ap(S1; a1)),
then, since we are assuming n ≥ 1, we may write

nβ − a1 = (β − a1) + (n− 1)β ∈ S1.

This would imply βn /∈ Ap(S1; a1), so by contradiction we must have β ∈ Ap(S1; a1) if we
have an n ≥ 1 case.

Finally, observe that if β ∈ Ap(S1; a1), then the canonical factorization of αβ is α(β) +
β(0), while the canonical factorization of β(α−g), for a generator g of S2 such that g ⪯S2 α,
is α(0)+β(α−g) (since α−g ∈ Ap(S2;α)), and that we must have αβ−β(α−g) = β(g) ∈ T ,
so

α(β) + β(0) ⪯T α(0) + β(α− g)

but this precedence relation cannot be given only by the n = 0 case.

Corollary 3.2.5. For a glued semigroup T = αS1 + βS2 where we have S1 = ⟨a1, . . . , ak⟩,
and S2 = ⟨b1, . . . , bℓ⟩ fix c, d ∈ Ap(T ;αai) with c = αc1+βc2 and d = αd1+βd2 in canonical
factorization. Then d covers c if and only if:

1. c1 = d1 and d2 covers c2 in S2, or

2. d1 covers c1 in S1 and c2 = d2, or

3. c1 + nβ = d1 and d2 + nα covers c2 in S2, or

4. d1 covers c1 + nβ in S1 and c2 = d2 + nα.

Moreover, the third and fourth cases occur (for n ≥ 1) if and only if β ∈ Ap(S1; a1).

Proof. First suppose one of the conditions holds. For condition (1), if c1 = d1 and d2 covers
c2 in S2 then

d− c = α(d1 − c1) + β(d2 − c2) = α(0) + β(bi)

for some i ∈ {1, . . . , ℓ}. Showing that condition (2) corresponds to a covering relation follows
similarly.

If condition (3) holds then we have

d− c = α(d1 − c1) + β(d2 − c2) = α(d1 − c1 − nβ) + β(d1 + nα− c1) = α(0) + β(bi)

for some i ∈ {1, . . . , ℓ}. Showing that condition (4) corresponds to a covering relation follows
similarly.

Now suppose that d covers c. Then we have two cases:
Case 1. Suppose d − c = αai for some i ∈ {1, . . . , k}. Choose the corresponding i. So

we have
αai = d− c = α(d1 − c1) + β(d2 − c2).

13



Taking this equation mod α and dividing by β we know that d2 ≡ c2 mod α. Choose n ∈ Z
such that d2 + nα = c2. If n = 0 we have d2 = c2, then clearly d1 covers c1 in S1 and
condition (2) holds. If n > 0 then we know that

d− c = α(d1 − c1 − nβ) + β(d2 − c2 + nα).

So d1 covers c1 + nβ which is condition (4). Since covering implies precedence by Theo-
rem 3.2.4 we know that n ≥ 0.

Case 2. Suppose d − c = βbi for some i ∈ {1, . . . , ℓ}. Choose the corresponding i. So
we have

βbi = d− c = α(d1 − c1) + β(d2 − c2).

Taking this equation mod β and dividing by α we know that d1 ≡ c1 mod β. Choose n ∈ Z
such that d1 + nβ = c1. If n = 0 we have d1 = c1, then clearly d2 covers c2 in S2 and
condition (1) holds. If n > 0 then we know that

d− c = α(d1 − c1 − nβ) + β(d2 − c2 + nα).

So d2 + nα covers c2 which is condition (3). Since covering implies precedence by Theo-
rem 3.2.4 we know that n ≥ 0.

Example 3.2.6. We will now consider two examples, in order to demonstrate the precedence
and covering relations when we have the extra relations and when we do not have the extra
relations.

Before we look more closely at comparing two glued semigroups, we will begin by showing
the posets for Ap(⟨5, 7⟩; 17) and Ap(⟨4, 5⟩; 4) in Figures 1a and 1b, respectively.
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(a) Ap(⟨5, 7⟩; 17)
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(b) Ap(⟨4, 5⟩; 4)

Figure 1: The posets for Ap(⟨5, 7⟩; 17) and Ap(⟨4, 5⟩; 4)

This Apéry poset is useful for seeing the structure within the Apéry posets in Figures 2
and 3.
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Figure 2: Ap(T ; 68)

Now, consider the numerical semigroup T = ⟨68, 85, 100, 140⟩. Notice that T can also be
written as the gluing T = 17⟨4, 5⟩+20⟨5, 7⟩. We have then that Ap(T ; 68) is represented by
the poset in Figure 2.

Notice that this poset resembles the poset for Ap(⟨5, 7⟩; 17) copied out 4 times. Thus, we
can view this Apéry set as a sort of Cartesian product between Ap(⟨4, 5⟩; 4) and Ap(⟨5, 7⟩; 17).
The covering relations are highlighted by the different colored lines in this image, for two
elements c = αc1 + βc2 and d = αd1 + βd2 located within the poset the black lines corre-
spond to when the associated covering relation is that c1 = d1 and d2 covers c2 in ⟨5, 7⟩.
Furthermore, the gray lines correspond to the covering relation arising when d1 covers c1 in
⟨4, 5⟩ and c2 = d2. Note that in this example 20 /∈ Ap(⟨4, 5⟩; 4) so we expect not to get any
extra relations.

Now consider the numerical semigroup T ′ = ⟨68, 75, 85, 105⟩. Notice that T ′ can also be
written as the gluing T ′ = 17⟨4, 5⟩ + 15⟨5, 7⟩. Note that 15 ∈ Ap(⟨4, 5⟩; 4), so we expect to
find extra relations. We have then that Ap(T ′; 68) is represented by the poset:

For two elements c = αc1 + βc2 and d = αd1 + βd2 located within the poset the black
and gray lines correspond to cases (1) and (2) of Corollary 3.2.5 respectively. The red lines
then correspond to the extra relations that occur because 15 ∈ Ap(⟨4, 5⟩; 4), these are cases
(3) and (4) of Corollary 3.2.5.

In general, the red relations connect the bottom copy of the poset (Ap(S2;α),⪯S2) to
the copy at the position in (Ap(S1; a1),⪯S1) corresponding to the position of β in the poset
(Ap(S1; a1),⪯S1). Moreover, any two poset copies whose overall positions differ by β in the
poset (Ap(S1; a1),⪯S1) will be connected by these extra relations, and similarly for any poset
copies whose overall positions differ by nβ for n ≥ 2.
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Figure 3: Ap(T ′; 68)

3.3 Apéry posets of monoscopic gluings with respect to arbitrary
moduli

We take the definition of monoscopic gluing from [1]:

Definition 3.3.1. Fix a numerical semigroup S = ⟨n1, . . . , nk⟩, an integer α ∈ Z≥2, and an
element β ∈ S \ {n1, . . . , nk} such that gcd(α, β) = 1.The numerical semigroup

T = αS + β⟨1⟩ = ⟨αn1, . . . , αnk, β⟩

is called a monoscopic gluing of S.

It is previously known [5] that the above T is a numerical semigroup and that the gen-
erating set is minimal.

Example 3.3.2. The McNugget semigroup given by ⟨6, 9, 20⟩ is one example of a monoscopic
gluing. Notice that gcd(6, 9) = 3, so 3 is a candidate for α. Next notice that gcd(3, 20) = 1,
so we can write

⟨6, 9, 20⟩ = 3⟨2, 3⟩+ 20⟨1⟩

We now will give a membership criterion for the Apéry sets of monoscopic gluings with
respect to arbitrary moduli. This is a corollary of our membership criterion for general
gluings with respect to arbitrary moduli (Theorem 3.1.6) but we share here before sharing
the poset precedence and covering relations of this case.

Corollary 3.3.3 (of Theorem 3.1.6). Let T = αS+β⟨1⟩ be a monoscopic gluing. Let µ ∈ T
have canonical decomposition µ = αµ1+βµ2. Then c = αc1+βc2 (in canonical factorization)
is in Ap(T ;µ) if and only if either

1. c1 ∈ Ap(S;µ1 + β) and 0 ≤ c2 ≤ µ2 − 1, or
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2. c1 ∈ Ap(S;µ1) and µ2 ≤ c2 ≤ α− 1

Proof. First note that in either case we have c2 ∈ Ap(⟨1⟩;α). Since Ap(⟨1⟩;α) = [0, α − 1],
we know that 0 ≤ c2, µ2 ≤ α − 1. So 1 − α ≤ c2 − µ2 ≤ α − 1. If c2 < µ2 we have
1 − α ≤ c2 − µ2 ≤ −1. So c2 − µ2 + α ∈ Ap(⟨1⟩;α). So by Theorem 3.1.6 we know that
c ∈ Ap(T ;µ) if and only if c1 ∈ Ap(S;µ1 + β). If c2 ≥ µ2 we have 0 ≤ c2 − µ2 ≤ α − 1,
so c2 − µ2 ∈ Ap(⟨1⟩;α). So by Theorem 3.1.6 we know that c ∈ Ap(T ;µ) if and only if
c1 ∈ Ap(S;µ1).

A useful exercise is to verify that letting µ be a generator (either α times a generator or
β) in Corollary 3.3.3 gives the same result as letting S2 = ⟨1⟩ in Corollary 3.2.1.

We now list the precedence and covering relations for the poset.

Theorem 3.3.4. Let T = αS+β⟨1⟩ be a monoscopic gluing. Let µ ∈ T . Let c, d ∈ Ap(T ;µ)
have canonical decompositions:

c = αc1 + βc2 and d = αd1 + βd2

Then c ⪯T d if and only if either:

1. c2 ≤ d2 and c1 ⪯S d1, or

2. c1 ⪯S d1 − β.

Proof. To begin with, we will show that if c ⪯T d then either c2 ≤ d2 and c1 ⪯S d1, or
c1 ⪯S d1 − β. Since c ⪯T d, we know that d− c ∈ T . We can expand d− c to find

d− c = α(d1 − c1) + β(d2 − c2).

We now have two cases: d2 − c2 ≥ 0 and d2 − c2 < 0.
Case 1. Suppose d2−c2 ≥ 0. Then we know that d−c is in the canonical decomposition.

Since the canonical decomposition of an element of T is unique, we know that d1 − c1 ∈ S
and hence c1 ⪯S d1.

Case 2. Suppose d2 − c2 < 0. Then, since 0 ≤ d2, and c2 ≤ α− 1 we know that

1− α ≤ d2 − c2 ≤ −1.

So we have
1 ≤ d2 − c2 + α ≤ α− 1.

Observe

d− c = α(d1 − c1) + β(d2 − c2)

= α(d1 − β − c1) + β(d2 − c2 + α)
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Since 1 ≤ d2 − c2 + α ≤ α − 1, we know that d − c is in canonical decomposition. By the
uniqueness of the canonical decomposition, since d− c ∈ T it follows that d1 − β − c1 ∈ S.
Therefore c1 ⪯S d1 − β.

Now we will show that if one of the two conditions is met, then c ⪯T d.
Case 1: c2 ≤ d2 and c1 ⪯S d1. In this case,

d− c = α(d1 − c1) + β(d2 − c2).

Since d1 − c1 ∈ S and d2 − c2 ≥ 0, this is manifestly in T .
Case 2: c1 ⪯S d1 − β. We write

d− c = α(d1 − c1) + β(d2 − c2)

If d2−c2 ≥ 0 this is the canonical decomposition of d−c and we have d1−c1 = (d1−β−c1)+β,
which is the sum of the elements d1 − β − c1 and β in S. Otherwise, d2 − c2 ≤ 0. Since
0 ≤ c2, d2 ≤ α− 1, 1− α ≤ d2 − c2 ≤ −1, implying 1 ≤ d2 − c2 + α ≤ α− 1 so that

d− c = α(d1 − β − c1) + β(d2 − c2 + α)

Since d2 − c2 +α is nonnegative and d1 − β − c1 ∈ S from c1 ⪯S d1 − β, this is manifestly in
T .

Theorem 3.3.5. With notation as in the previous theorem, specifically with S = ⟨n1, n2, . . . , nk⟩
then d covers c in T if and only if one of the following criteria is met:

1. c1 = d1 and d2 − c2 = 1, or

2. d1 covers c1 in S and d2 = c2, or

3. d2 = 0, c2 = α− 1, and d1 = c1 + β.

Proof. For the forwards direction, we know that d covers c if and only if

d− c ∈ A(T ) = {β, αn1, αn2, . . . , αnk}.

Case 1. Suppose d − c = β. Then we know that β = α(d1 − c1) + β(d2 − c2). We can
take both sides of the equation mod α, to find 1 ≡ d2 − c2 mod α. Since c and d are in
canonical decomposition, we know that 0 ≤ c2, d2 ≤ α − 1. Thus 1 − α ≤ d2 − c2 ≤ α − 1.
Within that range, we know that 1 and 1− α are the only two values which are equivalent
to 1 mod α. Suppose d2 − c2 = 1. Then we have β = α(d1 − c1) + β. Thus we can solve
that d1 = c1. This satisfies criteria 1. Suppose d2 − c2 = 1− α. Thus d2 = c2 + 1− α. Since
0 ≤ d2, c2 ≤ α− 1, we know that

1− α ≤ d2 = c2 + 1− α ≤ 0.
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So d2 = 0. Thus c2 = α − 1. Furthermore, since β = α(d1 − c1) + β(d2 − c2) we can solve
that d1 = c1 + β. This is criterion 3.

Case 2. Suppose d − c = αni for some ni ∈ A(S) = {n1, n2, . . . , nk}. Then we have
αni = α(d1 − c1) + β(d2 − c2). We can take both sides of the equation mod α, to find
d2 ≡ c2 mod α, and given that 0 ≤ d2, c2 ≤ α− 1 it follows that d2 = c2. Thus we have

αni = α(d1 − c1) + β(d2 − c2) = α(d1 − c1).

So ni = d1 − c1. We know that d1 − c1 = ni ∈ A(S) if and only if d1 covers c1 in S. This is
criterion 2.

For the reverse direction, observe that if condition 1 is true, then

d− c = α(0) + β(1) = β ∈ A(T ).

If condition 2 is true, then d− c = α(ni)+β(0) = αni, where ni is a generator of S, and thus
αni is a generator of T . If condition 3 is true, then d− c = α(β) + β(−(α− 1)) = α.

Example 3.3.6. In order to demonstrate the covering relations and precedence relations
for monoscopic gluings with respect to arbitrary elements we will demonstrate using the
numerical semigroup T = ⟨4, 6, 7⟩ = 2⟨2, 3⟩ + 7⟨1⟩. In this example we will be exploring
Ap(T ; 17). Before we show this poset however, we will begin by showing two preliminary
posets. Recall from Corollary 3.3.3, that for a gluing T = αS + β⟨1⟩ that for an element
c ∈ Ap(T ;µ) we are concerned with when c1 ∈ Ap(S;µ1) and c1 ∈ Ap(S;µ1 + β). So, we
will now look at the posets for Ap(⟨2, 3⟩; 5) and Ap(⟨2, 3⟩; 12), shown in Figures 4a and 4b,
respectively.
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(b) Ap(⟨2, 3⟩; 12)

Figure 4: The Apéry posets for Ap(⟨2, 3⟩; 5) and Ap(⟨2, 3⟩; 12)

Now we will show that Apéry poset for Ap(T ; 17) in Figure 5.
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Figure 5: The Apéry poset for Ap(T ; 17).

The black lines in the image correspond to a difference of 4, the blue to a difference
of 6, and red to a difference of 7. Furthermore, notice the two different layers of this
poset, the bottom layer correspond to Ap(⟨2, 3⟩; 12) and the top to Ap(⟨2, 3⟩; 5). This
matches Corollary 3.3.3 describing two different cases one c1 ∈ Ap(S;µ1) and the other
c1 ∈ Ap(S;µ1 + β).

Then we can see the covering relations from Theorem 3.3.5, that case (1) corresponds to
the vertical relations, then case (2) are the relations within a slice and (3) are the diagonal
lines connecting slices.

4 Background: Kunz posets and the group cone

An interesting question when considering numerical semigroups is how two numerical semi-
groups relate to each other. One way we can consider this is when their Apéry posets look
“similar”. In the next subsection we will introduce a method of viewing “similarity” called
Kunz posets, and then in the following subsection we will introduce the group cone which
will help us to geometrically represent relations between numerical semigroups.

4.1 Kunz posets

While in the next subsection we will introduce a more general definition of a Kunz poset, we
will begin with the numerical semigroup-specific definition which will help to motivate the
importance of looking at the group cone later on. The following definition was taken from
[2]

Definition 4.1.1. Given a numerical semigroup S and an element µ, the Kunz poset of S
with respect to µ denoted Ku(S;µ) is the partially ordered set with groundset Zµ where we
replace each element of Ap(S;µ) with its equivalence class in Zµ
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Example 4.1.2. Consider the numerical semigroup S = ⟨6, 9, 20⟩. We can take Ap(S; 6).
The poset corresponding to Ap(S; 6) is given by:

0

9 20

4029

49

To find the Kunz poset we can relabel every node with its equivalence class modulo
6. For example we know that 0 ≡ 0 mod 6. Additionally, notice that 49 = 8(6) + 1, so
49 ≡ 1 mod 6. By taking the equivalence class modulo 6 for every element of Ap(S; 6) we
have:

0

3 2

45

1

Notice that Kunz posets are not unique to one semigroup, more than one semigroup may
give rise to the same Kunz poset.

Consider the numerical semigroup S ′ = ⟨6, 62, 187⟩. Firstly, we can find Ap(S ′; 6), which
is:

0

87 62

124149

211

Using this Apéry poset we can find the Kunz poset Ku(S ′; 6)
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So Ku(S; 6) = Ku(S ′; 6).

A natural question to ask next is when do two numerical semigroups have the same Kunz
poset? One important tool for answering this question is the group cone, which provides
a geometric perspective to the question. We will introduce the group cone in the next
subsection.

4.2 The group cone

We will now introduce relevant background about the group cone, a geometric object useful
for studying numerical semigroups. The group cone is based on ideas introduced in [4]. In
this section we are following closely to the introduction to the group cone given in [1]. The
following definitions and theorem come from [3]:

Definition 4.2.1. Fix m ∈ Z≥2 and a numerical semigroup S containing m. Write

Ap(S;m) = {0, a1, . . . , am−1}

where ai ≡ i mod m for each i ∈ {1, . . . ,m − 1}. We call (a1, . . . , am−1) as the Apéry tuple
or coordinate of S.

Definition 4.2.2. Fix a finite Abelian group (G,⊕) with identity 0G, and let m = |G|. The
group cone C(G) ⊂ Rm−1 is the pointed cone with facet inequalities

xi + xj ≥ xi⊕j for i, j ∈ G \ {0G} with i⊕ j ̸= 0G

Theorem 4.2.3. Fix an integer m ≥ 2, then the set of all Apéry tuples of numerical semi-
groups containing m coincides with the set of integer points (a1, . . . , am−1) in C(Zm) with
ai ≡ i mod m for every i.

Drawing from polyhedral geometry we will note a further definition:

Definition 4.2.4. A face is a subset of the group cone that satisfies some subset of the facet
inequalities with strict equality.

We then say that an Apéry coordinate lies “in” a face when said coordinate lies in a given
face but does not lie in any proper subface. We will now include a final theorem from [3]:
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Theorem 4.2.5 (Theorem 3.4 in [3]). Fix a finite Abelian group G and a face F ⊂ C(G).

(a) The set H = {h ∈ G : xh = 0 forall x ∈ F} is a subgroup of G which we call the Kunz
subgroup of G. Furthermore, the relation P = (G/H,⪯) with unique minimal element
0 and a ⪯ b whenever xa + xb−a = xb for distinct a, b ∈ G is a well-defined partial order
(called the Kunz poset of F ).

(b) If G = Zm with m ≥ 2 and F contains a numerical semigroup S, then the Kunz subgroup
of F is trivial and the Kunz poset of F equals the Kunz poset of S.

5 Glued semigroups and the group cone

A recent paper [1] presents a method for describing where monoscopic gluings lie in the group
cone when the multiplicity is an element of the glued semigroup. Here we seek to generalize
these results to more general gluings.

In section 3 we gave a characterization of the Apéry posets of glued semigroups with
respect to generators. A next step is to consider where in the group cone we find glued
semigroups. A first key step to this is understanding the Kunz posets of glued semigroups.
In our characterization of the Apéry set elements for a general gluing we relate the Apéry
sets of glued semigroups to the Apéry set of the overall gluing.

In this section we define a gluing extension that essentially translates the relations be-
tween Apéry poset relations into Kunz poset relations. We also define a map which injects
the Apéry coordinate of a semigroup into a group cone of higher dimension, and specifically
to a point corresponding to an Apéry set of a gluing of the original semigroup, given a few
additional inputs. This map allows us to move from the Kunz poset for one semigroup into
a Kunz poset of a gluing involving that semigroup, which we show corresponds to the gluing
extension. These results work for numerical semigroups, but the map also works for points
that do not correspond to numerical semigroups, the map will “work” for any input which
is in the group cone (assuming the other required inputs are correct).

Notation 5.0.1. In order to simplify numerous expressions in this section, we adopt the
convention of prepending a “0” entry to each point in C(G), indexed by the identity element
of G. More precisely, we write each (x1, x2, ...) ∈ C(G) in the form (x0, x1, x2, ...) with x0 = 0,
replacing C(G) with {0}×C(G), this is in agreement with section 6 of [1], which this section
seeks to generalize.

5.1 The face injection Φρ,S2

We will now introduce a family of combinatorial embeddings which are very similar to those
in section 6 of [1], with the change that we require k to be in an Apéry set rather than a
closed interval (which in fact is an Apéry set for ⟨1⟩).
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Definition 5.1.1. Fix a finite abelian group G, a subgroup H ⊂ G with G/H cyclic, fix
ρ ∈ G whose image in G/H is a generator. Let α = |G/H|. Fix S2 = ⟨g1, . . . , gk⟩ a numerical
semigroup with α ∈ S2 \ {g1, . . . , gk}. We define

Φρ,S2 : C(H) → C(G)

w 7→ x

where xh+kρ = αwh + kwαρ for each h ∈ H and k ∈ Ap(S2;α).

Lemma 5.1.2. Φρ,S2 is well-defined and injective.

Proof. Every element of G can be written uniquely as h+ kρ for h ∈ H and k ∈ Ap(S2;α).
If w ∈ C(H) and x = Φρ,S2(w) then x0 = αw0 + 0wαρ = 0. For any h1, h2 ∈ H, and
k1, k2 ∈ Ap(S2;α) we have:

xh1+k1ρ + x(h2−h1)+(k2−k1)ρ = αwh1 + k1wαρ + αwh2−h1 + (k2 − k1)wαρ

= α(wh1 + wh2−h1) + k2wαρ

≥ αwh2 + k2wαρ

= xh2+k2ρ

So Im (Φρ,S2) ∈ C(G). Furthermore, Φρ,S2 is clearly linear. By applying to Im (Φρ,S2) the
projection that keeps only the |H| components of the form xh+0ρ we get an injective map
from R|H| to R|H| that multiplies by α, so Φρ,S2 must be injective.

In application, the group G is Zαa1 , the subgroup H is αZa1 , and ρ = [β]αa1 ∈ Zαa1 must
be relatively prime to α. One important side effect of this notation is that the Φ map, as
written, is actually a map with domain C(αZa1) rather than domain C(Za1).

Example 5.1.3. Consider the group G = Z6 and its subgroup 2Z3. For the purposes of
applying the map Φρ,S2 , we require α = |G/H| = |Z6/2Z3| = 2, and we require that ρ ∈ Z6

satisfy gcd(ρ, 2) = 1, so ρ can be either 1, 3, or 5 (mod 6). Evaluating the map for each of
these ρ, we will observe three different types of behavior and correlate these to later results.

Choose G = Z6, H = 2Z3, and S2 = ⟨1⟩. We will apply the map Φρ,S2 to the point

w = (0
0
, 4
2
, 5
4
) ∈ C(2Z3)

where the blue numbers are the indices (each an element of 2Z3) of the corresponding coor-
dinate. That is, we write w0 = w[0]6 = 0, w2 = w[2]6 = 4, and w4 = w[4]6 = 5. (As a sidenote,
we may immediately observe that {0, 4, 5} is Ap(⟨3, 4, 5⟩, 3).)

The image of Φρ,S2 = Φρ,⟨1⟩ is a point

x = (x0, x1, x2, x3, x4, x5) ∈ C(Z6)
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where each coordinate is defined by

xh+kρ = αwh + kwαρ = 2wh + kw[2ρ]6

This depends on the fact that each element of Z6 has a unique decomposition as an element
h of 2Z3 plus an element kρ of Z6, where ρ is fixed and k varies over the set

Ap(S2;α) = Ap(⟨1⟩; 2) = {0, 1}.

To evaluate this map, we may begin by ignoring k and ρ by setting k = 0. This gives
that xh = 2wh for h ∈ 2Z3, or in particular,

x = (
2w0

0
0
, x1,

2w2

8
2
, x3,

2w4

10
4
, x5) ∈ C(Z6).

Now suppose ρ = 1. Then in particular, we decompose

1 ≡ 0 + 1ρ, 3 ≡ 2 + 1ρ, 5 ≡ 4 + 1ρ

so
x1 = 2w0 + 1w2 = 0 + 1(4) = 4

x3 = 2w2 + 1w2 = 8 + 1(4) = 12

x5 = 2w4 + 1w2 = 10 + 1(4) = 14

so all together,
Φ[1]6,⟨1⟩(w) = x = (0

0
, 4
1
, 8
2
, 12

3
, 10

4
, 14

5
) ∈ C(Z6).

Performing similar calculations with ρ = [3]6 gives

x1 = x4+1ρ = 2w4 + 1w0 = 10

x3 = x0+1ρ = 2w0 + 1w0 = 0

x5 = x2+1ρ = 2w2 + 1w0 = 8

Φ3,⟨1⟩(w) = (0
0
, 10

1
, 8
2
, 0
3
, 10

4
, 8
5
)

and with ρ = 5, we get
x1 = x2+1ρ = 2w2 + 1w4 = 13

x3 = x4+1ρ = 2w4 + 1w4 = 15

x5 = x0+1ρ = 2w0 + 1w4 = 5

Φ5,⟨1⟩(w) = (0
0
, 13

1
, 8
2
, 15

3
, 10

4
, 5
5
).
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Let’s now compare the resulting points:

p1 = Φ1,⟨1⟩(w) = (0
0
, 4
1
, 8
2
, 12

3
, 10

4
, 14

5
).

p3 = Φ3,⟨1⟩(w) = (0
0
, 10

1
, 8
2
, 0
3
, 10

4
, 8
5
)

p5 = Φ5,⟨1⟩(w) = (0
0
, 13

1
, 8
2
, 15

3
, 10

4
, 5
5
).

Of these, we see that only p5 looks like an Apéry set, with each component having the
corresponding mod class mod 6. This is Ap(⟨5, 6, 8⟩; 6). It is no coincidence that this is the
same as the not-quite-valid “gluing” 2⟨3, 4, 5⟩+ 5⟨1⟩. (The dimensions in this example were
too small to properly illustrate a gluing.) The reason that p5 turns out to correspond to
the Apéry set of an actual semigroup turns out to be the fact that there is an element of
Ap(⟨3, 4, 5⟩; 3) = {0, 4, 5} that is equivalent to ρ = 5 mod 6. The same is not true of the
other two choices for ρ, 1 and 3.

Looking at p1, we observe that it does not correspond to a valid Apéry set. In fact, not
all of the mod classes mod 6 are represented. That being said, we can still construct a Kunz
poset from this point, with the corresponding equalities x0 = 0, x2 = 2x1, x3 = 3x1, and
x5 = x1 + x4, and there are numerical semigroups with this Kunz poset in C(Z6), such as
⟨6, 7, 22⟩.

Finally, looking at p3, we may notice that it is periodic. This is a side-effect of the fact
that αρ = 2[3]6 = [0]6, so that wαρ = 0 in the map and the value of xh+kρ is dependent only
on h. Because two coordinates of p3 are equal, it does not have a conventional Kunz poset:
The poset contains only 3 points, each labeled with two numbers. There are no numerical
semigroups in the associated face of C(Z6), but by viewing the poset as a Kunz poset for a
face of C(Z3), we get get a face that does have numerical semigroups in it.

Definition 5.1.4. Fix a poset P = (H/H ′,⪯P ) where H ′ ≤ H is a subgroup and suppose
h1, h2 ∈ H/H ′ and k1, k2 ∈ Ap(S2;α).

(a) The gluing extension of P by S2 along ρ is the poset Q = (G/H ′,⪯Q) which satisfies
h1 + k1ρ ⪯Q h2 + k2ρ if and only if h1 ⪯P h2 and k1 ⪯S2 k2.

(b) The augmented gluing extension of P by S2 along ρ is the poset Q defined as follows

(i) If αρ ̸= 0, then Q = (G/H ′,⪯Q) is the poset satisfying satisfying h1 + k1ρ ⪯Q

h2 + k2ρ if and only if h1 ⪯P h2 and, for some n ≥ 0, nαρ ⪯P h2 − h1 and
k1 − k2 ⪯S2 nα.

(ii) If αρ = 0, then Q is the poset on G/(H ′ + ⟨ρ⟩) identical to P under the natural
group isomorphism G/(H ′ + ⟨ρ⟩) ∼= H/H ′.

Remark 5.1.5. The non-augmented extension of P is isomorphic to the Cartesian product of
P with Ap(S2;α). Furthermore, notice that the augmented gluing extension is a refinement
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of a gluing extension. If αρ ̸= 0, then new relations are added between the elements, (in
particular, the Kunz subgroup H ′ stays the same) while if αρ = 0, all of the elements that
would come from Ap(S2;α) are collapsed onto a single node, making the Kunz subgroup H ′

into the larger H ′+⟨ρ⟩. In particular, this means that the element h+kρ ∈ G now lies in the
same equivalence class as h ∈ G, and satisfies same poset relations satisfied by the elements
h ∈ H in the poset P . The natural isomorphism G/(H ′ + ⟨ρ⟩) ∼= H/H ′ is thus expressed by

G/(H ′ + ⟨ρ⟩) ∋ [h+ kρ]H′+⟨ρ⟩ = [h]H′+⟨ρ⟩ 7→ [h]H′ ∈ H/H ′.

Corollary 5.1.6. If S1 = ⟨a1, . . . , ak⟩ and T = αS1 + βS2 is a gluing then the Kunz poset
of T with respect to αai is the gluing extension of the Kunz poset of S1 with respect to ai by
S2 along ρ = [β]αai which is augmented if and only if β ∈ Ap(S1; ai).

Proof. If αρ = 0 then αai | αβ so ai | β so β ∈ Ap(S1; ai) is impossible. By Corollary 3.2.1
we know that Ap(T ;αai) consists of all c = αc1 + βc2 such that both c1 ∈ Ap(S1, ai) and
c2 ∈ Ap(S2;α) with relations corresponding to Theorem 3.2.4. From Theorem 3.2.4 we know
that c ⪯T d if and only if c1 ⪯S1 d1 and c2 ⪯S2 d2 or c1 + nβ ⪯S1 d1 and c2 ⪯S2 d2 + nα
with n ≥ 0 and the latter case occurring if and only if β ∈ Ap(S1; a1). Set h1 = [αc1]αai ,
and h2 = [αd1]αai , set c2 = k1 and d2 = k2. The conditions c1 ⪯S1 d1 and h1 ⪯P h2

with H/H ′ = αZai become identical. Furthermore c1 + nβ ⪯S1 d1 implies c1 ⪯S1 d1 and
nβ ⪯S1 d1 − c1. This corresponds to h1 ⪯P h2 and nαρ ⪯P h2 − h1. Finally c1 ⪯S2 d2 + nα
implies c1 − d1 ⪯S2 nα which corresponds to k1 − k2 ⪯S2 nα.

This result is probably best understood visually, that is by showing how the Kunz posets
relate to the Apéry posets:

Example 5.1.7. Consider the gluing T = 17⟨4, 5⟩ + 20⟨5, 7⟩ = ⟨68, 85, 100, 140⟩. Here we
have S1 = ⟨4, 5⟩, S2 = ⟨5, 7⟩, α = 17, and ρ = 20. From Example 3.2.6 we know that

Ap(⟨5, 7⟩; 17) = {0, 35, 19, 20, 21, 5, 40, 7, 25, 26, 10, 28, 12, 30, 14, 15, 33}

with poset:

0
5 7

14
21

28

12
19

26
33

10
15

20
25

30
35

40

We also know that the Kunz poset for Ku(⟨4, 5⟩; 4) is
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0
1
2
3

And we know the Apéry coordinate is (0, 5, 10, 15).
From Example 3.2.6 we know Ap(T ; 68) is

0
100 140

280
420

560

240
380

520
660

200
300

400
500

600
700

800

85
185 225

365
505

645

325
465

605
745

285
385

485
585

685
785

885

170
270 310

450
590

730

410
550

690
830

370
470

570
670

770
870

970

255
355 395

535
675

815

495
635

775
915

455
555

655
755

855
955

1055

0
100 140

280
420

560

240
380

520
660

200
300

400
500

600
700

800

85
185 225

365
505

645

325
465

605
745

285
385

485
585

685
785

885

170
270 310

450
590

730

410
550

690
830

370
470

570
670

770
870

970

255
355 395

535
675

815

495
635

775
915

455
555

655
755

855
955

1055

In order to check that Ku(T ; 68) corresponds to the gluing extension of the Ku(⟨4, 5⟩; 4)
by ⟨5, 7⟩ along 20 we can check a few components to confirm that relationships are the same.
Since we are dealing with a coordinate in R68, we will not be exhaustive, we will just choose
an example to demonstrate the idea.

Since G = Z68 and H = 17Z4 we know that the coordinate corresponding to Ap(⟨4, 5⟩; 4)
is indexed using {0, 17, 34, 51}. Thus we have

w = (0
0
, 5
17
, 10
34
, 15
51
) ∈ C(17Z4).

Since 5 ⪯P 15, we can notice that w17 ⪯P w51 in Ap(⟨4, 5⟩; 4). Furthermore, from Ap(⟨5, 7⟩; 17)
we can observe that 7 ⪯S2 26. So in the gluing extension we have 17+7(20) ⪯Q 51+26(20),
rewritten mod 68 we have 21 ⪯Q 27.

The element of Ap(T ; 68) corresponding to 21 is 225 and the element corresponding to
27 is 775. Looking at the diagram for Ap(T ; 68) we can see that 225 ⪯T 775.

Example 5.1.8. If we want to check a point with augmented relations, we can use

T ′ = 17⟨4, 5⟩+ 15⟨5, 7⟩ = ⟨68, 75, 85, 105⟩.

Once again we have S1 = ⟨4, 5⟩, S2 = ⟨5, 7⟩, and α = 17. What differs from Example 5.1.7
is that β = 15 = ρ. Since 15 ∈ Ap(⟨4, 5⟩; 4) we can expect augmented relations. From
Example 3.2.6 we know that the poset for Ap(T ′; 68) is
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0
75 105

210
315

420

180
285

390
495

150
225

300
375

450
525

600

85
160 190

295
400

505

265
370

475
580

235
310

385
460

535
610

685

170
245 275

380
485

590

350
455

560
665

320
395

470
545

620
695

770

255
330 360

465
570

675

485
540

645
750

405
480

555
630

705
780

855

0
75 105

210
315

420

180
285

390
495

150
225

300
375

450
525

600

85
160 190

295
400

505

265
370

475
580

235
310

385
460

535
610

685

170
245 275

380
485

590

350
455

560
665

320
395

470
545

620
695

770

255
330 360

465
570

675

485
540

645
750

405
480

555
630

705
780

855

Since we have the same α and S1, the point corresponding to Ap(⟨4, 5⟩; 4) is still
w = (0

0
, 5
17
, 10
34
, 15
51
) ∈ C(17Z4).

In order to check that the augmented relations work as expected, we will want to pick values
that are suitably “far apart” for these relations to take effect. Notice that w0 ⪯ w51−17(15)

since 17(15) ≡ 51 mod 68. Also notice that 5 − 5 ⪯S2 17. So in the augmented gluing
extension we have 0 + 12(15) ⪯ 51 + 5(15), rewritten mod 68 we have 44 ⪯Q 58.

The element of Ap(T ′; 68) corresponding to 44 is 180 and the element corresponding to
58 is 330. Looking at the diagram for Ap(T ′; 68) we can see that 180 ⪯T 330. The fact that
the augmentation relations are necessary can be seen in the diagram: in order to trace a
path from 330 down to 180 we need to use one of the red lines.

Theorem 5.1.9. For a face F ⊂ C(H), the image of Φρ,S2(F ) lies within a face of C(G)
whose Kunz poset is the augmented gluing extension of P along ρ by S2.

Proof. First, fix w ∈ F ⊂ C(H), let x = Φρ,S2(w), let F
′ denote the face containing x and

let Q denote the corresponding Kunz poset of F ′. If αρ = 0 we know that kwαρ = 0, so
xh+kρ = 0 whenever wh = 0. If αρ ̸= 0, then this occurs when wh = 0 and k = 0. Notice
that wh = 0 when h ∈ H ′. In either case Q has the claimed ground set.

Now suppose h1, h2 ∈ H and k1, k2 ∈ Ap(S2;α). If αρ = 0, then

xh1+k1ρ + xh2−h1+(k2−k1)ρ = αwh1 + k1wαρ + αwh2−h1 + (k2 − k1)wαρ

= α(wh1 + wh2−h1) ≥ αwh2

= xh2+k2ρ

with equality if and only if h1 ⪯P h2. If αρ ̸= 0 then there are two possibilities:
If k1 ⪯S2 k2 then we have:

xh1+k1ρ + xh2−h1+(k2−k1)ρ = (αwh1 + k1wαρ) + (αwh2−h1 + (k2 − k1)wαρ)

= α(wh1 + wh2−h1) + k2wαρ

≥ αwh2 + k2wαρ

= xh2+k2ρ
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with equality if and only if h1 ⪯P h2.
If k1 ̸⪯S2 k2 then

(h2 + k2ρ)− (h1 + k1ρ) = (h2 − h1 − nαρ) + (k2 − k1 + nα)ρ

with k2 − k1 + nα ∈ Ap(S2;α). Thus we have:

xh1+k1ρ + xh2−h1+(k2−k1)ρ = xh1+k1ρ + xh2−h1−nαρ+(k2−k1+nα)ρ

= αwh1 + k1wαρ + αwh2−h1−nαρ + (k2 − k1 + nα)wαρ

= α(wh1 + wh2−h1nαρ + nwαρ) + k2wαρ

≥ α(wh1 + wh2−h1) + k2wαρ

≥ αwh1 + k2wαρ

= xh2+k2ρ

with equality if and only if nαρ ⪯P h2−h1 and h1 ⪯P h2. In either case h1+k1ρ ⪯Q h2+k2ρ
in the cases required by Definition 5.1.4. Thus Φρ,S2(w) lies in the interior of the face.

Example 5.1.10. Consider the gluing

T = ⟨68, 75, 85, 105⟩ = 17⟨4, 5⟩+ 15⟨5, 7⟩

From Example 3.2.6 we know what Ap(T ; 68) looks like. We now want to demonstrate that
the Apéry coordinate corresponding to Ap(T ; 68) matches the output of Φ15,⟨5,7⟩(Ap(⟨4, 5⟩; 4)).
Rather than being exhaustive, we will check for a few components of the Apéry coordinate
corresponding to Ap(T ; 68). If we let Φ15,⟨5,7⟩(Ap(⟨4, 5⟩; 4)) = x, then x3 = x34+7(15). So

x3 = x34+7(15) = 17w34 + 7w17(15) = 17w34 + 7w51.

From Example 5.1.8 we know that w34 = 10 and w51 = 15. So

x3 = 17(10) + 7(15) = 275.

Then from Example 3.2.6 we know that 275 ∈ Ap(T ; 68) and 275 ≡ 3 mod 68. Thus the
map works for x3.

We can now try with a different component. Consider

x2 = x51+33(15) = 17w51 + 33w17(15) = 17w51 + 33w51 = (17 + 33)15 = 750

Then from Example 3.2.6 we know that 750 ∈ Ap(T ; 68) and 750 ≡ 2 mod 68. Thus the
map works for x2.

Definition 5.1.11. The gluing ray s⃗ of a gluing embedding Φρ,S2 is defined

sh+kρ = k

for each h ∈ H and k ∈ Ap(S2;α). Notice that sh = 0 precisely when h ∈ H, so s⃗ must lie
in a face whose Kunz subgroup is H.
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Lemma 5.1.12. The gluing ray s⃗

(a) lies in a face of C(G) whose corresponding Kunz subgroup is H, and

(b) is linearly independent to each vector in the image of Φρ,S2

Proof. As noted above, sh = 0 precisely when h ∈ H, so s⃗ must lie in a face whose Kunz
subgroup is H. For the second part, since Φρ,S2 is linear and C(H) is full-dimensional, it
suffices to show that s⃗ lies outside the image of Φρ,S2 . Projecting the image of Φρ,S2 onto the
coordinates indexed by H is injective by the proof of Lemma 5.1.2, while applying the same
projection to s⃗ gives us 0.

Theorem 5.1.13. For any face F ⊂ C(H), the set R≥0s⃗ + ΦS2,ρ(F ) is in a face of C(G)
whose Kunz poset is the gluing extension of the Kunz poset of F .

Proof. To begin with we will demonstrate that the Kunz poset of the set R≥0s⃗+ΦS2,ρ(F ) is
the gluing extension of the Kunz poset of F . Let P = (H/H ′,⪯P ) be the Kunz poset of F .
Let F ′ denote the smallest face containing the set R≥0s⃗+ΦS2,ρ(F ), and let Q = (G/H ′′,⪯Q)
be the Kunz poset of F ′. We want to show that Q is the gluing extension of P . To begin
with, we need to show that the gluing extension of P , and the poset Q have the same
ground sets. Since Φρ,S2(F ) ⊂ F ′, by Theorem 5.1.9 we know that H ′′ ⊂ H ′. Furthermore,
the coordinates in which s⃗ is 0 are those indexed by H, by Lemma 5.1.12, which implies
H ′′ = H ′. Thus we know that the grounds sets are equal.

Now we need to show that the same poset relations hold. Fix x ∈ R≥0s⃗+ ΦS2,ρ(F ), and
write x = y+cs for y ∈ Φρ,S2(F ) and c ≥ 0. If h1+k1ρ, h2+k2ρ ∈ G, then by Theorem 5.1.9
we know that

xh1+k1ρ+xh2−h1+(k2−k1)ρ) = yh1+k1ρ+ck1+yh2−h1+(k2−k1)ρ)+c(k2−k1) = yh2+k2rho+ck2 = xh2+k2ρ.

Thus we know that F ′ satisfies all of the Kunz equalities of the gluing extension. We know
that these are the only equalities satisfied by F ′ because we know that the Kunz poset of
Φρ,S2 is a refinement of the Kunz poset of F ′, and s⃗ does not satisfy the additional relations
h1 + nαρ ⪯P h2 and k1 ⪯S2 k2 + nα. Thus we know that Q is equal to the monoscopic
extension of P .

Example 5.1.14. Consider the gluing

T = ⟨68, 85, 100, 140⟩ = 17⟨4, 5⟩+ 20⟨5, 7⟩

From Example 3.2.6 we know what Ap(T ; 68) looks like. We now want to demonstrate that
the Apéry coordinate corresponding to Ap(T ; 68) is in the span of Φ20,⟨5,7⟩(Ap(⟨4, 5⟩; 4)) and
s⃗. We want to show that the coordinate for Ap(T ; 68) is equal to Φ20,⟨5,7⟩(Ap(⟨4, 5⟩; 4)) + cs⃗
Rather than being exhaustive, we will check for a few components of the Apéry coordinate
corresponding to Ap(T ; 68). If we let Φ20,⟨5,7⟩(Ap(⟨4, 5⟩; 4)) = x, then x2 = x34+12(20). So

x2 = x34+12(20) = 17w34 + 12w17(20) = 17w34 + 12w0.
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From Example 5.1.8 we know that w34 = 10 and w0 = 0. So

x2 = 17(10) + 12(0) = 170.

The value of Ap(T ; 68) corresponding to mod class 2 is 410. So then 410− 170 = 240. Then
s⃗2 = 12. So if y = Ap(T ; 68) we have y2 = x2 + 20s2. We can now try with a different
component. Consider

x9 = x17+20(20) = 17w17 + 20w17(20) = 17w17 + 20w0 = 17(5) = 85

The value of Ap(T ; 68) corresponding to mod class 9 is 485. So then 485− 85 = 400. Then
s⃗9 = 20. So if y = Ap(T ; 68) we have y9 = x9 + 20s2. Notice that we have the same
coefficient on s⃗ in both components. There are 68 components, so this is not proof, but it is
a demonstration of how Theorem 5.1.13 works.

5.2 Face-filling

Section 5 of this write up is an attempt to generalize section 6 of [1]. While many of the results
generalize quite nicely, one notable exception is Theorem 5.1.9 which is a generalization of:

Theorem 5.2.1 (Theorem 6.7 in [1]). The image of Φρ,⟨1⟩ is a face of C(G). More precisely,
given any face F ⊂ C(H) with Kunz poset P = (H/H ′,⪯P ), the image Φρ,⟨1⟩(F ) is a face of
C(G) whose Kunz poset is the augment monoscopic extension Q of P along ρ.

In [1] the image of the Φρ map is guaranteed to be an entire face of C(G), however in
Theorem 5.1.9 the image of Φρ,S2 is not always an entire face of C(G). A similar issue arises
for:

Theorem 5.2.2 (Theorem 6.10 in [1]). For any face F ⊂ C(H), the set R≥0s⃗+Φρ,⟨1⟩(F ) is
a face of C(G) whose Kunz poset is the monoscopic extension of the Kunz poset of F .

Here we have that R≥0s⃗ + Φρ(F ) is a face of C(G) but in Theorem 5.1.13 we only have
thatR≥0s⃗ + Φρ,S2(F ) is contained within a certain face of C(G). We thus want to establish
when the image of Φρ,S2 is a face of C(G).

This proved to be rather difficult for us. In [1], Theorem 6.11 says that for a face with
a monoscopic gluing every point that is an Apéry coordinate in that face corresponds to a
monoscopic gluing. We cannot guarantee for a glued numerical semigroup that all numerical
semigroups with Apéry coordinates in the same face are also gluings.

Example 5.2.3. Consider the glued numerical semigroup

T1 = ⟨198, 220, 242, 1111, 1212, 1313⟩ = 22⟨9, 10, 11⟩+ 101⟨11, 12, 13⟩.

We can also consider the numerical semigroup

T2 = ⟨198, 220, 242, 1511, 2400, 3289⟩

which is not a gluing. One can use Sage (or GAP) to check that these two numerical
semigroups have the same Kunz poset, but the poset is to large to include here.
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The following definitions and theorems will prove that for a face F of C(H), that Φρ,S2(F )
is a face (F ′) of C(G) if and only if dim(F ) = dim(F ′). This moves us closer to a condition
on when a face of the group cone contains only gluings, because this amounts to showing
that the two faces are of equal dimension.

Definition 5.2.4. Suppose G,H are finite abelian groups with H ≤ G, G/H cyclic. Let
α = |G/H|. Then define the map

π : C(G) → C(H)

by π(w) = x with

wh =
1

α
xh.

We call this the projection map from C(G) (down) to C(H).

Theorem 5.2.5. For any ρ, S2, the projection map π is a left inverse on F for Φρ,S2. That
is,

π ◦ Φρ,S2 = IdF .

Proof. Suppose w ∈ F , and define x = Φρ,S2 and z = π(x). Then for h ∈ H,

zh =
1

α
wh =

1

α
(wh+0ρ) =

1

α
(αwh + 0wαρ) = wh

as desired.

We know that Φρ,S2 , applied to a face with poset P , gives back the face whose poset Q is
essentially a cartesian product of P with Ap(S2;α), with some extra relations. As expected,
π takes such a poset and returns only the information corresponding to the starting poset
P .

Theorem 5.2.6. Suppose F is a face of C(H), F ′ is the face of C(G) whose Kunz poset Q
is either the augmented or non-augmented gluing extension of the Kunz poset P of F , and
x is a point in F ′. Then π(x) ∈ F .

Proof. If Q is the non-augmented gluing extension of P , then, limiting ourselves only to the
coordinates of C(G) indexed by elements of H, we get the relations h1 + 0ρ ⪯Q h2 + 0ρ if
and only if h1 ⪯P h2, if and only if xh1 + xh2−h1 = xh2 , if and only if

1

α
xh1 +

1

α
xh2−h1 =

1

α
xh2

if and only if wh1 + wh2−h1 = wh2 . But this is the description of the exact facet equalities
encoded in the Kunz poset P for the face F , so the point w must lie in F .
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Suppose now that the Kunz poset Q of F ′ is the augmented Kunz poset of P . If αρ ̸= 0
(as in Definition 5.1.4), then we have h1+0ρ ⪯Q h2+0ρ if and only if (combining the cases)

h1 ⪯P h2 and nαρ ⪯P h2 − h1 and 0− 0 ⪯S2 nα

for some n ≥ 0. The third condition is vacuously true since α ∈ S2, and we can then always
choose n = 0 to satisfy the second condition. This then gives the same list of conditions as
above, and the logic follows identically.

Finally, if Q is the augmented Kunz poset of P and αρ = 0, then we have the isomorphism
G/(H ′ + ⟨ρ⟩) ∼= H/H ′ defined by

[h+ kρ]H′+⟨ρ⟩ 7→ [h]H′ .

In particular, we see that h1 + 0ρ ⪯Q h2 + 0ρ if and only if [h1]H′ ⪯P [h2]H′ , if and only if
(stripping away the equivalence classes) h1 ⪯P h2. As before, this gives us the same set of
conditions, and translates to the same result.

Theorem 5.2.7. Suppose F is a face of C(H) and F ′ is the face of C(G) in which Φρ,S2(F )
lies. Then Φρ,S2(F ) = F ′ if and only if dimF ′ = dimF .

Proof. If Φρ,S2(F ) = F ′, then in particular dimF = dimΦρ,S2(F ) = dimF ′.
Now assume dimF ′ = dimF . Then since π restricted to F ′ is a surjective linear map

(Theorem 5.2.5) from F ′ to F (Theorem 5.2.6) and both F ′ and F have the same dimension,
π is in fact a bijection from F ′ to F , and is thus the two-sided inverse of Φρ,S2 : F → F ′,
showing that Φρ,S2(F ) = F ′.

5.3 A special case: n× 2 gluings

While we do not have a condition for when general gluings “fill a face” of C(G), when
we restrict S2 = ⟨b1, b2⟩, we have made more progress. We then have two cases: when
b1b2 ∈ Ap(S2;α) and when b1b2 /∈ Ap(S2;α).

When b1b2 ∈ Ap(S2;α) we have the following result:

Theorem 5.3.1. If S2 = ⟨b1, b2⟩ and b1b2 ∈ Ap(S2;α) for a face F ⊂ C(H), the image of
Φρ,S2(F ) is a face of C(G) whose Kunz poset is the augmented gluing extension of P along ρ
by S2.

Proof. By Theorem 5.1.9 we know that Φρ,S2(F ) is in a face of C(G) whose Kunz poset is
the augmented gluing extension of P along ρ by S2.

Let F ′ ⊂ C(G) denote the face whose Kunz poset is the augmented gluing extension
Q or P (which must exist by above), and fix x ∈ F ′. Define wh = 1

α
xh for h ∈ H. Let

k = c1b1 + c2b2 and α = α1b1 + α2b2. We can see
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xh+kρ = xh + xkρ because h ⪯Q h + kρ

= xh +
1

α
(αxkρ)

= xh +
1

α
(α(x(c1b1+c2b2)ρ))

= xh +
1

α
(α(xc1b1ρ + xc2b2ρ)) because c1b1 ⪯S2 k

= xh +
1

α
((α1b1 + α2b2)(xc1b1ρ + xc2b2ρ))

= xh +
1

α
(α1b1(xc1b1ρ) + α1b1(xc2b2ρ) + α2b2(xc1b1ρ) + α2b2(xc2b2ρ))

= xh +
1

α
(α1b1c1(xb1ρ) + α1b1c2(xb2ρ) + α2b2c1(xb1ρ) + α2b2c2(xb2ρ))

= xh +
1

α
(α1b1c1(xb1ρ) + α1b2c2(xb1ρ) + α2b1c1(xb2ρ) + α2b2c2(xb2ρ)) because b1xb2 = b2xb1

= xh +
1

α
(α1c1b1xb1ρ + α1c2b2xb1ρ + α2c1b1xb2ρ + α2c2b2xb2ρ)

= xh +
1

α
(k(α2xb2ρ + α1xb1ρ))

...

= xh +
1

α
(k(xα2b2ρ + α1xb1ρ)) because b2 ⪯S2 αb2

...

= xh +
1

α
(k(xα−b1)ρ + xb1ρ))

= xh +
1

α
(kαρ) by augmentation

= αwh + kwαρ = Φρ,S2(w)

This proves set equality for Φρ,S2(F ) = F ′

In the case where b1b2 /∈ Ap(S2;α), we then have the following result:

Theorem 5.3.2. For a gluing T = αS1 + βS2, if S2 = ⟨b1, b2⟩, and b1b2 /∈ Ap(S2;α) then
there exists a monoscopic gluing T = α′S ′ + β′⟨1⟩ where the multiplicity of T is not β′.

Proof. Fix a k × 2 gluing T = αS2 + βS2. Since we assume that b1b2 /∈ Ap(S2;α) we know
that without loss of generality α = xb1 with 0 ≤ x ≤ b2 − 1. So b1 | α. Thus we can rewrite

T = b1⟨
α

b1
a1, . . .

α

b1
ak, β⟩+ ⟨βb2⟩.
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We will now show that this is a valid gluing. First note that β | βb2 and b2 ̸= 0 so βb2 is a
non-generator element of the opposite semigroup. Next note that gcd(b1, b2) = 1. So since
gcd(α, β) = 1 and b1 | α, we know gcd(b1, βb2) = 1.

Now we just need to show that 〈
α

b1
a1, . . .

α

b1
ak, β

〉
is a valid semigroup. Since T is minimally generated, it suffices to show that gcd( α

b1
, β) = 1.

This follows from the fact that gcd(α, β) = 1

Remark 5.3.3. This means that we can apply results from [1] when b1b2 /∈ Ap(S2;α). When
b1b2 /∈ Ap(S2;α) we sometimes have face-filling and we sometimes do not. However, we are
able to avoid describing these cases by defaulting to [1] instead.

6 Further questions

In subsection 3.1, we introduced the idea of a canonical factorization for elements of an
semigroup T when T is a gluing. This allowed us to deduce a membership criterion for T ,
and thence a membership criterion for the Apéry sets of T . While the idea of a canonical
factorization does not seem to work nearly as well for numerical semigroups in general, such
a concept may well prove useful for investigating the Ap ery sets and posets of other families
of semigroups.

While we fully described the Apéry set of a gluing T with respect to an arbitrary element
µ (Theorem 3.1.6), the description was rather cumbersome, and we did not give a completely
general description of the associated Apéry posets.

Question 6.0.1. Generalize the Apéry poset descriptions of the two special cases Corol-
lary 3.2.1 and Corollary 3.3.3 found later to give a description of the poset associated to the
Apéry set given in Theorem 3.1.6.

Question 6.0.2. This theorem requires computing a family of Apéry sets Ap(S1;µ1 + nβ)
for n ranging from 0 to some maximal value. What is the maximal value of n required? Is
there an efficient way to generate this family of Apéry sets from only one of them?

One of the consequences of having a description of the Apéry posets of general glu-
ings, at least with respect to generators, is in particular, the ability to determine the num-
ber of maximal elements of an Apéry set, one way of looking at the faces of the group
cone. A cursory glance seems to indicate that the number of maximal elements of the
Apéry set (Ap(T ;αa1),⪯T ) should be the product of the number of maximal elements of
(Ap(S1; a1),⪯S1) and of (Ap(S2;α),⪯S2).

Question 6.0.3. Confirm or disprove the above assertion, and if false, find the correct
answer.

36



In [1], it was found that when ⟨S2⟩ = ⟨1⟩, that Φρ,⟨1⟩(F ) for F a face of C(H) is always a
face of C(G) and that every numerical semigroup in that face had a gluing of the same type,
with S1 coming from the same face F and with S2 = ⟨1⟩. Experiments seem to indicate
that, whenever Φρ,S2(F ) is a face F ′ of C(G), every numerical semigroup in F ′ is a gluing of
the same type, and the same also seems to hold true for the non-augmented face obtained
by spanning with the gluing ray s⃗ρ,S2 .

Question 6.0.4. Is the above conjecture true?

If every numerical semigroup in a face can be written as a gluing (it is possible to have a
mix of gluings and non-gluings in the same face, as in Example 5.2.3), it seems like at least
one gluing type is shared across the entire face.

Question 6.0.5. Show whether this is always the case, and whether, by extension, any face
containing a gluing T can be expressed as the image of a face injection Φρ,S2 , where S2 is
derived from some gluing of T .

In Theorem 5.2.7 we were able to show that for a face F ⊂ C(H), and F ′ ⊂ C(G) the
face which contains Φρ,S2(F ), that Φρ,S2(F ) = F ′ if and only if dimF ′ = dimF . This gives
us a starting point to find a condition for when Φρ,S2(F ) = F ′. A recent paper [2] created a
number of useful tools for computing face dimension from Kunz poset, hopefully we can use
these tools to create a condition for when Φρ,S2(F ) = F ′.

Question 6.0.6. Find a condition dependent on the Kunz poset of F , Ap(S2;α) and ρ, for
when dimF ′ = dimF , and thus by Theorem 5.2.7 Φρ,S2(F ) = F ′.
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