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Abstract: Compartment modeling has been used extensively in epidemics for both the un-
derstanding and prediction of infectious disease. One very important question in epidemic
modeling is the balance between the complexity of the model and its generalization accuracy.
Complex models may be able to explain existing experiment data better due to their abundance
in parameters rather than describing the underlying phenomenon. In this study, we construct
an age-based SEIR model that separates the population into Child and Adult compartments.
We calculate the basic reproduction number, R0, and compare our model to the existing simple
SEIR model. We determine the structural identifiability of both models using existing algo-
rithms and compute the practical identifiability of both models using Monte Carlo Simulation
and Profile Likelihood approaches. We demonstrate the practical identifiability of the simple
SEIR model and the practical non-identifiability of the SEIR aged-based model. We then present
relevant parameter dependencies that construct a full set of practically identifiable parameters
for the age-based SEIR model.
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1 Introduction

The SIR model of epidemics has long been a key tool in epidemiology for understanding disease
outbreaks and their spread. With the COVID-19 pandemic approaching an endemic state, there
is a need for further research to understand, model, and predict disease dynamics. Previous
research suggests that SEIR and SIR models can accurately represent and predict disease out-
breaks, and that compartments within disease models can be further separated to model mul-
tiple interacting populations [1]. Studies such as those completed by [2] use age-structured SIR
models to compare social-distancing and vaccination strategies within specific populations.
Ram and Schaposnik conclude from their model that age-targeted measures can significantly
change the outcome of an epidemic when one assumes that the contact rate between popula-
tions is variable, even if the probability of contracting COVID given contact is equal for every
age group.

Rather than imposing strict measures on a community as a whole, by identifying the most
vulnerable groups, one can implement effective age-specific measures to reduce the impact of
an epidemic. For example, one study using COVID data from Wuhan, China, determined that
the reduction in incidence data was greatest when employing distancing strategies amongst
children and older individuals, but low amongst working adults [3]. Another study suggests
while contact rate is insufficient to account for the magnitude of these differences, varied sus-
ceptibility between populations may play a role as well, implying that modeling multiple pop-
ulations may offer insight into the influence of age in an individual’s disease response [4].

Complex models can be used to predict outcomes and case numbers based on preexisting
knowledge of biological information, such as recovery period and the infectiousness of a dis-
ease, but questions remain as to how one can use a model to determine the biological informa-
tion about a model using data about case numbers. Analysis in structural and practical iden-
tifiability has provided insight into what models can be used to find unique parameters given
perfect and imperfect data collected about a disease.

In this study, we develop a mathematical model separating the population into two age-
specific categories based off an understanding of COVID-19’s differing impact on children and
adults. Our model incorporates the separate recovery and incubation rates for children, who
have been less impacted by COVID-19, and adults, as well as the differences in infectiousness
and contact rates between each population. The age-segregated model suggests that more in-
formation can be derived about disease modeling by looking at the interactions between over-
lapping populations than by assuming data fits a single homogeneous population.

1.1 R0

The basic reproductive number, R0, is an essential number that provides information about
the dynamics of a disease. SEIR and SIR models use a system of ODEs to compute R0. R0 rep-
resents the number of new infections that can come from one infected individual in a totally
susceptible population, and is the determinant of whether a disease will die out or become
endemic. R0 > 1 implies that a disease is self-sustaining and will become an epidemic, while
if R0 < 1, the disease dies out. Computing R0 can give scientists a deeper understanding of
disease dynamics and progress. Additionally, R0 can serve as a metric on which to compare dif-
ferent epidemic models. Numerous studies in COVID data have reported an average R0 value
of between 2 and 3 across geographic locations [4].
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1.2 Identifiability

While predicting R0 and related disease progression is essential for combating future pandemics,
it can be challenging to identify the necessary parameters for calculating the basic reproductive
number. When studying a model designed to fit preexisting data, we must begin by investigat-
ing whether or not our model not only fits the data, but can accurately identify information
about the disease and make predictions about future disease-preventing measures. We turn
therefore to structural and practical identifiability, which determine whether a model’s param-
eters can be uniquely identified from data.

A model is structurally identifiable if the model parameters can be uniquely determined
based on the model formulation with continuous data and no noise. Structural identifiability
has two sub-categories: global and local. A parameter is said to be globally structurally identi-
fiable if the parameter can be uniquely recovered from the given output equation. Similarly, a
parameter is said to be locally structurally identifiable if there are a finite number of solutions
for the parameter that can be recovered from the output equation. On the contrary, if there are
an infinite amount of values for one or more parameters, our model is considered to be non-
identifiable. Often models that are structurally identifiable are not practically identifiable, but
structural identifiability is a necessary condition for practical identifiability.

Because structural identifiability requires impossibly perfect conditions, it does not provide
information on the applicability of the model to real-world data. Practical identifiability can
fill in these gaps in knowledge. Establishing practical identifiability of a model can avoid in-
accurate results in parameter estimation. However, practical identifiability is an incredibly lo-
cal behavior and can be difficult to determine beyond specific parameter values and a specific
timescale.

2 The SEIR Model

2.1 Simple SEIR Model

We consider the standard SEIR model defined by the set of equations

dS

d t
=−λS +ΠN −µS (1)

dE

d t
=λS −ϵE −µE (2)

d I

d t
= ϵE −γI −µI (3)

dR

d t
= γI −µR (4)

where S, E, I, and R represent the number of Susceptible, Exposed, Infected, and Recovered in-
dividuals in a system. Π represents the birth rate of the population and µ is the death rate. New
infections are created at rate λ, which is a function of both Exposed and Infected individuals.
We let λ= βI +ξE where β is the infectiousness of Infected individuals and ξ is the infectious-
ness of Exposed individuals. New infections have an incubation rate of ϵ and recovery rate of
γ. We assume in the Simple model that Exposed individuals are less infectious than Infected
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individuals, and that the population is stable, with Π = µ. A diagram of the model is shown in
Figure 1.

S E I R
β ϵ γ

Π

µ µ µ µ

Figure 1: Diagram for Simple SEIR Model

2.2 Adult-Child Compartment Model

Our study expands on the Simple model from 2.1 by subdividing the compartments into age-
specific compartments. Here, we let SC ,EC , IC , and RC represent the number of children in each
stage of disease progression at a given time t . Similarly, we let S A,E A, I A, and RA represent the
number of adults in each stage at time t .

The SEIR model takes the following form with the subsequent parameter definitions:

dSC

d t
=ΠNA − f SC −λC SC

dS A

d t
= f SC −λAS A −µS A

dEC

d t
=λC SC −ϵC EC − f EC

dE A

d t
=λAS A + f EC −ϵAE A −µE A

d IC

d t
= ϵC EC − f IC −γC IC

d I A

d t
= f IC +ϵAE A −γA I A −µI A

dRC

d t
= γC IC − f RC

dRA

d t
= γA I A + f RC −µRA

(5)

Table 1: Parameter Definitions for SEIR Model

Parameter Definition

Π The natural birth rate for the population.
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µ The natural death rate for the population. We assume that the birth rate is equal
to the death rate. We assume the average age of an adult is 40 and set µ to be

1

365(40)

f The rate at which children become adults. We consider individuals aged 10 and
under to be children, with the assumption that the average age of children 10

and under is 5. We then calculate f to be
1

365(5)
.

ϵ The rate at which exposed individuals become infected, or the incubation rate.
We assume that individuals have a reduced or nonexistent infectiousness at this
stage.

γ The rate at which infected individuals recover. We differentiate between γC and
γA on the assumption that children recover at a faster rate than adults.

λ The force of infection, or the rate at which susceptible individuals become ex-
posed.

As in the Simple SEIR model, because our model assumes that Exposed individuals can be
both non-infectious and slightly infectious, λ is expressed as a function of Infected and Ex-
posed individuals. λc is a function of the number of Infected and Exposed individuals in the
Child and Adult compartments, as well as the number of contacts made between groups and
the likelihood an individual in one group will successfully contract a disease upon contact with
an Infected or Exposed individual from another group. We assume that children’s contacts are
frequency dependent, while adults’ are density dependent. This is because we assume children
come into contact with others at a fixed rate while adults come into contact with others at a
rate that is proportional to changes in the population N . λc is the summation of the 4 groups
Susceptible Children may come into contact with, each of which is multiplied by the transmis-
sion rates β for Infected individuals and ξ for Exposed, and scaled by the population size N to
account for frequency dependency. This suggests that the rate of exposure to disease is a func-
tion of both population dynamics (i.e. the number of Infected and Exposed individuals) and of
the particular disease transmission rates. We allow β and ξ to vary according to 4 different rates
of transmission: Adult-Adult, Adult-Child, Child-Adult, and Child-Child. This is based on the
assumption that transmission rate is not constant across age groups [4].

Table 2: Parameter Definitions for SEIR Model: Child Com-
partment

Parameter Definition

λC The rate at which Susceptible Children become exposed.

λC (IC , I A,EC ,E A) =βCC
IC

NC
+βAC

I A

NA
+ξCC

EC

NC
+ξAC

E A

NA
(6)

βCC The rate at which Infected Children transmit disease to Susceptible Children.
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Parameter Definition

βAC The rate at which Infected Adults transmit disease to Susceptible Children.

ξCC The rate at which Exposed Children transmit disease to Susceptible Children.

ξAC The rate at which Exposed Adults transmit disease to Susceptible Children.

Similarly, we define λA to be a function of the number of Exposed and Infected individuals
in the Children and Adult groups respectively. Since we define adults’ contact rate to be density
dependent, the number of Infected and Exposed individuals is impacted by changes in the total
population, and we do not scale λA by N .

Table 3: Parameter Definitions for SEIR Model: Adult Com-
partment

Parameter Definition

λA The rate at which Susceptible Adults become exposed.

λA(IC , I A,EC ,E A) =βA A I A +βC A IC +ξA AE A +ξC AEC (7)

βA A The rate at which Infected Adults transmit disease to Susceptible Adults.

βC A The rate at which Infected Children transmit disease to Susceptible Adults.

ξA A The rate at which Exposed Adults transmit disease to Susceptible Adults.

ξC A The rate at which Exposed Children transmit disease to Susceptible Adults.

3 R0 Calculation

3.1 R0 Simple SEIR Model

The value for R0 in the simple model is obtained by using the Next Generation Matrix method.
We begin by identifying F (x), the terms in each compartment that create new infections, and
V (x), the movement between compartments.

F =
 βSI +ξSE

0


V =

(
ϵE +µE

-ϵE +γI +µI

)
We then linearize and evaluate F and V at the disease-free equilibrium, where S0 ≈ N . We

write denote S0 as our initial population condition N .
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F =
ξS βS

0 0


V =

[
ϵ+µ 0
−ϵ γ+µ

]
R0 is the largest eigenvector of the matrix FV −1.

FV −1 =

 βϵS

(γ+µ)(ϵ+µ)
+ ξS

ϵ+µ
βS

γ+µ
0 0


R0 = βϵS

(γ+µ)(ϵ+µ)
+ ξS

ϵ+µ

3.2 R0 Adult Child SEIR Model

The value for R0 in this model is again obtained by using the Next Generation Matrix method.
We find the respective input and output vectors for the infected compartments EC , E A, IC , and
I A.

F =



SC (βcc
Ic

Nc
+βAC

I A

NA
+ξCC

Ec

Nc
+ξAC

E A

NA
)

S A(βA A I A +βC A IC +ξA AE A +ξC AEC )

0

0



V =


ϵC EC + f EC

ϵAE A − f EC +µE A

−ϵC EC f IC +γC IC

− f IC −ϵAE A +γA I A +µI A


We linearize both matrices with respect to the disease free equilibrium.

F = ∂F

∂EC ,E A, IC , I A
=


ξCC SC 0

NC

ξAC SC 0

NA

βCC SC 0

NC

βAC SC 0

NA
ξC AS A0 ξA AS A0 βC AS A0 βA AS A0

0 0 0 0
0 0 0 0



V = ∂V

∂EC ,E A, IC , I A
=


ϵC + f 0 0 0
− f ϵA +µ 0 0
−ϵC 0 f +γC 0

0 −ϵA − f γA +µ


Here F can be interpreted as the rate at which new secondary infectious are introduced by

Exposed Children, Exposed Adults, Infected Children, and Infected Adults in a given period of
time. F (1, j ) is the rate at which new infections occur in children. Similarly, F (2, j ) is the rate
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at which new infections occur in adults. For example, F (1,1) is the rate of new infections in
children by Exposed Children per unit time.

Table 4: Biological Interpretation of F :

Value Interpretation

F (1,1) Number of new infections created in children by Exposed Children per time
spent while infectious.

F (1,2) Number of new infections created in children by Exposed Adults per time spent
while infectious.

F (1,3) Number of new infections created in children by Infected Children per time
spent while infectious.

F (1,4) Number of new infections created in children by Infected Adults per time spent
while infectious.

F (2,1) Number of new infections created in adults by Exposed Children per time spent
while infectious.

F (2,2) Number of new infections created in adults by Exposed Adults per time spent
while infectious.

F (2,3) Number of new infections created in adults by Infected Children per time spent
while infectious.

F (2,4) Number of new infections created in adults by Infected Adults per time spent
while infectious.

Because V is the average rate at which individuals transition between compartments, W =
V −1 is the expected time spent in each compartment.

Table 5: Biological Interpretation of W :

Value Interpretation

W (1,1) Expected time an individual spends in EC given that they are introduced by EC .

W (2,1) Expected time an individual spends in E A given that they are introduced by EC .

W (3,1) Expected time an individual spends in IC given that they are introduced by EC .

W (4,1) Expected time an individual spends in I A given that they are introduced by EC .

W (2,2) Expected time an individual spends in E A given that they are introduced by E A.

W (4,2) Expected time an individual spends in I A given that they are introduced by E A.

W (3,3) Expected time an individual spends in IC given that they are introduced by IC .

W (4,3) Expected time an individual spends in I A given that they are introduced by IC .

W (4,4) Expected time an individual spends in I A given that they are introduced by I A.

We use Matlab to calculate the inverse matrix of V , V −1, and identify its eigenvectors. Then
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W =



1

ϵC + f
0 0 0

f

(ϵC + f )(ϵA +µ)

1

ϵA +µ 0 0

ϵC

(ϵC + f )( f +γC )
0

1

f +γC
0

ϵA f 2 +ϵAϵC f +ϵA f γC +ϵC f µ

(ϵC + f )( f +γC )(ϵA +µ)(γA +µ)

ϵA

(ϵA +µ)(γA +µ)

f

( f +γC )(γA +µ)

1

γA +µ


We then compute FV −1.

FV −1 =


A B C D
E F G H
0 0 0 0
0 0 0 0


where the coefficients are as follows:

A = SC 0ξCC

NC (ϵC + f )
+ SC 0βCCϵC

NC (ϵC + f )( f +γC )
+ SC 0 f ξAC

NA(ϵC + f )(ϵA +µ)
+ SC 0βAC (ϵA f 2 +ϵAϵC f +ϵA f γC +ϵC f µ)

NA(ϵC + f )( f +γC )(ϵA +µ)(γA +µ)

B = SC 0ξAC

NA(ϵA +µ)
+ SC 0βACϵA

NA(ϵA +µ)(γA +µ)

C = SC 0βCC

NC ( f +γC )
+ SC 0βAC f

NA( f +γC )(γA +µ)

D = SC 0βAC

NA(γA +µ)

E = S A0ξC A

ϵC + f
+ S A0βC AϵC

(ϵC + f )( f +γC )
+ S A0 f ξA A

(ϵC + f )(ϵA +µ)
+ S A0βA A(ϵA f 2 +ϵAϵC f +ϵA f γC +ϵC f µ)

(ϵC + f )( f +γC )(ϵA +µ)(γA +µ)

F = S A0ξA A

ϵA +µ + S A0βA AϵA

(ϵA +µ)(γA +µ)

G = S A0βC A

f +γC
+ S A0βA A f

( f +γC )(γA +µ)

H = S A0βA A

γA +µ
Note here that F (1,1)V −1(1,1) is the number of new Exposed Children caused by one indi-

vidual introduced in EC during their time in EC . Additionally, F (1,2)V −1(2,1) is the number of
new Exposed Children caused by one individual introduced in EC during their time in E A. It
follows that FV −1(1,1) is the number of new Exposed Children by an Exposed Child over their
infectious lifetime.
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Table 6: Biological Interpretation of the coefficients of
FV −1:

Coefficient Interpretation

A The number of new infections in children created by an Exposed Child over
their infectious lifetime.

B The number of new infections in children created by an Exposed Adult over
their infectious lifetime.

C The number of new infections in children created by an Infected Child over
their infectious lifetime.

D The number of new infections in children created by an Infected Adult over
their infectious lifetime.

E The number of new infections in adults created by an Exposed Child over their
infectious lifetime.

F The number of new infections in adults created by an Exposed Adult over their
infectious lifetime.

G The number of new infections in adults created by an Infected Child over their
infectious lifetime.

H The number of new infections in adults created by an Infected Adult over their
infectious lifetime.

The eigenvalues of this matrix are then:

A

2
+ F

2
− (A2 −2AF +F 2 +4BE)1/2

2
and

A

2
+ F

2
+ (A2 −2AF +F 2 +4BE)1/2

2
Since we know that all of the parameters are > 0, the maximum eigenvalue is

A

2
− F

2
+ (A2 −2AF +F 2 +4BE)1/2

2
Then

R0 = A

2
+ F

2
+ (A2 −2AF +F 2 +4BE)1/2

2
(8)

Given our coefficient interpretations above, R0 can be interpreted as the summation of the
number of new infections created in children by individuals who start in the Exposed Children
compartment, and the number of new infections created in adults by individuals who start in
the Exposed Adult compartment. Since Exposed Children and Exposed Adults move through
the Infected compartments over their infectious lifetimes, R0 accounts for infections created by
both Exposed and Infected individuals.
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4 Structural Identifiability

In this section we introduce structural identifiability and compute the structural identifiability
of our SEIR Child-Adult epidemic model. We introduce various methods for computing struc-
tural identifiability and outline the algorithms behind each method. We conclude with a brief
dicussion about relevant output vectors that produce structurally identifiable results.

The motivation behind structural identifiability lies in recovering unique parameter values
from perfect data or continuous, noise-free data. This is in contrast with practical identifia-
bility, which tests whether the model parameters can be reasonably recovered from imperfect
or incomplete data. A parameter is said to be globally structurally identifiable if the param-
eter can be uniquely recovered from the given output equation. Similarly, a parameter is said
to be locally structurally identifiable if there are a finite number of solutions for the param-
eter that can be recovered from the output equation. On the contrary, if there are an infinite
amount of values for one or more parameters our model is considered to be structurally non-
identifiable. Often models that are structurally identifiable are not practically identifiable, but
structural identifiability is a necessary condition for practical identifiability. As such, it is often
necessary to evaluate the structural identifiability of our model parameters before computing
practical identifiability.

We begin by defining structural identifiability in terms of output input functions. We can
represent our SEIR model in the form of [5] below,

d x

d t
= f (x(t ), p), x(0) = x0.

Here f (x(t ), p) is the input function where x(t ) represents the state variables and p rep-
resents a specific parameter from our parameter set. We then define our output function as
g (x(t ), p). Additionally, note that our output observations are given in discrete time intervals:
{yn

i=1}. Then we can write {yn
i=1} as the following equation:

yi = g (x(ti ), p̂)+Ei

where p̂ represents the true value of each parameter in the parameter set, g (x(ti )) is the
output of our model at each time step, and Ei is the observation measurement error that repre-
sents the difference between the observed and expected values. In our calculations, we assume
that Ei follows a normal distribution with mean 0 and variance σ2. We define global and local
structurally identifiability below.

Definition 4.1. A parameter P is globally structurally identifiable if for every q in the set of
estimated parameters, the equation g (x(t ), p) = g (x(t ), q) if and only if p = q .

Definition 4.2. Let N (P ) denote the neighborhood of the parameter p. The parameter p is
locally structurally identifiable if for every p there exists an open neighborhood N (P ) such
that for every q ∈ N (P ) where q is in the set of estimated parameters, the equation g (x(t ), p) =
g (x(t ), q) if and only if p = q .

Next we explore 3 methods of computing structural identifiability and the results garnered
from each method.
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4.1 DAISY

We first computed the structural identifiability of our model in DAISY (Differential Algebra for
Identifiability of Systems). DAISY provides a certificate of correctness while other methods such
as SIAN in Maple and IdentifiabilityAnalysis in Mathematica are only correct with high proba-
bility of accuracy. DAISY works by taking in a vector of our variables, a vector of our unknown
parameters, the number of state variables, the number inputs, the number of outputs, and our
model equations.

DAISY uses a differential algebra approach to determine whether or not a model is struc-
turally identifiable. The program first ranks the parameters, inputs, outputs, variables and their
derivatives. A typical ranking places the input and output variables at the lower rank, while the
highest rank is reserved for the state variables of the system. From there, DAISY calculates the
characteristic set of the model equations, or a minimal set of differentiable polynomials. The
characteristic polynomials, one through the number of outputs, are not in terms of the state
variables and therefore show the relationship between the input and output variables.

Next, Ritts algorithm uses repeated Lie derivatives to eliminate the non-observed state vari-
ables from the system of equations and then uses this to find the input-output relation of the
system. Daisy then normalizes the polynomials to be monotonic in order to fix the values of the
coefficients of the polynomials. The coefficients of these polynomials form a function of our
unknown parameters.

Finally, DAISY computes an exhaustive summary, or a map from the parameter spaceP toRv

where j = 1, ..., vi and j is an index running over the monomial indices of the set of differential
polynomials. This serves to linearly parameterize the input-output relation. We check identifi-
ability by checking that this map p :P→Rv is injective. This computation uses the Buchberger
algorithm that calculates the Groebner basis. The structure of the Groebner basis allows us to
determine the structural identifiability of a system of differential equations.

While DAISY provides a certificate of accuracy, it suffers from expression swell as models get
more computationally complex. Because of this, attempts to compute the structural identifia-
bility of our SEIR Child-Adult failed to produce any results.

4.2 SIAN

Next we used SIAN (Structural Identifiability ANalyzer), a package in Maple to compute the
structural identifiability of our SEIR Child-Adult model. SIAN combines a differential algebra
approach and a Taylor series approach. Structural identifiability in SIAN can be analyzed as a
map between the parameter values and initial conditions to the output data. By reducing the
output functions to their truncated Taylor series, we can effectively reduce the dimension of
this map to a finite dimension.

SIAN first constructs the maximal polynomial system: a system of algebraic equations that
define the input-output equations, the initial conditions, and the parameter set. Next SIAN
truncates the polynomial system of equations based on the Jacobian condition, finding the
unique solution of the triangular system. Then, random specializations of integer values are
computed for the parameters and the initial conditions of the truncated system. Finally, SIAN
outputs the set of locally and globally structurally identifiable parameters.

It is important to note that SIAN does not take in initial conditions, and instead takes in
Sc(0), Sa(0), Ec(0), Ea(0), Ic(0), Ia(0), Rc(0), Ra(0) as additional parameters.
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4.3 IdentifiabilityAnalysis

In this section we present structural identifiability results from Wolfram Mathematica, using
a package called IdentifiabilityAnalysis. IdentifiabilityAnalysis takes in initial conditions ei-
ther as fixed values or as parameters to be estimated. By eliminating the need to take repeated
Lie derivatives in computing the Jacobian, IdentifiabilityAnalysis allows for the computation
of structural identifiability for much larger systems. Additionally, IdentifiabilityAnalysis fur-
ther reduces the computational complexity by computing all calculations modulo a large prime
number.

IdentifiabilityAnalysis also uses a differential algebra approach. In summary, the package
works by computing a non-linear algebraic system, whose rank of the Jacobian determines the
identifiability of the system. IdentifiabilityAnalysis reduces computational complexity by di-
rectly computing the entries of the Jacobian matrix via computing the power series expansion of
the partial derivatives of the input variables with respect to the parameters and the initial con-
ditions. Additionally, the package further simplifies the structural identifiability computation
by performing all calculations modulo a large prime number. There is a degree of inaccuracy
that can stem from these simplifications, but the probability of a rank error in the computation
of the rank of the Jacobian can be bounded from above and decreases as value of the prime
number modulo increases. The steps of the algorithm are outlined below:

1. Assign random integers as the values for the parameters and initial conditions.

2. The input of the system is specialized to a truncated random integer coefficient power
series.

3. Compute the truncated power series solutions of the state variables, the partial derivative
of the input variables with respect to the initial conditions, and the partial derivatives of
the input variables with respect to the parameter set.

4. Utilize the truncated power series solutions and substitute them into the partial deriva-
tives in step 3. This produces the power series representations of the output sensitivity
derivatives.

5. Identify the coefficients of the truncated power series of the output derivatives with the
coefficients of a general Taylor expansion of the output sensitivity derivatives. These give
the entries of the Jacobian matrix.

6. Calculate the rank of the Jacobian. If the Jacobian has a full rank the system is said to be
structurally identifiable. If the matrix is rank deficient, then the non-identifiable param-
eters are found by determining which columns of the Jacobian whose removal does not
change the rank.

We began by computing structural identifiability for a basic SEIR model defined below. Then
we can compare the results of the SEIR Child-Adult model with the basic SEIR model to see
whether the increased complexity of our adapted model leads to a structurally non-identifiable
model. We define our model as follows:

dS

d t
=−βSI

N
,

dE

d t
=βSI

N
−ηE ,
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d I

d t
= ηE −αI ,

dR

d t
=αI

whereβ is the transmission rate,
1

η
is the latent period where an individual is infected but not

yet infectious, andα is the recovery rate. Additionally in this model S(0) = S0,E(0) = E0, I (0) = 0,
and R(0) = 0. The parameters to be estimated are: {S(0), I (0),E(0),R(0),α,β,η, N } The structural
identifiability results were computed in SIAN and are shown in the table below.

output vector fixed parameters locally identifiable parameters globally identifiable parameters
I (t ), N f ,µ N, β, I(0), α,η, S(0), E(0) N, β, I(0)

I (t ) f ,µ I(0), α,η, S(0), E(0) I(0)
R f ,µ α,η, E(0), In(0), S(0), R(0) S(0), R(0)

Table 7: Structural Identifiability of SEIR Parameters: Base SEIR Case

4.4 Non-Infectious E SEIR Model

In this section we present the results of structural identifiability analysis for the non-infectious
E case where ξ= 0.

output vector fixed parameters locally identifiable parameters globally identifiable parameters
IC , I A f ,µ All All

IC f ,µ All NA
I A f ,µ All NA

IC + I A f ,µ All NA
RC ,RA f ,µ All All

RC +RA f ,µ All NA
CC ,C A f ,µ All NA

CC +C A f ,µ All but C A0 and CC 0 NA
CC ,C A ,RC ,RA f ,µ All All

CC +RC ,C A +RA f ,µ All NA
CC +C A ,RC +RA f ,µ All but C A0 and CC 0 NA

IC , I A f ,µ,βC A All All
IC , I A f ,µ,βCC ,βC A All All
IC , I A f ,µ,γC ,γA ,ϵC ,ϵA All All
IC , I A f ,µ,β-dependencies All All

Table 8: Structural Identifiability of SEIR Parameters: Non-Infectious E: MAPLE Results

output vector fixed parameters identifiable parameters non-identifiable
IC , I A f ,µ,βCC All None
IC , I A f ,µ,βCC ,βC A All None
IC , I A f ,µ,γC ,γA ,ϵC ,ϵA All None

Table 9: Structural Identifiability of SEIR Parameters: Mathematica

In the structural results above, both SIAN and Mathematica take in initial conditions as esti-
mated parameters. "NA" indicates a kernel error in SIAN where computations of global struc-
tural identifiability failed. Additionally, note that Mathematica only provides information on
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local structural identifiability, while SIAN outputs both local and global structural identifiabil-
ity. We observe that RC ,RA output vectors produce a full globally structurally identifiable set of
parameters.

4.5 Infectious E SEIR Model

The table below contains the structural identifiability results for the original parameter set:
{βAC ,βC A,βCC ,βA A,γC ,γA,ϵC ,ϵA},ξCC ,ξC A,ξAC ,ξA A} in addition to the initial condition set de-
scribed above.

output vector fixed parameters locally identifiable parameters globally identifiable parameters
IC , I A f ,µ All NA

IC f ,µ All NA
I A f ,µ All NA

IC + I A f ,µ All NA
RC ,RA f ,µ All All

RC +RA f ,µ All NA
CC ,C A f ,µ All NA

CC +C A f ,µ All NA
CC ,C A ,RC ,RA f ,µ All All

CC +RC ,C A +RA f ,µ All NA
CC +C A ,RC +RA f ,µ All but Cc (0) and Ca(0) NA

IC , I A f ,µ,γC ,γA ,ϵC ,ϵA All All
IC , I A f ,µ,β-dependencies All All
IC , I A f ,µ, β and ξ-dependencies All All

Table 10: Structural Identifiability of SEIR Parameters: Infectious E: MAPLE Results

output vector fixed parameters identifiable parameters non-identifiable
IC , I A f ,µ All None

IC + I A f ,µ All None
RC ,RA f ,µ All None

RC +RA f ,µ All None
CC ,C A f ,µ None All

CC +RC ,C A +RA f ,µ All None
CC +C A ,RC +RA f ,µ All None

Table 11: Structural Identifiability of SEIR Parameters: Infectious E: Mathematica

Observe in the tables above that the output vectors RC ,RA produce a full set of globally iden-
tifiable parameters and CC ,C A produce no identifiable parameters.

5 Practical Identifiability

5.1 Monte Carlo Simulation

In this paper we use Monte Carlo Simulations as shown in Algorithm 1, to determine the prac-
tical identifiability of our SEIR Child-Adult model. We generate M=100 prevalence data sets for
both Infected Children and Infected Adult compartments across a time span of T days. This
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is repeated for six different noise levels: σ = 0,1,5,10,20,30. Next we fit our model to each of
the M data sets, and estimate our parameters using the optimization packages Fmincon and
Fminsearchbnd in Matlab. We then compute the average relative error (ARE) across the 100
estimated parameter values. A parameter set p is practically identifiable if ARE(p(k)

σ ) ≤σ for all
σ.

Algorithm 1 Monte Carlo Simulation
1: t j = 1,2, . . . ,T
2: Let p denote true parameter value.
3:

4: for σ= 0%,1%,5%,10%,20%,30% do
5: for i = 1,2, . . . ,100 do
6: ÎiC (t j , p) = IC (t j , p)+αC

7: Îi A(t j , p) = I A(t j , p)+αA

8: αC follows N (IC (t j , p), IC (t j , p)σ)
9: αA follows N (I A(t j , p), I A(t j , p)σ)

10:

11: Optimize error function:
12: error =

∑
( 1

IiC (t j )2 (IiC (t j )− ÎiC (t j ))2)+∑
( 1

Ii A (t j )2 (Ii A(t j )

13: −Îi A(t j ))2)
14: p̂i (σ) is the optimal set of parameter values for the ith generated
15: data set.
16: end for
17:

18: Compute ARE
19: Let k be the number of estimated parameters
20: for n = 1,2, . . . ,k do

21: ARE(p(k)
σ ) = 100%× 1

100

∑100
i=1

p(k)−p̂(k)
σi

p(k)

22: end for
23: end for

Note that a different estimated parameter may impact the time of peak infection. Therefore,
the outputs, our Infected compartments, go to zero at a different pace for the infectious and
non-infectious E cases as shown in Figure 2. To fix this, we run our MATLAB code for a shorter
length of time in order to eliminate the days at which the output returns values of 0 since it
makes the weight in our least squares error function undefined.

weightC = 1

I 2
C

,weightA = 1

I 2
A

Practical identifiability changes when only given data before the peak infection, so it is im-
portant that we always test practical identifiability on data that goes beyond the peak time of
infection [6]. When adjusting the time span, we verify that the data includes the time of peak
infection.
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Figure 2: Differences in dynamics between infectious and non-infectious E cases. For the non-infectious case,
time of peak infection for children is at day 71 and time of peak infection for adults is at day 62. For the infectious
E case, time of peak infection for children is at day 53 and time of peak infection for adults is at day 43

For some cases, Fmincon computes a singular matrix due to the initial guess being equiva-
lent to our true parameter values. We instead use Fminsearchbnd to avoid inaccurate results in
these instances.

We set our initial conditions for the adult child model as shown in Table 12. Our initial con-
ditions are based off literature reviews for international COVID-19 data. The percentage of in-
dividuals under 15 is 25% of the world population [7]. Lowering this percentage to account for
the lower proportion of individuals under 10 years old than that of 15 years would not bring R0

under 1 as shown in Figure 3 nor would it cause a large change in the value of R0. Therefore, we
define 25% of the population as children under 10 for our simulations.

Figure 3: R0 at proportion of children varying from 5% to 30%

Table 12: Initial Conditions

Variable Initial Value Variable Initial Value
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NC 250 NA 750
SC 240 S A 740
EC 0 E A 0
IC 10 I A 10
RC 0 RA 0

5.1.1 Non-Infectious E SEIR Model

Since practical identifiability is a local behavior, we must fix our true parameter values as given
in Table 13. We estimate our parameter values based on COVID-19 data and a reasonable R0 to
approximate a model of the pandemic.

Table 13: Fixed and Estimated Parameter Values

Parameter Value Source Parameter Value Source

µ 0.00008 [8] [9] f 0.0005 [8] [10]
βCC 0.01 [8] [11] βA A 0.00027 Estimated
βC A 0.00005 [11] βAC 0.01 [8]
γC 0.1 [8] γA 0.074 [12]
ϵC 0.3 [8] ϵA 0.2 [13]

We begin by running the Monte Carlo Simulation where we estimate all disease specific pa-
rameters to get Table 14.

Table 14: Practical Identifiability for βA A, βCC , βAC ,
βC A,γA,γC , ϵC ,and ϵA where T = 365 using fmincon

σ βA A βCC βAC βC A

0 0.0000 0.0000 0.0000 0.0000
1 0.0141 0.0771 0.0127 0.0860
5 0.1368 7.4768 0.7954 2.2646
10 0.4139 39.1975 1.9703 9.3628
20 1.8227 97.3919 3.8395 39.5859
30 5.0465 168.6005 6.2050 80.4438

σ γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000
1 0.0159 0.0169 0.0130 0.0401
5 0.2317 0.9040 0.4418 0.4982
10 0.8576 4.1867 1.7974 1.6478
20 2.9308 10.0851 5.1290 6.5954
30 6.0575 15.9486 9.2823 15.4116

In Table 14, the transmission rates from children, βCC , and βC A, appear to not be practically
identifiable while the remainder of the parameters are. We next fix the least practically identifi-
able of the two, βCC , to see if the other, βC A, becomes practically identifiable in Table 15.
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Table 15: Practical Identifiability for βA A, βAC , βC A,γC ,γA,
ϵC ,and ϵA where T = 365 using fmincon

σ βA A βAC βC A γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0096 0.0107 0.0130 0.0124 0.0114 0.0116 0.0225
5 0.1145 0.7071 2.0670 0.2121 0.3166 0.3324 0.4549
10 0.4106 1.6597 9.0988 0.8735 0.7145 0.7901 1.6547
20 2.1995 3.8992 46.8843 2.7272 1.8460 3.0890 8.0240
30 6.0667 6.7388 90.5261 5.8050 3.4994 9.8910 17.3581

In Table 15, βC A is still not practically identifiable but the other six parameters are. This
indicates that fixing βC A will allow us to obtain a full set of practically identifiable parameters.
We confirm this in Table 16.

Table 16: Practical Identifiability for βA A, βAC , γA, γC , ϵC ,
and ϵA where T = 365 using fmincon

σ βA A βAC γA

0 0.0000 0.0000 0.0000
1 0.0117 0.0165 0.0222
5 0.1344 0.5610 0.1861
10 0.4622 1.8485 0.7366
20 1.5650 3.9218 2.9964
30 4.2548 6.1123 6.0440

σ γC ϵC ϵA

0 0.0000 0.0000 0.0000
1 0.0138 0.0156 0.0266
5 0.2609 0.2526 0.4822
10 0.7965 0.7622 1.6507
20 1.8750 2.2417 5.1656
30 3.6714 10.6538 11.9416

Since the infection rates, β values, are the most difficult parameter values to pinpoint, we
seek additional conclusions about the identifiability of these parameters for our model. To fur-
ther investigate the practical identifiablity of the β parameters, we fix the other four parameters
to obtain the ARE values in Table 17.

Table 17: Practical Identifiability for βA A,βCC ,βAC , and
βC A where T = 365 using fmincon

σ βA A βCC βAC βC A

0 0.0000 0.0003 0.0001 0.0002
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1 0.0769 0.3680 0.1086 0.1528
5 0.3878 1.9307 0.5698 0.7323
10 0.9186 4.4049 1.2515 1.7253
20 3.5974 14.1137 2.1176 7.9444
30 7.4914 23.0994 4.6589 17.1020

Fixing the rate at which exposed individuals become infected and the rates at which infected
individuals recover reveals a full set of practically identifiable parameters at our fitted parameter
values. The fact that we can estimate infection rates accurately with noisy data may be very
helpful in future disease models.

To further investigate practically identifiable models for the non-infectious E case, we sought
a way to estimate a singular β that is scaled appropriately for each adult child infection rate.
Since the infection rate is the product of the probability of infection and the contact rate, we
can compute these scalars given some knowledge on the disease-specific relationship between
adults and children in these categories. We use COVID specific findings to generate our scalars.
We then compute the ARE for a single β that determines all 4 unknown βs.

We set β equal to the transmission rate, βA A, from infectious adults to susceptible adults.
We assume that the contact rate from children to children is less than the contact rate from
adults to adults is thus we multiply β by 1

2 for βCC . We also estimate the contact rate from
children to adults to be a third of the contact rate from adults to adults, so we multiply β by 1

3
for βC A. Additionally, we assume the contact rate from adults to children to be about a third of
the contact rate from adults to adults, so we multiply β by 1

3 for βAC . Since children are at most
half as likely to contract COVID compared to adults, the probability of transmission to children
will be half of the probability of transmission to adults thus we multiply β by 1

2 for βCC and βAC

[8]. The probability of transmission from children is 24515
42739 of the probability of transmission

from adults, so we multiply β by 24515
42739 for βCC and βC A [11]. These relationships result in the

dependencies shown in Table 18.

Table 18: β Dependencies

Parameter Dependency Parameter Dependency

βA A β
βCC
NC 0

1
4

24515
42739 β

βC A
1
3 ∗ 24515

42739 β
βAC
NA0

1
6 β

Table 19: Practical Identifiability for β γA,γC ,ϵC , and ϵA

where T = 365 using fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0203 0.0242 0.0188 0.0142 0.0676
5 0.1681 0.2574 0.1733 0.5270 0.6985
10 0.3988 0.7500 0.4012 1.1210 1.6238
20 1.0902 2.7449 0.8450 3.3212 4.1651
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30 2.6538 5.8913 1.7347 10.1056 9.1182

When we compute practical identifiability for a collective β, along with the ϵ and γ parame-
ters, we obtain a full set of practically identifiable parameters as shown in 19. This provides an
alternative model given different information about a disease.

5.1.2 Infectious E SEIR Model

The non-infectious E SEIR model is a special case of the infectious E model where all ξ values
are fixed at 0. Here we present the practical identifiability of the infectious E SEIR adult child
model. The fitted COVID specific parameters for the ξs are given by Table 20. The remaining
parameters are set at the same values presented in Table 13.

Table 20: ξ Fixed and Estimated Parameter Values

Parameter Value Source Parameter Value Source

ξA A 0.0002 [14] ξCC 0.0067 [14] [8] [11]
ξC A 0.000033 [14] [11] ξAC 0.0067 [14] [8]

We begin by running the Monte Carlo Simulation where we estimate all diseases specific
parameter values which produces Table 21.

Table 21: Practical Identifiability for βA A, βCC , βAC , βC A,
γC , γA, ϵC , ϵA, ξCC , ξA A, ξC A, and ξAC where T = 250 using
fmincon

σ βA A βCC βAC βC A γC γA

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.9412 7.9757 5.7989 19.7460 1.8837 0.1015
5 3.2467 26.4452 11.8255 41.7726 8.8579 0.3991
10 6.2684 44.1012 20.9476 44.0497 16.4534 0.8823
20 14.3341 72.9835 38.9088 51.7101 23.7573 2.5946
30 25.8113 92.9567 39.7756 76.2023 29.0818 6.2513

σ ϵC ϵA ξCC ξA A ξC A ξAC

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 8.2914 3.0401 329.1744 2.9627 1389.5 9.2826
5 30.7098 8.3567 428.4256 10.4277 4032.4 35.9406
10 79.6158 11.9891 929.4349 17.8005 7539.1 73.0132
20 117.4588 21.9284 2780.7 36.9233 11731 109.9530
30 142.8740 24.0662 3164.7 60.6729 15816 89.8377

Since the majority of the parameters are not practically identifiable, we move on to investi-
gating the practical identifiability of the infection rates in Table 22. For the infectious E case this
is all of the β and ξ values.
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Table 22: Practical Identifiability for βA A, βCC , βAC , βC A,
ξCC , ξA A, ξC A, and ξAC where T = 250 using fmincon

σ βA A βCC βAC βC A

0 0.0000 0.0000 0.0000 0.0000
1 2.4440 2.7943 2.8675 13.6825
5 6.0076 7.1509 5.5580 30.8122
10 10.4381 16.9261 13.4978 44.4221
20 20.4924 24.5778 18.4858 78.2155
30 39.6615 32.2456 18.1156 156.6028

σ ξCC ξA A ξC A ξAC

0 0.0000 0.0000 0.0000 0.0000
1 114.7923 2.1610 1950.3 0.7762
5 217.7204 7.8126 5102.3 3.8035
10 490.2204 16.4853 8966.2 7.4770
20 629.6905 38.8814 16905 19.5418
30 553.0994 65.7712 28387 34.7203

This set only has one practically identifiable parameter βAC , so we try to make further sim-
plifications by only estimating a singular β and ξ. We assume the relationships between the
child and adult contact rates and probability of infection are the same for exposed individuals.
Therefore, we use the same scalars in Table 18 for the β values as we do for the corresponding ξ
values as shown in Table 23.

Table 23: ξ Dependencies

Parameter Dependency Parameter Dependency

ξA A ξ
ξCC
NC 0

1
4

24515
42739 ξ

ξC A
1
3

24515
42739 ξ

ξAC
NA0

1
6 ξ

We run the Monte Carlo Simulation for the infectious E case with these dependencies to
obtain Table 24.

Table 24: Practical Identifiability for β,γC ,γA, ϵC , ϵA, ξ
where T = 250 using fmincon

σ β γC γA

0 0 0 0
1 0.1484 0.0543 0.0309
5 1.5585 0.3015 0.2195
10 3.8483 0.7723 0.5322
20 11.2767 2.4018 1.8939
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30 23.9931 4.8543 3.7280

σ ϵC ϵA ξ

0 0 0 0
1 0.1467 0.1954 0.2635
5 2.6161 1.6134 3.1677
10 5.8175 3.4819 7.6676
20 10.2561 7.2099 19.3825
30 16.7237 10.2737 37.5742

Since we still do not yield a full set of practically identifiable parameters, we make ξ de-
pendant on beta. The scalars in Table 18 will still hold for the β parameters, but the ξ scalars in
Table 23 will be adjusted to include the relationship betweenβ and ξ. The rate at which exposed
individuals infect susceptible individuals is 2

3 the rate at which infected individuals infect sus-
ceptible individuals [14]. For that reason, we multiply the estimated β value by 2

3 to compute ξ
and obtain Table 25.

Table 25: ξ Dependencies for ξ Dependant on β

Parameter Dependency Parameter Dependency

ξA A
2
3β

ξCC
NC 0

2
3

1
4

24515
42739β

ξC A
2
3

1
3

24515
42739β

ξAC
NA0

2
3

1
6β

With these dependencies, we can estimate a singular β value instead of all eight infection
rates. We run the Monte Carlo Simulation for this case and obtain Table 26.

Table 26: Practical Identifiability for β,γC ,γA,ϵC , and ϵA

when ξ is dependant on β where T = 250 using fmin-
searchbnd

σ β γC γA ϵC ϵA

0 0 0 0 0 0
1 0.0190 0.0464 0.0612 0.6337 0.1567
5 0.0886 0.2060 0.2923 3.0605 0.7388
10 0.2075 0.4240 0.8978 5.7178 1.9162
20 0.6626 0.9380 3.0319 13.6892 4.4418
30 1.6097 1.4879 6.4126 19.1212 7.6412

By making the ξ values dependent on a singular β value, we obtain a full set of practically
identifiable parameters for the adult child infectious E case.

5.2 Identifiability Map

In the above section, we analyze the practical identifiability of parameters given different un-
knowns using the same estimated values for each table. We now evaluate the practical identi-
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fiability of a given set of unknown parameters using a range of estimated values given in Table
27. We approximate a range of acceptable values for each infection rate based on its definition
and the average range of R0.

Table 27: Fixed Parameter Ranges

Parameter Value Range Source

µ 0.00008 [8] [9]
f 0.0005 [8] [10]
βCC [0.001,1.0] Estimated using R0

βA A and β [5.0∗10−7,4.0∗10−4] Estimated using R0

βC A [1.0∗10−8,0.005] Estimated using R0

βAC [0.01,1.0] Estimated using R0

γC [0.02,1.0] Child recovery period from 1 to 50 days
γA [0.01,1.0] Adult recovery period from 1 to 100 days
ϵC [0.04,1.0] Child incubation period from 1 to 25 days
ϵA [0.02,1.0] Adult incubation period from 1 to 50 days

Similar to when we change our model from infectious to non-infectious, the dynamics change
when we change the value of different model parameters. For this reason, we must continue to
adjust the time span to account for these differences. Again we verify the time of peak infection
precedes T . We denote time of peak infection for children as T PIC and time of peak infection
for adults as T PI A.

Note that for the approximate parameter ranges proposed below, more investigation is nec-
essary to confirm that all values between the bounds yield a fully practically identifiable set.
Additionally, we need to take a further look outside of those bounds to verify that no other val-
ues yield a practically identifiable set.

5.2.1 Dependant βModel

Because our model is practically identifiable for prevalence data when we use a single β value
on which the β values are dependent, we return to this model. We define our β values using the
dependencies in Table 18 and use the fixed values we defined in Table 13. For each parameter,
then, we calculate the ARE for our β,γC ,γA,ϵC , and ϵA when the parameter is at different values
within its value range. For β we use the parameter range given for βA A.

We begin by running the Monte Carlo Simulation on the two ends of the parameter range for
βwhile keeping all other parameters at their values given in Table 13 to obtain tables 28 and 29.

Table 28: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when β = 0.0000005, T = 195, T PIC = 1, and T PI A = 1
using fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1526 0.0072 0.0046 0.0284 0.0162
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5 0.5268 0.0367 0.0325 0.1300 0.1388
10 0.9886 0.1128 0.0908 0.3342 0.3771
20 5.9613 0.4510 0.3062 0.8449 3.4152
30 23.4016 1.0635 0.7872 4.9230 18.0515

Table 29: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when β = 0.0004, T = 200, T PIC = 53, and T PI A = 45 us-
ing fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0944 0.0400 0.0557 0.3870 0.2187
5 0.5990 0.2459 0.3777 3.3116 1.3005
10 1.5917 0.6304 0.8402 7.3785 3.5212
20 4.6029 1.9077 1.6981 14.2028 8.8168
30 12.0869 4.2887 2.6892 21.8770 18.9709

Since both ends of the range yield a full set of practically identifiable parameters, we next
investigate if the model stays practically identifiable between these two β values in tables 30
and ??.

Table 30: Practical Identifiability for β, γA, γC , ϵC , and ϵA

when β = 0.000004, T = 125, T PIC = 1, and T PI A = 1 us-
ing fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 3.0249 0.1610 0.0256 10.1617 3.8420
5 10.6874 0.7040 0.1449 20.0109 21.5699
10 24.5039 1.6141 0.4012 37.8625 57.3678
20 46.2204 3.1104 0.8756 68.8195 124.5263
30 80.5635 5.9262 1.9789 60.3148 108.3582

Table 31: Practical Identifiability for β, γA, γC , ϵC , and ϵA

when β = 0.00016, T = 365, T PIC = 1, and T PI A = 103
using fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0616 0.0528 0.0518 0.8005 0.2497
5 0.3738 0.3134 0.2964 4.2328 1.5077
10 0.8908 0.9731 0.7320 9.2118 3.0265
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20 2.5577 3.2361 2.3114 18.9912 7.7423
30 5.4925 6.9734 5.4811 39.6907 16.5372

We must continue to investigate the practical identifiability of our model for different values
of β. However, to get an idea of the rest of the parameters’ ranges, we move on to map the iden-
tifiability of γA. Similar to β, we begin mapping identifiability for this parameter by computing
the ARE for the ends of the parameter range to obtain tables 32 and 33.

Table 32: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γA = 0.01, T = 365, T PIC = 61, and T PI A = 60 us-
ing fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0872 0.0257 0.0579 0.7055 0.2529
5 0.4095 0.1703 0.3222 3.7036 1.2640
10 0.6244 0.4891 0.8397 7.8757 2.5991
20 1.5976 2.0153 3.1139 13.4555 5.0651
30 2.3225 4.5024 6.8350 24.7370 9.4149

Table 33: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γA = 1.0, T = 30, T PIC = 1, and T PI A = 1 using
fmincon

σ β γA γC ϵC ϵA

0 0.0002 0.0000 0.0001 0.0001 0.0001
1 0.5935 0.3870 0.1139 6.8586 0.5597
5 2.6122 1.6227 0.6681 64.2359 3.0674
10 4.5095 3.0188 1.4551 105.0389 4.8214
20 10.8615 7.1470 3.2963 167.7244 12.5190
30 15.2703 9.6019 5.5453 187.4323 20.4713

The lower end of the range yields a fully practically identifiable set of parameters, but the
upper end of the range does not. We now search for the boundary where this difference occurs
in tables 34, 35, 36, 37, 38, 39, 40, and 41.

Table 34: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γA = 0.5, T = 50, T PIC = 1, and T PI A = 1 using
fmincon

σ β γA γC ϵC ϵA

0 0 0 0 0 0
1 0.7698 0.5149 0.1335 2.3705 0.4567
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5 3.8951 2.5776 0.7108 17.5978 2.4769
10 7.1725 4.6693 1.6443 58.6901 4.7893
20 15.8487 10.1910 3.0086 131.7590 10.2119
30 23.0252 15.8001 5.5299 166.8361 14.8819

Table 35: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γA = 0.3, T = 50, T PIC = 1, and T PI A = 1 using
fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.9063 0.6958 0.2208 1.9476 0.7221
5 4.5156 3.5064 1.1067 16.9069 3.7440
10 9.7009 7.6026 2.1805 67.3387 6.2244
20 17.7700 14.1401 5.3830 115.2633 12.1130
30 23.2036 18.7352 7.8462 154.2190 19.3232

Table 36: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γA = 0.2, T = 200, T PIC = 1, and T PI A = 1 using
fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1161 0.1002 0.0757 0.2536 0.0563
5 1.0969 0.9728 0.7196 3.9257 0.8851
10 2.4272 2.1770 1.5926 11.8892 2.1884
20 5.9350 5.5649 4.1856 44.7258 7.2584
30 10.7033 10.2882 8.1632 81.9746 15.3438

Table 37: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γA = 0.15, T = 250, T PIC = 1, and T PI A = 74 using
fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1173 0.0913 0.0741 1.0623 0.2773
5 0.5879 0.4738 0.4586 5.0617 1.3024
10 1.2467 1.1197 0.9629 11.6072 2.7184
20 3.9498 3.8812 3.3953 29.5546 7.4124
30 7.7456 7.8386 6.8562 61.8900 15.5141
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Table 38: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γA = 0.12, T = 250, T PIC = 1, and T PI A = 71 using
fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1050 0.0795 0.0717 0.6580 0.2970
5 0.5715 0.4553 0.3861 3.5190 1.5241
10 1.0884 1.0103 0.8070 8.2884 2.6952
20 3.3318 3.5152 2.7407 16.7910 7.7009
30 6.5547 7.4148 5.9020 42.8971 15.0314

Table 39: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γA = 0.1, T = 250, T PIC = 1, and T PI A = 66 using
fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0770 0.0628 0.0553 0.6864 0.2476
5 0.4081 0.3632 0.3144 2.9394 1.2332
10 0.8235 0.9421 0.8326 7.2856 2.1684
20 2.4699 3.3543 2.3183 16.1494 6.8075
30 4.2397 6.9850 4.7081 31.9194 8.6453

Table 40: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γA = 0.09, T = 250, T PIC = 1, and T PI A = 65 using
fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0604 0.0597 0.0551 0.6126 0.2131
5 0.3325 0.3285 0.2833 3.3429 1.1299
10 0.7540 0.9451 0.6931 6.8818 2.4445
20 1.6257 3.0971 1.7805 13.8924 4.6627
30 2.4306 6.2701 3.7298 31.9039 5.5677

30



Table 41: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γA = 0.08, T = 250, T PIC = 72, and T PI A = 63 us-
ing fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0680 0.0586 0.0739 0.6610 0.2533
5 0.2859 0.3065 0.3618 3.4984 1.0518
10 0.5687 0.8722 0.6122 5.6828 2.0875
20 1.0476 2.8438 1.5677 13.0673 3.8018
30 1.4684 6.2476 2.7375 19.3249 5.9203

The values for which γA yields a practically identifiable set of parameters is approximately
between 0.01 and 0.08 meaning this model can accurately estimate the parameters for an adult
infectious period between 100 days and 12.5 days.

Now we explore the identifiability map of γC by computing the ARE at either end of its value
range to obtain tables 42 and 43.

Table 42: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γC = 0.02, T = 365, T PIC = 87, and T PI A = 60 us-
ing fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0542 0.0555 0.0240 0.5173 0.1911
5 0.3248 0.3720 0.1723 4.5781 1.2319
10 0.7707 1.0024 0.5528 11.6625 2.4693
20 2.4551 3.5967 2.1855 45.5253 6.8717
30 4.6247 7.4720 4.4239 107.0400 13.0349

Table 43: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γC = 1.0, T = 125, T PIC = 1, and T PI A = 64 using
fmincon

σ β γA γC ϵC ϵA

0 0 0 0 0 0
1 0.1761 0.0886 0.1250 0.5875 0.5145
5 0.9121 0.4555 0.6306 3.5189 2.6420
10 1.6102 1.0020 1.2339 6.5729 4.6476
20 3.3351 3.3952 2.9149 13.1267 9.9573
30 6.0022 7.6331 5.4516 16.6192 18.8283

At the lower end of the range for γC we do not obtain a full set of practically identifiable pa-
rameters, but at the upper end we do. We again search for the boundary at which this difference
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occurs in tables 44, 45, 46, and 47.

Table 44: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γC = 0.5, T = 175, T PIC = 1, and T PI A = 64 using
fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0949 0.0590 0.0913 0.5674 0.3001
5 0.4937 0.3543 0.3842 2.5545 1.6503
10 0.9733 0.8024 0.8979 4.9262 2.9986
20 1.9435 3.0143 2.0185 9.8859 6.3943
30 2.7831 6.4262 3.3870 13.5106 8.6469

Table 45: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γC = 0.06, T = 250, T PIC = 74, and T PI A = 61 us-
ing fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0629 0.0489 0.0497 0.7528 0.2414
5 0.2483 0.3193 0.2383 3.8534 0.9425
10 0.5110 0.8971 0.4691 7.0392 2.0844
20 1.1235 2.9026 1.0902 15.4620 4.0582
30 1.9380 6.4332 2.0229 30.2558 7.1187

Table 46: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γC = 0.07, T = 250, T PIC = 73, and T PI A = 61 us-
ing fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0571 0.0563 0.0489 0.6220 0.2180
5 0.2560 0.3310 0.2274 3.5929 1.0088
10 0.5858 0.8259 0.5591 7.1709 2.2544
20 1.3345 2.9469 1.3355 15.1935 5.0824
30 1.9820 6.0588 2.2404 31.3140 7.3856
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Table 47: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when γC = 0.08, T = 250, T PIC = 72, and T PI A = 61 us-
ing fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0601 0.0539 0.0549 0.6302 0.2286
5 0.3493 0.2942 0.3003 3.3335 1.2996
10 0.5389 0.7892 0.6388 6.9523 1.9320
20 1.2480 2.8015 1.4044 13.6964 4.5506
30 2.1026 6.0151 2.4467 26.5302 7.5133

The approximate range at which γC yields a full set of practically identifiable parameters is
between 0.08 and 1.0. Meaning, diseases with a child infectious period between 1 and 12.5 days
can be accurately approximated with this model.

We now begin mapping the practical identifiability of ϵC by testing the practical identifiabil-
ity of the parameter for the upper and lower bounds of the parameter range. 48 and 49

Table 48: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when ϵC = 0.04, T = 365, T PIC = 1, and T PI A = 62 using
fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0423 0.0547 0.0604 0.0323 0.1476
5 0.2433 0.3321 0.3732 0.1719 0.9253
10 0.4974 0.9131 0.6405 0.3146 1.8875
20 1.2767 2.8125 2.4442 0.7729 4.1982
30 1.6866 6.1637 4.2758 1.1305 5.2616

Table 49: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when ϵC = 1.0, T = 365, T PIC = 68, and T PI A = 62 using
fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1050 0.0106 0.0431 0.6645 0.1777
5 0.6528 0.0636 0.3087 5.5361 1.0142
10 1.0013 0.1027 0.6832 18.6103 1.5313
20 1.3953 0.1790 1.0230 32.6951 2.1079
30 2.0743 0.4397 1.2414 32.0216 2.7311

For the lower bound of ϵC we obtain a full set of practically identifiable parameters, but at
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the upper bound we do not. We now search for the boundary where this difference arises in
tables 50, 51, 52, 53, 54, and 55.

Table 50: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when ϵC = 0.5, T = 200, T PIC = 69, and T PI A = 62 using
fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0684 0.0506 0.0561 0.3727 0.2256
5 0.3973 0.3052 0.3494 5.1916 1.3385
10 0.8619 0.8072 0.7935 11.2485 2.9712
20 1.3392 2.8840 1.7248 21.4163 4.7539
30 2.2909 6.2832 3.0552 38.5169 7.9084

Table 51: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when ϵC = 0.4, T = 200, T PIC = 71, and T PI A = 62 using
fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0555 0.0538 0.0567 0.2839 0.1770
5 0.4361 0.3276 0.3166 4.2993 1.5107
10 0.8546 0.8591 0.7896 8.7362 2.9626
20 1.4645 2.9444 1.6213 16.9206 5.0296
30 2.3966 6.1685 3.1914 33.0964 7.8241

Table 52: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when ϵC = 0.32, T = 200, T PIC = 71, T PI A = 62 using
fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0617 0.0561 0.0652 0.6329 0.2183
5 0.4045 0.3636 0.3612 3.0451 1.3623
10 0.7589 0.8121 0.7352 7.7220 2.6152
20 1.5601 2.9351 1.6034 15.3607 5.3677
30 2.3926 6.0988 3.0268 22.4301 7.8491
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Table 53: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when ϵC = 0.33, T = 200, T PIC = 70, and T PI A = 62 us-
ing fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0790 0.0558 0.0665 0.6381 0.2718
5 0.3735 0.2999 0.3431 3.2312 1.2658
10 0.7621 0.8286 0.7933 8.6262 2.5789
20 1.5376 2.9175 1.7058 16.0619 5.2035
30 2.5923 6.1457 3.0176 27.7041 8.6299

Table 54: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when ϵC = 0.34, T = 200, T PIC = 70, and T PI A = 62 us-
ing fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0825 0.0541 0.0754 0.7351 0.2946
5 0.4708 0.3237 0.3158 3.4873 1.6645
10 0.7392 0.7920 0.6243 6.3699 2.5597
20 1.7422 2.7708 1.5111 16.9196 5.9840
30 2.2649 6.0224 2.8441 22.5027 7.5418

Table 55: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when ϵC = 0.35, T = 200, T PIC = 70, and T PI A = 62 days
using fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0851 0.0579 0.0688 0.7339 0.2909
5 0.4388 0.3026 0.3772 3.8199 1.5526
10 0.8358 0.8117 0.8194 7.9414 2.8325
20 1.4788 2.9844 1.8227 17.7312 5.0258
30 2.1887 5.9902 3.1726 31.0935 7.8666

The approximate range for ϵC at which we obtain a full set of practically identifiable parame-
ters is between 0.04 and 0.34. Therefore, a disease that has an child incubation period between
2.9 and 25 days can be accurately represented by this model.

We now examine the final parameter value for this model by running the two bounds of the
parameter range for ϵA in tables 56 and 57.
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Table 56: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when ϵA = 0.02, T = 365, T PIC = 1, and T PI A = 182 us-
ing fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1201 0.0517 0.0858 0.2669 0.1372
5 0.8768 0.3864 0.5908 7.4865 0.9522
10 1.8407 1.1002 1.3510 18.0360 1.9276
20 3.5683 3.6569 3.1224 37.6624 3.2308
30 6.7231 7.7429 6.1685 71.4130 6.1083

Table 57: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when ϵA = 1.0, T = 200, T PIC = 53, and T PI A = 43 using
fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0313 0.0372 0.0533 0.3123 0.2008
5 0.2516 0.3118 0.3607 3.2858 2.5752
10 0.4861 0.6359 0.7862 7.3625 5.3795
20 1.2389 2.3549 1.2953 12.3389 11.1462
30 2.8553 5.4215 2.4808 23.2932 17.6404

Since the lower bound is not practically identifiable and the upper bound is, we look for the
point where this difference originates in tables 58, 59, 60, and 61

Table 58: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when ϵA = 0.5, T = 200, T PIC = 58, and T PI A = 48 using
fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0459 0.0541 0.0622 0.4518 0.2849
5 0.2615 0.3034 0.3124 3.1812 1.8595
10 0.5296 0.7561 0.6809 5.7708 3.5288
20 1.2794 2.4571 1.5607 12.5906 7.3047
30 2.6126 5.3281 2.4416 26.4995 12.4513

36



Table 59: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when ϵA = 0.1, T = 200, T PIC = 88, and T PI A = 80 using
fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1495 0.0660 0.0982 0.1596 0.3029
5 0.9038 0.4067 0.5825 3.3273 1.8324
10 1.9797 1.1830 1.4066 7.6359 3.9461
20 3.9303 3.8493 3.2782 13.5797 7.8095
30 7.3111 8.0145 6.8909 42.1158 14.7275

Table 60: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when ϵA = 0.15, T = 200, T PIC = 77, and T PI A = 68 us-
ing fmincon

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1071 0.0611 0.0706 0.1406 0.2863
5 0.5572 0.3415 0.4028 3.4576 1.5000
10 1.1798 1.0831 0.8718 6.7083 3.1112
20 2.3730 3.1926 2.2335 15.9705 6.3385
30 3.0958 6.6831 3.9475 30.8652 8.0729

Table 61: Practical Identifiability for β,γA,γC ,ϵC , and ϵA

when ϵA = 0.16, T = 200, T PIC = 75, and T PI A = 66 us-
ing fminsearchbnd

σ β γA γC ϵC ϵA

0 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.1032 0.0565 0.0722 0.6472 0.2967
5 0.4469 0.3491 0.3602 2.9528 1.3133
10 1.0597 0.8090 0.9824 7.1585 2.9838
20 2.0936 3.0961 2.0394 14.0198 5.9350
30 2.4546 6.3243 3.4628 26.5309 6.5759

The values for which ϵA yields a practically identifiable set of parameters appears to be be-
tween 0.16 to 1.0 meaning this model can accurately estimate the parameters for an incubation
period between 1 and 6.25 days.

5.2.2 β Values Estimated Model

Since when we only estimate the beta values, we obtain a full set of practically identifiable pa-
rameters, we begin mapping the identifiability for this case as well.
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We begin by testing the identifiability for the bounds of βA A’s parameter range in tables 62
and 63.

Table 62: Practical Identifiability for βA A,βCC ,βAC , and
βC A when βA A = 0.0000005, T = 195, T PIC = 1, and
T PI A = 1 using fminsearchbnd

σ βA A βCC βAC βC A

0 0.0000 0.0000 0.0000 0.0000
1 7.8800 0.4829 0.3249 0.3149
5 36.2588 2.8119 1.8740 1.4790
10 70.4620 5.7901 3.8235 2.8848
20 92.0124 15.2376 9.4562 4.9852
30 103.6934 34.4476 20.4628 7.4153

Table 63: Practical Identifiability for βA A,βCC ,βAC , and
βC A when βA A = 0.0004, T = 200, T PIC = 1, and T PI A =
46 using fminsearchbnd

σ βA A βCC βAC βC A

0 0.0000 0.0000 0.0000 0.0000
1 0.0413 0.6948 0.1626 2.1758
5 0.2108 3.3178 0.8656 10.6242
10 0.5817 7.5968 2.0336 24.8079
20 1.6262 16.3251 5.7896 57.4667
30 3.4505 27.6155 12.7657 109.3969

Since neither bound for βA A yields a full set of practically identifiable parameters, we exam-
ine the middle of the range in tables 64, 65, 66, and 67.

Table 64: Practical Identifiability for βA A,βCC ,βAC , and
βC A whenβA A = 0.000004, T = 125, T PIC = 1, and T PI A =
1 using fminsearchbnd

σ βA A βCC βAC βC A

0 0.0000 0.0000 0.0000 0.0000
1 1.6800 0.6353 0.4954 0.4311
5 7.2588 3.7168 2.7131 2.0269
10 18.5222 7.5874 5.5541 5.0226
20 38.4874 13.7385 9.7193 12.1064
30 58.5029 32.3559 20.3211 19.4429
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Table 65: Practical Identifiability for βA A,βCC ,βAC , and
βC A whenβA A = 0.00035, T = 200, T PIC = 16, and T PI A =
42 using fminsearchbnd

σ βA A βCC βAC βC A

0 0.0000 0.0000 0.0000 0.0000
1 0.0401 0.8289 0.1726 1.8685
5 0.1914 4.6137 0.9936 8.8989
10 0.4593 7.7794 1.8332 18.6860
20 1.4194 16.9159 5.9301 47.6317
30 2.8489 29.8869 12.2719 89.0031

Table 66: Practical Identifiability for βA A,βCC ,βAC , and
βC A whenβA A = 0.000375, T = 200, T PIC = 1, and T PI A =
37 using fminsearchbnd

σ βA A βCC βAC βC A

0 0.0000 0.0000 0.0000 0.0000
1 0.0360 0.6522 0.1344 1.7855
5 0.2258 3.8992 0.9117 10.3123
10 0.5335 7.8651 2.0186 24.3396
20 1.5626 15.8272 5.3868 54.3245
30 3.4221 28.4894 12.5397 118.7473

Table 67: Practical Identifiability for βA A,βCC ,βAC , and
βC A when βCC = 0.005, T = 200, T PIC = 1, and T PI A = 44
using fminsearchbnd

σ βA A βCC βAC βC A

0 0.0000 0.0000 0.0000 0.0000
1 0.0382 1.9334 0.1547 1.4198
5 0.1769 9.7688 0.7611 6.5110
10 0.4018 19.4541 1.8349 14.8081
20 1.0687 41.4784 4.4315 31.1735
30 2.1889 51.6148 10.1552 60.2314

βA A seems to have a shorter range at which we obtain a full set of practically identifiable
parameters. More investigation is necessary to make any further conclusions.

We now move on to examine the identifiability map of βCC . We run the Monte Carlo Simu-
lation at the bounds of βCC to obtain tables 68 and 69.
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Table 68: Practical Identifiability for βA A,βCC ,βAC , and
βC A when βCC = 0.001, T = 200, T PIC = 1, and T PI A = 62
using fminsearchbnd

σ βA A βCC βAC βC A

0 0.0000 0.0000 0.0000 0.0000
1 0.0320 9.4766 0.1503 1.2673
5 0.1828 54.9126 0.8896 6.6359
10 0.4019 82.0071 1.6332 14.9826
20 0.9255 167.6687 3.6063 28.3282
30 2.3132 146.1000 8.4608 66.5138

Table 69: Practical Identifiability for βA A,βCC ,βAC , and
βC A when βCC = 1.0, T = 175, T PIC = 16, and T PI A = 47
using fminsearchbnd

σ βA A βCC βAC βC A

0 0.0000 0.0000 0.0000 0.0000
1 0.0871 0.1169 0.1945 0.4361
5 0.3865 0.5953 0.8713 1.8842
10 0.7130 1.3087 2.2586 3.2050
20 1.6375 3.1030 5.5667 6.7165
30 2.8441 6.4822 12.0314 11.0614

The upper bound for βCC yields a practically identifiable set, but the lower bound does not.
We search for the origin of this difference in Table 70.

Table 70: Practical Identifiability for βA A,βCC ,βAC , and
βC A when βCC = 0.5, T = 175, T PIC = 23, and T PI A = 51
days using fminsearchbnd

σ βA A βCC βAC βC A

0 0.0000 0.0000 0.0000 0.0000
1 0.0965 0.0455 0.2578 0.5413
5 0.5354 0.2178 1.0641 3.0548
10 0.8841 0.5513 2.1287 5.0861
20 2.1386 1.6187 4.4922 11.0511
30 2.7035 3.0057 6.3879 11.8189

βCC seems to have a larger range than βA A. More investigation is necessary for any further
details.
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5.3 Profile Likelihood

Profile Likelihood is a another approach to identifiability analysis. It is a one-dimensional rep-
resentation of the likelihood indicating which values of a single parameter component are in
statistical agreement with the available measurements. In this section we present a profile like-
lihood approach to determine confidence intervals some parameters in our parameter set. We
outline the methodology behind Profile Likelihood and present example results from a selec-
tion of our parameters.

Profile likelihood uses a Maximum Likelihood Estimation (MLE) approach. Here let y =
(y1, ..., ym) be a random sample from an unknown population. Then let f (y |θ) represent the
probability density function (PDF) that defines the probability of observing y given the param-
eter θ. Given observed data, the goal of MLE is to find the corresponding PDF that is most likely
to have produced the observed data. The likelihood function used to find this PDF is defined
below.

Definition 5.1. Given a random sample y = (y1, ..., ym) and a probability density function f (y |θ),
the likelihood function L(θ|y) is the product of the PDF evaluated at yi ’s:

L(θ|y) =
m∏

i=1
f (yi |θ).

The maximum likelihood function can be found by maximizing the log-likelihood function
ln(L(θ|y). This is possible because L(θ|y) and ln(L(θ|y) are monotonically related, and maxi-
mizing either returns the same MLE estimate. Then, there exist two cases: when l n(L(θ|y) and
when ln(L(θ|y) is not differentiable. Begin first with the case where ln(L(θ|y) is differentiable.
Then, l n(L(θ|y) must satisfy the differentiable equation:

∂(L(θ|y)

∂θi = 0

for all θi = θi ,MLE for all i = 1, ..,m. This partial derivative is also called the likelihood equa-
tion. Observe here that the above condition is not sufficient to guarantee a maximum. Thus,
the second partial derivative of the likelihood equation must also satisfy:

∂2(L(θ|y)

∂2θi < 0

for all θi = θi ,MLE for all i = 1, ..,m. In other words, this requires ln(L(θ|y) to be convex in the
neighborhood of θMLE .

Now in the case where ln(L(θ|y) is not differentiable, an analytic form of the solution to
MLE cannot be found. Instead, the MLE estimate must be computed numerically using a non-
linear optimization algorithm. This process works by reducing the parameter space to smaller
subsets instead of performing an exhaustive search. Over each iteration, the parameter set is
slightly modified to get closer to optimized performance. The process continues until the pa-
rameter set has converged to the optimal set of parameters.

The profile likelihood of a parameter θi is computed as follows:
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χ2
PL(θi ) = min

θ j ̸=i

[χ2(θ)].

The profile likelihood approach numerically optimizes χ2(θ) to produce an estimated pa-
rameter set θ̂. Then the optimization approach beings with θ̂i and samples along the profile
likelihood of θi by taking a step θST EP in an increasing/decreasing direction of θi and subse-
quently re-optimizing all θ j ̸=i . This is repeated until the desired threshold ∇α is reached or the
maximum number of steps is reached.

The value of θST EP changes depending on the steepness of the likelihood at each point. Con-
sequently, if the likelihood is flat, the value of θST EP should be large; if the likelihood is steep,
the value of θST EP should be small. We can write this mathematically such that θST EP should
fulfill the following condition:

χ2(θl ast +θstep )−χ2(θl ast ) ≈ q∇α
where q ∈ [0,1] and θl ast is the parameter values from the previous step.
The example results from our profile likelihood approach are below. The fitted parameter

set is given by:

βA A = 0.00027,βCC = 0.01,βAC = 0.01,βC A = 0.00005,γC = 0.1,γA = 0.074,
ϵC = 0.3,ϵA = 0.2,ξCC = ξA A = ξC A = ξAC = 0

and the constants are given by

f = .0005,µ= .00008, NC = 250, NA = 750.
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Figure 4: Profile Likelihood results for γA : True Value = 0.074

Figure 5: Profile Likelihood results for βCC : True Value = 0.01
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6 Comparisons Between the Simple and Adult-Child Model

In order to determine the differences between the Simple and Adult-Child model, we first verify
that the two models represent the same epidemic spread. We create a base case set of param-
eters where the two models have the same outputs by eliminating the differences between the
Adult and Child populations. Since our λC value is frequency dependent and λA is density de-
pendent, we accommodate for this by choosingβ and setting our Adult-Child parameters based
on their dependencies.

βA A =β βC A =β
βCC =βNC βAC =βNA

γA = γC = γ ϵC = ϵA = ϵ
We let β= 0.00027, ϵ= 0.25, and γ= 0.087, where ϵ and γ are averages of the values used in 5

and β is the value used in our dependent β case. We then plot the solutions of the Simple SEIR
model with the sum of the Adult and Child compartment solutions.

Figure 6: Solutions of Standard and Adult-Child SEIR Models for Base Case

Since the parameters are equal, the solutions of each model in Figure 6 are the same. When
we calculate R0 for each of the models, R0 = 3.1009 for the Adult-Child model and R0 = 3.1001
for the Simple SEIR model. We can attribute the differences in the value to small rounding
errors in the calculations. This confirms that our models depict the same epidemic when given
the same parameters.

To interpret the effect the β parameters have on R0 in the Adult-Child model, we demon-
strate the differences between the R0 values by using contour plots to compare how R0 changes
when we vary β. We plot R0 of the Adult-Child compartment model as βC A and βA A vary and
determine its relation to the standard SEIR model: R0 < 1, 1 < R0 < R0 Simple, and R0 Simple
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< R0. We look at these for the cases where the Child and Adult populations are equal, and for
the cases where the Child and Adult populations reflect those in 5.

Figure 7: Impact of βC A and βA A on R0 in Comparison with Simple SEIR Model

Figure 8: Impact of βAC and βCC on R0 in Comparison with Simple SEIR Model

In Figure 8, we see that the effectβAC has on R0 is greater thanβCC , and is even more so when
the population sizes of Adults and Children are equal. As βAC increases, R0 grows faster than
the initial Simple R0, while βCC has less impact on increasing R0. Similarly, βC A has a more
significant impact on R0 than βA A when the population sizes are both equal and unequal. This
demonstrates how the interactions between the Adult and Child populations has a significant
impact on the epidemic threshold.

We can similarly observe the impact of βC A and βAC by comparing the Adult-Child model
to Simple SEIR models. We first use our parameter values from 5 to approximate β, ϵ, and γ by
averaging and weighting β values by their respective population sizes as follows:
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Table 71: Standard Model Parameters for SEIR Non-
Infectious E

Parameter Equation Value

β (βA A +βC A)
NA

N
+ (

βCC

NC
+ βAC

NA
)

NC

N
0.0002533

γ
γC +γA

2
0.087

ϵ
ϵC +ϵA

2
0.25

We then graph the solutions of both models, summing the Adult and Child compartments to
compare to the Simple SEIR model. Figure 9 shows the plot of both solutions in one graph over
the course of 150 days.

Figure 9: Solutions of Simple and Adult-Child SEIR Models

Note that in this case, the R0 for the Adult-Child model is less than the R0 for the Simple
SEIR model. Because our parameter values are no longer equal, the Adult-Child model has a
later and lower peak infection. Since this model isn’t practically identifiable for all parameters,
we also look at our dependent-β model, which has a full set of practically identifiable param-
eters. We calculate a new β using our β dependencies and plot the solutions. Figure 10 shows
the solutions of both our dependent-β Adult-Child model and the corresponding Simple SEIR
model.
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Figure 10: Solutions of Simple and Adult-Child SEIR Models for Dependent Beta

In the Simple SEIR model, the number of Recovered individuals approaches N and the num-
ber of Susceptible individuals approaches 0. In the Adult-Child model, however, the solutions
appear to approach a herd immunity threshold, where the epidemic dies out without infect-
ing almost the entire population. To understand this key difference, we look at the individual
compartments of the Adult-Child model.
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Figure 11: Solutions of Dependent Beta Adult-Child SEIR Model

In Figure 11, we see that while the number of Recovered Adults approaches the Adult pop-
ulation size, the number of Recovered Children does not approach the Child population size
and plateaus at a much lower value. This indicates that while the Simple SEIR model seen in
10 models an epidemic, only one of the populations, the Adult population, experiences an epi-
demic in the Adult-Child model. We look at the impact of the Adult-Child model on the separate
populations by comparing them to isolated populations that do not interact with one another.
We look first at an isolated Child population that does not interact with the Adult population.
Because only children are being modeled in our new Simple SEIR model, we let β=βCC , ϵ= ϵC ,
and γ = γC to represent the Child to Child infectiousness, Child incubation rate, and Child re-
covery rate. We plot the Infected Child solution of the Adult-Child model in comparison to the
Infected solution of the Simple SEIR model using our Child parameters. Since the Adult-Child
model has an initial Susceptible Child population of NC = 250 but a total population size of
N = 1000, there are 1000 Susceptible individuals that can become Infected and pass on the dis-
ease, but only 250 Children that are being observed. We account for this by modeling a Simple
SEIR model for both a population size of N = 250 and N = 1000.
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Figure 12: Infected Children for Child-Adult and Simple SEIR Model for Varying Population Sizes

In both cases in Figure 12, the models are non-epidemic, with small R0 values. We infer that
the peak in Infected Child cases in the Adult-Child model results due to the interaction with a
more infectious Adult population, rather than with other Infected Children.

We next look at an isolated Adult population that has no contact with the Child population.
We let β= βCC , ϵ= ϵA, and γ= γA to represent the Adult to Adult infectiousness, Adult incuba-
tion rate, and Adult recovery rate. We plot the Infected Adult solution of the Adult-Child model
in comparison to the Infected solution of the Simple SEIR model using our Adult parameters.
We use population sizes of N = 750 and N = 1000 to account for both the initial Susceptible
Adult population and total population of the Adult-Child model.

Figure 13: Infected Adults for Child-Adult and Simple SEIR Model for Varying Population Sizes

Both cases in Figure 71 depict epidemics with R0 > 1. When the population size of the Simple
SEIR model is N = 750, the curve much more closely resembles the Infected Adult solution of
the Adult-Child model, but has a smaller peak as a result of the few cases caused by the 250
Children unaccounted for in the Simple model. When the population size of the Simple model
is N = 1000, the peak is much larger than the Infected Adult solution. The infectiousness of
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Adults is significant enough that the 250 additional Adults create more infections than the 250
Children in the Adult-Child model.

7 Conclusion

7.1 Discussion

Mathematical modeling has helped guide decision- and policy-making regarding COVID-19
and other infectious diseases. Incorporating previous knowledge about a disease may help
predict the outcome of an epidemic after disease-preventing measures have been taken. As
a model becomes more complicated, however, applicability and accuracy can be lost. In this
report, we successfully developed a dual-population model with a full set of structurally iden-
tifiable parameters. While our SEIR Child-Adult was not practically identifiable for all twelve
unknown parameters, we were able to create relevant β and ξ dependencies that produced a
full set of practically identifiable parameters.

Additionally, because not all parameters in the simple SEIR model are practically identifi-
able, our model offers a higher accuracy when using imperfect, real-world data. Our age-based
SEIR model can provide additional insight about disease spread and dynamics without com-
promising identifiability properties. Our comparisons of R0 and peak infection values indicate
the importance of segregating COVID-19 data by age in order to develop accurate forecasting
methods.

Our structural identifiability conclusions suggest that recovered data might be a reliable out-
put vector for epidemic modeling. For example, we have shown that all models parameters are
globally identifiable when the output vectors are given by RA,RC . Moreover we have shown that
when the output vector is given in terms of cumulative data, all model parameters are struc-
turally non-identifiable. These conclusions suggest that recovered, prevalence, and incidence
data are useful for our SEIR Adult-Child model.

7.2 Future Work

In our model, we make several assumptions that impact our conclusions. We assume that the
population of our model remains constant. Since in many cases the birth and death rates do
not match, a varying population could change the outcome of the model and requires further
study. Our model also does not take into account disease-related deaths, assuming all Infected
individuals move into the Recovered compartment.

Our model divides the population into two strict age-based categories focused on children
and adults, but recent conclusions about COVID-19 present other age categories that are uniquely
impacted by the disease when compared to the general population. Further studies could
be made into the elderly population, which experienced higher mortality rates than children;
working age adults, who contribute to a significant amount of person-to-person contact; or
into immuno-compromised individuals, who may never "age out" of their compartment the
way children do but have higher susceptibility to disease and frequently longer recovery peri-
ods. Populations can also be separated into more than two compartments, like multiple age
groups, which would increase the number of parameters in the model.

The practical identifiability analysis in this paper is restricted to prevalence data for which
the Infected Adult and Infected Children data are separately reported. Further questions may
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arise when looking at prevalence data that does not differentiate between populations, or single-
population data. Investigations into other structurally identifiable output vectors from our
structural identifiability analysis could provide different results.

At the time of this report, our investigations into the practical identifiability of parameters
within specified ranges is still incomplete. Questions remain as to the exact range for which a
parameter within the dependant β and estimated β model may be estimated before becoming
practically non-identifiable. Additionally, none of the parameter ranges have been investigated
for the ξ dependent on β model. It would also be beneficial to investigate if adjusting the equa-
tions for the ξ and β dependencies can make ξ practically identifiable as it is nearly practically
identifiable.

Our analysis suggests that Profile Likelihood may be a successful method of computing con-
fidence intervals for identifiability. The success of Profile Likelihood is heavily dependent on
the optimization function used and the initial guess chosen. Because of this, future work could
include computing Profile Likelihood for a wide range of initial guess values and optimization
functions.
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