On the Preimage of Associated Semigroups

Deepriliam
June 2019

1 Introduction

Let $T \subseteq \mathbb{N}_{0}$. T is a numerical set if it includes 0 and is cofinite, and a numerical semigroup if it is also closed under addition. In this paper, S will be reserved for numerical semigroups, and T for numerical sets.
For every T, the set $A(T)=\{t \in T \mid t+T \subseteq T\}$ is a numerical semigroup contained in T; this is referred to as the associated numerical semigroup. Our paper concerns $P(S)=\#\{T \mid A(T)=S\}$; in other words, we wish to count the numerical sets which associate to a given S, which shall henceforth be referred to as "good" numerical sets. In particular, we wish to classify $P^{-1}(n)$ for $n>1$, with special attention paid to small n.

We introduce the notion of the void which is defined as $B(S)=\{a \mid a \notin$ $S, F-a \notin S\}$ and give it a poset structure in a natural way. This ensures that if $A(T)=S$ then $T \backslash S$ must be an order ideal of the Void poset. We further introduce to notion of red triangles which are particular triples of the void in terms of which we give necessary and sufficient conditions for an order ideal to be a good numerical Set.

We apply this machinery to prove several results relating the pseudofrobenius numbers and type of a semigroup to the good numerical sets it has. We also give an algorithm for computing $P(S)$ that works significantly faster than a brute force search specially for semigroups of small type.

In later sections we consider several families of numerical semigroups for e.g. the staircase family $S t(m, n)=\{m, 2 m, \ldots, m n, \rightarrow\}$ and several others and obtain polynomial growth of $P(S)$ in each case.

We finally consider the kunz polyhedron that has all numerical semigroups of a fixed multiplicity and investigate the density of different P values on the polyhedron. The geometry of the polyhedron seem to play a key role in determining $P(S)$ with certain hyperplanes separating different values of $P(S)$, the behaviour on the hyperplanes being more complicated. We prove that for multiplicity $3, P(S)=2$ has density 1 ; for $m=4, P(S)=2,4$ have positive density with the density of $4 \approx 0.62$, density of $2 \approx 0.38$ and for multiplicity 5 , $P(S)=4,8$ are precisely the values of P that have positive densities which are $\approx 0.29, \approx 0.71$ respectively. Finally we make a conjecture for multiplicity m in general based on collected data.

1.1 Basic Definitions

For every numerical semigroup, there exists a unique minimal set $\mathcal{A}(S)$ which generates S under addition; this set is known as the atoms of S. The minimum of $\mathcal{A}(S)$ is called the multiplicity and is denoted $m(S)$; note that it is also the minimal nonzero element of S.
For this paper, the minimal elements of S in each residue class modulo $m(S)$ are of particular note; this set is called the Apery Set $A p(S)$, and its elements will be denoted \mathcal{A}_{i}, where \bar{i} is the residue class containing it.
It is often useful to endow $A p(S)$ with the poset structure $\mathcal{A}_{i} \preccurlyeq \mathcal{A}_{j} \Longleftrightarrow$ $\mathcal{A}_{j}-\mathcal{A}_{i} \in S$. From this, we derive the Pseudo-Frobenius Numbers $\operatorname{PF}(S)=$
$\{\mathcal{A}-m \mid \mathcal{A} \in A p(S)$ maximal $\}=\left\{P \in \mathbb{N}_{0} \backslash S \mid P+S \in\{P\} \cup S\right\}$. The largest Pseudo-Frobenius numbers is called the Frobenius Number $F(S)$ (simply F when the choice of S is clear); this is equivalent to the standard definition $F(S)=\max \mathbb{N}_{0} \backslash S$. All other Pseudo-Frobenius numbers will be labelled P_{i} when the residue class \bar{i} modulo m is known. In general, P, Q, R will be reserved for labelling Pseudo-Frobenius numbers. Finally, the type $t(S)=|P F(S)|$.

1.2 Prior Results

A semigroup S is symmetric if $a \in S \Longleftrightarrow F-a \notin S$. It is known that S is symmetric $\Longleftrightarrow t(S)=1 \Longleftrightarrow P(S)=1$.
Similarly, a semigroup S is pseudo-symmetric if $2 \mid F(S)$ and $a \neq F / 2 \in S \Longleftrightarrow$ $F-a \notin S$ (note that $F / 2 \in S$ would violate additive closure). It is also known that S is pseudo-symmetric $\Rightarrow t(S)=2, P(S)=2$.

2 The Void

Definition 2.1 (The Void). B, the Void of a Numerical Semigroup is defined as $B:=\{a \mid a \notin S, F(S)-a \notin S\}$. The elements of B are known as the paired gaps of S.

Note that the paired gaps are particularly useful elements. For instance, since $a \in S$ implies $F-a \notin P F(S), P F(S) \backslash\{F(S)\} \subseteq B$. For the purposes of this paper, they are relevant because of their connection to good numerical sets, as shown below:

Theorem 2.2 (TBUS Theorem). For a numerical semigroup S, the set $T=$ $B \cup S$ must satisfy $A(T)=S$. Furthermore, $A(T)=S$ implies $T \subseteq B \cup S$.

The proof of the TBUS Theorem, as well as several proofs to follow, relies on the following lemma:

Lemma 2.3. $B \subseteq B+S \subseteq B \cup S$
Proof of Lemma 2.3: The left inequality is trivial, as $0 \in S$. For the sake of contradiction, suppose there exist $b \in B, s \in S$ such that $b+s \notin B \cup S$. Then we must have $F-b-s \in S$, but that implies $(F-b-s)+s=F-b \in S$, which is impossible.

Proof of Theorem 2.2: Let $T=B \cup S$. Firstly note that $F(S) \notin T$, as $F(S) \notin S, F(S)-F(S)=0 \in S$. Now if $a \in B$, then $F(S)-a \in B$ so $a \notin A(T)$; thus $A(T) \subseteq T \backslash B=S$. By Lemma 2.3, $B \cup S \subseteq(B+S) \cup S=$ $(B+S) \cup(S+S)=(B \cup S)+S$, implying $S \subseteq A(T)$.

Now suppose $A(T)=S$. Then firstly $F(S) \notin T$ as otherwise $F(S) \in A(T)$. Next if $a \in T \backslash S$ and $a \notin B$ then $F-a \in S$. And $F-a \in A(T)$ implies $F-a+T \subseteq T$; thus $F=F-a+a \in T$, contradiction. Therefore $T \backslash S \subseteq B$ and $T \subseteq B \cup S$.

With this established, we can now offer more concise proofs for the previously known results on $P(S)$:

Proposition 2.4. The numerical semigroups with $P(S)=1$ are precisely the symmetric semigroups.

Proof: If S is symmetric, then B is empty. Therefore by Theorem 2.2 if $A(T)=S$ then $T \subseteq B \cup S=S$, i.e. $T=S$. In the other direction, if S is not symmetric, then B is non empty and $B \cup S \neq S$ and hence $P(S) \geq 2 \square$

Proposition 2.5. Pseudosymmetric semigroups have $P(S)=2$.
Proof: For Pseudosymmetric semigroups, $B=\left\{\frac{F}{2}\right\}$. Since $T \subseteq B \cup S$, either $T=S$ or $T=S \cup\left\{\frac{F}{2}\right\}=B \cup S$. Therefore $P(S)=2$. Note that the converse is not true.

2.1 Determining Semigroups with a Given Void

With the void established, the natural following step is to determine its preimage.

Lemma 2.6. A void with Frobenius number F has an even number of elements if F is odd, and odd if F is even. If the Frobenius number is even, $\frac{F}{2}$ is always in the void.

For finite $B \subseteq \mathbb{N}$, we say B is a self-dual set if there exists $N \in \mathbb{N}$ such that $b \in B \Longleftrightarrow N-b \in B$.

Lemma 2.7. Every self-dual set is the void of some numerical semigroup.
Proof: Represent the complement of the void as $\left\{a_{1}, a_{2}, \ldots a_{n}, N-a_{n}, \ldots, N-\right.$ $\left.a_{1}\right\}$. Let S be $\left\{0, N-a_{n}, N-a_{n-1}, \ldots, N-a_{1}, N+1 \rightarrow\right\}$. This is a semigroup closed under addition whose void is precisely the elements not in $\left\{a_{1}, a_{2}, \ldots a_{n}, N-\right.$ $\left.a_{n}, \ldots, N-a_{1}\right\}$ (note that $F(S)=N$).

Definition 2.8. For a self-dual set B, the $\operatorname{Diov} V(B)$ is the set of semigroups which have B as their void; i.e. $V(B)=\{S \mid B(S)=B\}$

The following examples serve to illustrate the properties of $V(B)$ (note that by Lemma 2.6, $2 \nmid F-|B|)$:

Example 2.9. If $|B|=F-1$, every number less than the Frobenius number is in the void, so clearly the only possible semigroup is $\{0, F+1 \rightarrow\}$, so $|V(B)|=1$.

Example 2.10. If $|B|=F-3$, the complement of the void is simply $(a, F-a)$, so the only possible semigroup is the one described in lemma 2.7, $\{0, F-a, F+$ $1 \rightarrow\}$, so $|V(B)|=1$.

Example 2.11. If $|B|=F-5,|V(B)|=1$ or $|V(B)|=2$.

Proof: By default, the semigroup described in lemma 2.7 has void B. Denoting the complement of the void as $\{a, b, F-b, F-a\}$, there is also an additional semigroup if some combination of $(a, F-b),(b, F-a)$, and (a, b) is in S. Note $a S$, because if $a, b \in S$, then $a+b<F$ so $a+b \in S$ which is impossible, and if $a, F-b \in S$, since $a<b, a+F-b \in S$ which is also a contradiction. So the only additional possibility is $b, F-a \in S$. Then, $2 b=F-a$, and in this case, $V(B)=2$.
Example 2.12. If $|B|=F-7,|V(B)|=1,2,3$.
Proof: If the complement of the void is $\{a, b, c, F-c, F-b, F-a\}$, the nontrivial semigroups with void B must contain $\{c, F-b, F-a\}$ or $\{b, F-$ $c, F-a\}$. From the same argument as the previous example, a cannot be in S, so $F-a \in S$. Then, b and c cannot simultaneously be in S because $2 b<2 c<F$, so these are the only two possibilities.

For $\{c, F-b, F-a\}, 2 c=F-a$ or $2 c=F-b$. For $\{b, F-c, F-a\}$, $2 b=F-c$ and $3 b=F-a$. If both $2 c=F-a$ and $2 b=F-c$ and $3 b=F-a$, then $2 c=3 b$, so if the complement of the void has form $\{n, 2 n, 3 n, 4 n, 5 n, 6 n\}$, it is the void of three different semigroups. Otherwise, it has $V(B)=2$ or $V(B)=1$.

Theorem 2.13. For a given F and for each possible length $|B| \neq 1,3$ there is at least one B with $N=F, V(B)=1$.

Proof: If F is odd, we must have $|B|=2 k$, so let $B=\{1,2, \ldots, k, F-$ $k, F-k+1, \ldots F-1\}$. We claim $|V(B)|=1$.

If S is a semigroup with void B, then it cannot contain any elements less than $F / 2$. Suppose this was not the case; i.e., let $m(S)<F / 2$. Then, $F-m$ must not be in S. Since $F-1 \notin S, F-m-1$ also cannot be in S, but since $F-m-1 \notin B, m+1 \in S$. Continuing this process, we eventually find that $\left\lfloor\frac{F}{2}\right\rfloor \in S$. But then, $2\left\lfloor\frac{F}{2}\right\rfloor=F-1 \in S$, which is a contradiction. So $|V(B)|=1$.

Similarly, if F is even we must have $|B|=2 k+1$ and $k>1$, so let $B=\left\{1,2, \ldots, k, \frac{F}{2}, F-k, F-k+1, \ldots F-1\right\}$. We again claim $|V(B)|=1$.

Again, suppose $m(S)<\frac{F}{2}$. Since $F, F-1 \notin S, F-m \notin S$ and $F-$ $m-1 \notin S$, but then $m+1 \in S$. Continuing, we get $\frac{F}{2}-1 \in S$. But then, $2\left(\frac{F}{2}-1\right)=F-2 \in S$, which is a contradiction as $F-2 \in B$. Thus, $|V(B)|=1$.

2.2 The Void Poset

Definition 2.14 (Void Poset). For a Numerical semigroup S, consider the poset on $B(S)$ with $a, b \in B, a \preccurlyeq b$ iff $b-a \in S$. This poset shall henceforth be referred to as the Void Poset.

Example 2.15. The B poset of $S=\{0,4,8,10 \rightarrow\}, B=\{2,3,6,7\}$ is

6	7
1	1
2	3

And the B poset of $S=\langle 6,25,29\rangle$ is

The void poset has many useful structural properties, as outlined below:
Recall a poset is self-dual if there exists an isomorphism $\phi: P \rightarrow P$ such that $a \preccurlyeq b \Longleftrightarrow \phi(b) \preccurlyeq \phi(a)$

Proposition 2.16. The B poset is self-dual.
Proof: If $a \preccurlyeq b$, then $F-b \preccurlyeq F-a$, as $b-a=(F-a)-(F-b)$
This transformation will serve several purposes in the future, so we shall name it:

Definition 2.17 (Conjugation). For $a \in B$, we define $\bar{a}=F(S)-a$ as the conjugate of a.

Corollary 2.17.1. P is maximal $\Longleftrightarrow \bar{P}$ is minimal
Theorem 2.18. The set of maximal elements of B poset is precisely $P F(S) \backslash$ $\{F(S)\}$

Proof: Let a be a maximal element of $B(S)$. Then, $\nexists x \in B$ such that for some $s \in S, a+s=x$. So $\forall s \in S$, either $a+s \in S$, or $a+s \in G a p s \backslash B$. In the latter case, then $F-a-s \in S$, but then $F-a-s+s=F-a \in S$ which is a contradiction, so $a+s \in S$. By definition, then $a \in P F(S) \backslash\{F(S)\}$.

In the other direction, since we know $P F(S) \backslash\{F(S)\} \subseteq B(S)$, we only need to show these elements are also maximal. Let $a \in P F(\bar{S}) \backslash\{F(S)\}$. For the sake of contradiction, assume there exists some $x \in B$ such that $\exists s \in S$ with $a+s=x$. But $a \in P F(S)$ implies $a+s \in S$, which is a contradiction, so a must be maximal.

Proposition 2.19. If y covers x, then $y-x \in \mathcal{A}(S)$
Proof: If $x, y \in B$ and $y-x=s_{1}+s_{2}$ where $s_{1}, s_{2} \in S \backslash\{0\}$, then let $z=x+s_{1} . z \in(B+S) \subseteq(B \cup S)$.

If $z \in S$ then $y=z+s_{2} \in S$ which is impossible. So $z \in B, x \preccurlyeq z \preccurlyeq y$ and $z \neq x, z \neq y$. Therefore y does not cover x, contradiction.

Corollary 2.19.1. If S has r atoms less than F, then each point of the B-Poset can have at most r direct edges above it, one for each atom.

Proposition 2.20. If $a \in \mathcal{A}(S), x+a \notin B$, and $x \preccurlyeq y$, then $y+a \notin B$.

Proof: We are given $x, y \in B$ and $x+a, y-x \in S$. It follows that $y+a=(x+a)+(y-x) \in S$.

Corollary 2.20.1. If $x, y \in B, x \preccurlyeq y$ then number of edges directly above y is at most the number of edges above x

Proposition 2.21. Suppose $a \preccurlyeq x \preccurlyeq b$; then $y=a+b-x \in B$ with $a \preccurlyeq y \preccurlyeq b$
Proof: If $y \in S$ then $b=y+(x-a) \in S$ which is impossible.
If $F-y \in S$ then $F-y=F+x-a-b$ so $F-a=(F-y)+(b-x) \in S$ which is again impossible.

So $y \in B$ and $b-y=x-a \in S, y-a=b-x \in S$ so $a \preccurlyeq y \preccurlyeq b$
As it turns out, the Void Poset can be obtained from the Apery Set by first constructing the Gap-Poset, which is the set of Gaps with $x \preccurlyeq y$ iff $y-x \in S$, and then deleting everything below the Frobenius Number.

3 The Void Poset and Good Numerical Sets

Recall that an Order Ideal of a poset is a subposet I where $x \in I, x \preccurlyeq y$ implies $y \in I$

Proposition 3.1. Let $I \subseteq B$, then $S \subseteq A(I \cup S)$ iff I is an order ideal of the Void Poset

Proof: First, assuming I is an order ideal, if $s \in S$ we want to show $s+I \subseteq S \cup I$. Pick $a \in I$

- Case 1: if $s+a \in S$, this works.
- Case 2: if $s+a \in G a p \backslash B, F-s-a \in S$, so $F-a=F-s-a+s \in S$, so $a \notin B$, which is a contradiction, so this case is not possible.
- Case 3: if $s+a \in B, a \preccurlyeq s+a$ in B, so $s+a \in I$, so this works.

Thus, $S \subseteq A(I \cup S)$.
Conversely if $S \subseteq A(I \cup S)$ then given $s \in S$ and $a, a+s \in B$, If $a \in I$ then $s+I \in S \cup I$, here $s+a \in B$ so $s+a \in I$. Thus I is an order ideal.

With this refinement of Theorem 2.2 in hand, we now have enough theory in place to tackle the following theorem:

Theorem 3.2. For a semigroup $S, t(S)=2$ implies that $P(S)=2$.
Lemma 3.3. If $P=\max (B)$ and $A(T)=S$ then $P \in T$ implies $\bar{P} \in T$
Proof: Since $P \in T \backslash A(T)$, we need $x \in T$ such that $P+x \notin T$. Since $P=\max (B), P+x \notin B$, so $P+x=F$.

Proof of Theorem 3.2: If $t(S)=2,|P F(S) \backslash\{F(S)\}|=1$, and so B has a unique maximal element. Thus, B must have a unique minimal element by 2.17.1.

In the B poset, by Proposition 3.1, if an element x is in a numerical set T, then every element above x in the poset must also be in the numerical set. Thus if any element of B is in T, we must have $P \in T$; furthermore, by Lemma $3.3 \bar{P} \in T$; since this the unique minimal element, all of B lies above it and hence $T=B \cup S$. Thus, either $T=S$, or $T=B \cup S$, so $P(S)=2$.

3.1 Self-Dual Order Ideals

We've seen the importance of order ideals and the self-duality of the Void Poset previously; combining these properties yields even more powerful results.
Note: When a self-dual order ideal I is referred to in this paper, it will be assumed that the isomorphism under which I is self-dual is the same as the original poset.

Proposition 3.4. If I is a self-dual order ideal of the Void Poset, then $A(I \cup$ $S)=S$

Proof: Given a self dual order ideal I, we know by Proposition 3.1 that $S \subseteq A(I \cup S)$. Given $a \in I$, by definition $F-a \in I$ and $a+F-a \notin I \cup S$. So $a+(I \cup S) \nsubseteq(I \cup S)$ and $a \notin A(I \cup S)$. Hence $A(I \cup S)=S$.
Proposition 3.5. If I is a self-dual order ideal, then $a \in I, b \preccurlyeq a \Rightarrow b \in I$
Proof: $a \in I \Rightarrow \bar{a} \in I \Rightarrow \bar{b} \in I \Rightarrow b \in I$
Proposition 3.6. A self dual order ideal is determined by which Pseudo-Frobenius numbers are contained in it.

Proof: If $I_{1} \cap P F(S)=I_{2} \cap P F(S)$ then given $x \in I_{1}$ pick a maximal element above it $x \preccurlyeq a$. Now $a \in I_{1} \cap P F(S)$ so $a \in I_{2}$ and by lemma 3.5 $x \in I_{2}$. So $I_{1} \subseteq I_{2}$ and by symmetry $I_{1}=I_{2}$

Definition 3.7. The Pseudo-Frobenius Graph $\operatorname{GPF}(S)$ is the graph with vertices $P F(S) \backslash\{F\}$ and edges $P Q \Longleftrightarrow P+Q-F \in S$ (Note that this happens iff $\bar{P} \preccurlyeq Q \Longleftrightarrow \bar{Q} \preccurlyeq P$)

Theorem 3.8. If I is a self dual order ideal then $I \cap P F(S)$ forms a union of connected components of $G P F(S)$

Conversely if we take a union of connected components of $\operatorname{GPF}(S)$ and then the order ideal generated by the conjugates of the chosen Pseudo-Frobenius numbers is a self dual order ideal.

Proof: Say the connected components of the graph are $C_{1} \sqcup C_{2} \sqcup \cdots \sqcup C_{k}$, and a subset of $\{1, \ldots, k\}$ as J.

First assuming I is an self dual order ideal. If $a \in I \cap P F(S)$, and $a, b \in C_{i}$ for some component of the graph, $\bar{a} \in I$, and $\bar{a} \preccurlyeq b$, so $b \in I$ so $C_{i} \subseteq I \cap P F(S)$.

Conversely, let I be the order ideal generated by the conjugates of $\bigcup_{i \in J}$ for some J. If $a \in I$, then $\exists b \in C_{i}$ such that $\bar{b} \preccurlyeq a$, and \exists maximal c such that $a \preccurlyeq c$. Then $\bar{b} \preccurlyeq c$ so b and c are connected. Then, $c \in C_{i}$ so $\bar{c} \in I$, so since $\bar{c} \preccurlyeq \bar{a}, \bar{a} \in I$. Thus, I is self dual.

Corollary 3.8.1. $P(S) \geq 2^{\kappa}$, where κ is the number of connected components of $G P F(S)$.

3.2 General Order Ideals

Definition 3.9 (Red Triangles). Unordered triple $(a, b, c)^{r}$ where $a, b, c \in B$ is called a Red triangle if $a+b+c=F$.
Lemma 3.10. $(a, b, c)^{r}$ is a red triangle iff $a+b=\bar{c}$ iff $b+c=\bar{a}$ iff $a+c=\bar{b}$
Theorem 3.11. Let $I \subseteq B$, then $S=A(I \cup S)$ iff

- I is an order ideal of the B poset
- $\forall a \in I$ either $F-a \in I$ or there is a red triangle $(a, b, c)^{r}$ for which $b \in I$ and $F-c \notin I$

Proof: Let $a \in I$; we need to ensure $a \notin A(I \cup S)$, which happens iff $a+(I \cup S) \nsubseteq I \cup S$. Because I is an order ideal, $a+S \subseteq I \cup S$, so we need to ensure $a+I \nsubseteq I \cup S$, which happens iff $\exists b \in I$ such that $a+b \notin I \cup S$

Case 1: $a+b \in G a p \backslash B$, so $F-a-b=s \in S$ i.e. $b \preccurlyeq F-a$ and hence $F-a \in I$.

Case 2: $a+b \in B \backslash I$, let $c=F-(a+b) \in B$ then $(a, b, c)^{r}$ is a red triangle and $b \in I, F-c=a+b \notin I$

The converse is trivial.
Corollary 3.11.1. If $\left|B\left(S_{1}\right)\right|=\left|B\left(S_{2}\right)\right|$ and the B Poset of S_{2} is a refinement of the B poset of S_{1} and the set of red triangles of S_{2} is a subset of red triangles of S_{1}. Then $P\left(S_{2}\right) \leq P\left(S_{1}\right)$
(Both the properties are checked under a common identification between the two Posets)

Definition 3.12. We say that $a \in T$ satisfies a triangle $(a, b, c)^{r}$ if $b \in T, \bar{c} \notin T$
We can refine the previous theorem in the following manner:
Theorem 3.13. Let $I \subseteq B$; then $S=A(I \cup S)$ iff
i) I is an order ideal of the B poset
ii) $\forall P \in I \cap P F(S)$ either $F-P \in I$ or there is a red triangle $(P, b, c)^{r}$ which P satisfies

Proof: Say $A(I \cup S)=T \neq S$; then T is a numerical semigroup, with $S \subset T$. It follows that $T \backslash S$ is an order ideal of the Void Poset, so it must contain a maximal element P. However, $P \in I \cap P F(S)$ implies either $F-P \in I$, in which case $P+I \nsubseteq I$, or P satisfies some $(P, b, c)^{r}$, i.e. $P+b=F-c \notin I$, so again $P+I \nsubseteq I$. Thus $P \notin A(I \cup S)$ and we have a contradiction.

This Theorem allows for the current algorithm we use to determine $P(S)$ (see Appendix A). It also allows us to henceforth ignore red triangles which do not include Pseudo-Frobenius numbers.

3.3 Structure among Red Triangles

Proposition 3.14. If $Q \in P F(S) \backslash\{F\}$ and $(Q, a, b)^{r}$ is a red triangle then $x \prec a$ implies $x \prec F-b$

Proof: We know that $Q+a=F-b$. Say $x=a-s, s \in S \backslash\{0\}$; then $(F-b)-x=Q+s \in S$ because Q is a Pseudo-Frobenius number and $s \neq 0$

Corollary 3.14.1. If $P, Q \in P F(S) \backslash\{F\}$ and $P-Q \in B$ then $x \prec P-Q$ implies $x \preccurlyeq P$

Proof: $(Q, P-Q, F-P)$ is a red triangle
Corollary 3.14.2. If $Q \in P F(S) \backslash\{F\}$ and $(Q, a, b)^{r}$ is a red triangle then $\bar{b} \prec x$ implies $a \prec x$

Proof: $\bar{b} \prec x \Longrightarrow \bar{x} \prec b \Longrightarrow \bar{x} \prec \bar{a} \Longrightarrow a \prec x$
If $(Q, a, b)^{r}$ is satisfied then $Q, a \in T, F-b \notin T$ and so $x \prec a$ implies $x \notin T$, so a is a minimal element of T. Furthermore, $\bar{b} \prec y \Longrightarrow y \in T$, so \bar{b} is a maximal element of $B \backslash T$.

Corollary 3.14.3. If $(a, b, c)^{r}$ is a red triangle with $b \preccurlyeq c$ and we pick an intermediate element $b \preccurlyeq x \preccurlyeq c$, then if $y=b+c-x,(a, x, y)^{r}$ is another red triangle.

Lemma 3.15. If $(a, b, c)^{r}$ is a red triangle, $x \preccurlyeq a$ and $x \nprec \bar{c}$, then $y=a+b-x \in$ $B, b \preccurlyeq y$ and $(x, y, c)^{r}$ is another red triangle.

Proof: If $y \in S, y=a+b-x=F-c-x=(F-x)-c$ which contradicts $c \nprec F-x$

If $F-y \in S, F-y=F-a-b+x$ so $F-b=(F-y)+(a-x) \in S$ which is a contradiction.

Therefore $y \in B, y-b=a-x \in S$ and $(x, y, c)^{r}$ is a red triangle.
Notice that this theorem does not rely on the order of the triple, and thus is true for any permutation of $(a, b, c)^{r}$.

Corollary 3.15.1. If If $(P, a, b)^{r}$ is a red triangle, $x \preccurlyeq$ a then $y=a+b-x \in B$, $b \preccurlyeq y$ and $(P, x, y)^{r}$ is another red triangle.

The next corollary is incredibly powerful, and will motivate the rest of the section:

Corollary 3.15.2. If P is a Pseudo-Frobenius number, it has a triangle $(P, a, b)^{r}$. Then if $F-Q \preccurlyeq b$ for some Pseudo-Frobenius number Q then $Q-P \in B$ and $a \preccurlyeq Q-P$

Proof: $a+b-(F-Q)=(F-P)-(F-Q)=Q-P$
Definition 3.16. Given a Pseudo-Frobenius number P, Tri $(P)=\{a \in B \mid \exists b \in$ B s.t $(P, a, b)^{r}$ is a red triangle\}

Lemma 3.17. If $P \in P F(S) \backslash\{F\}$. Then $\operatorname{Tr} i(P)=\{a \mid \exists Q \in P F(S)\{F\}$ s.t. $Q-P \in B$ and $a \preccurlyeq Q-P\}$

Proof: Corollary 3.15.2 tells us $\operatorname{Tri}(P) \subseteq\{a \mid \exists Q \in P F(S)\{F\}$ s.t. $Q-P \in$ B and $a \preccurlyeq Q-P\}$

If $Q-P \in B$ then $(P, Q-P, F-Q)^{r}$ is a red triangle and by corollary 3.15.1 $a \preccurlyeq Q-P \Longrightarrow a \in \operatorname{Tri}(P)$

Definition 3.18. If T is an order ideal of B, define $\operatorname{Tri}(T)=\left\{(a, b) \in B^{2} \mid\right.$ $\exists P \in T \cap P F(S), P$ satisfies $\left.(P, a, b)^{r}\right\}, X_{1}(T)=\{a \in B \mid \exists b \in B,(a, b) \in$ $\operatorname{Tr} i(T)\}, X_{2}(T)=\{\bar{b} \in B \mid \exists a \in B,(a, b) \in \operatorname{Tri}(T)\}$, and $\operatorname{Mi}(T)=\{\bar{P} \mid P \in$ $T \cap P F(S)\}$
Lemma 3.19. If $\left(P_{1}, a_{1}, b_{1}\right)^{r}$ and $\left(P_{2}, a_{2}, b_{2}\right)^{r}$ are red triangles, then $\overline{b_{2}} \preccurlyeq a_{1}$ implies $a_{1}=\overline{b_{2}}$ or $a_{2} \preccurlyeq \overline{b_{1}}$

Proof: So $a_{1}-\left(F-b_{2}\right) \in S$, but $a_{1}+b_{2}-F=\left(F-P_{1}-b_{1}\right)+(F-$ $\left.P_{j}-a_{2}\right)-F=F-P_{1}-P_{2}-b_{1}-a_{2}$. Now as P_{1} and P_{2} are Pseudo-Frobenius numbers $F-a_{2}-b_{1} \in S$ (unless $F-P_{1}-P_{2}-b_{1}-a_{2}=0$ i.e. $a_{1}-\left(F-b_{2}\right)=0$). Finally $F-a_{2}-b_{1} \in S$ means $a_{2} \preccurlyeq F-b_{1}$
Corollary 3.19.1. $X_{1}(T) \cup X_{2}(T) \cup M i(T)$ is an anti-chain
Proof: Lemma 3.14 implies that if $x, y \in X_{1}(T)$ then $x \| y$. On the other hand if $x, y \in X_{2}(T)$. Then say $\left(P, a_{1}, \bar{x}\right)$ and $\left(Q, a_{2}, \bar{y}\right)$ are the corresponding triangles. Then $P+a+1=x$ and $Q+a_{2}=y$. If possible assume $x \notin y$ and $x \neq y$. WLoG say $x \prec y$ i.e. $y-x \in S$. But $y-x=y-P-a_{1} . y-x \neq 0$ and P is a Pseudo-Frobenius number therefore $y-a_{1}=(y-x)+P \in S$. But this contradicts corollary ??. $M i(T) \cup X_{2}(T)$ is obviously an anti-chain. If possible assume $M i(T) \cup X_{1}(T)$ is not an anti-chain so $\exists a \in X_{1}(T), F-P \in M i(T)$ s.t. $F-P \prec a$. Say $(a, b) \in \operatorname{Tr} i(T)$ then by above $F-P \preccurlyeq F-b$ which implies $F-b \in T$ which is a contradiction.

3.4 Normalizations of Order Ideals

Definition 3.20. If I is an order ideal of B, define its Lower Normalization $N l(I)$ to be the order ideal of B generated $I \cap P F(S), M i(I)$ and $X_{1}(I)$
Note that $M i(I)=M i(N l(I)), I \cap P F(S)=N l(I) \cap P F(S)$ follow trivially from the definition.

Lemma 3.21. Given an order ideal I of $B, A(I \cup S)=S$ implies $A(N l(I) \cup S)=$ S.

Moreover, $\operatorname{Tri}(I) \subseteq \operatorname{Tri}(N l(I))$ and $X_{1}(N l(I)) \subseteq(I \cap P F(S)) \cup M i(I) \cup$ $X_{1}(I)$.

Proof: Firstly, observe that $N l(I) \subseteq I$ and $X_{1}(I) \subseteq N l(I)$ imply $\operatorname{Tr} i(I) \subseteq$ $\operatorname{Tri}(N l(I))$.

From theorem 3.13 it follows that $A(I \cup S)=S \Longrightarrow A(N l(I) \cup S)=S$.
Moreover $(a, b) \in \operatorname{Tri}(N l(I))$ implies $\exists x \in(I \cap P F(S)) \cup M i(I) \cup X_{1}(I)$ s.t. $x \preccurlyeq a$. And hence $X_{1}(N l(I)) \subseteq(I \cap P F(S)) \cup M i(I) \cup X_{1}(I)$.

Remark 3.22. We don't necessarily have $\operatorname{Tri}(N l(T))=\operatorname{Tri}(T)$, even if we assume max-embedding dimension

For e.g. $S=<7,29,16,31,25,26,34>, T=(3,5,9,10,12,17,18,19,24)$,
$N l(T)=[18,9,3,10,17,24,19], \operatorname{Tri}(T)=[[3,5]]$ and $\operatorname{Tri}(N l(T))=[[3,15],[3,5]]$
Definition 3.23. If T is an order ideal of B we define $N u(T)=\{x \mid \forall y \in$ $X_{2}(T) x \npreceq y$ and $\left.(x \preccurlyeq P, P \in P F(S) \Longrightarrow P \in T)\right\}$

Lemma 3.24. $A(T \cup S)=S \Longrightarrow A(N u(T) \cup S)=S$
Proof: Follows from theorem 3.13
Lemma 3.25. $N l(T) \subseteq T \subseteq N u(T)$
Lemma 3.26. $N l(N l(T))=N l(T)$ and $N u(N u(T))=N u(T)$
Proof: It is clear that $N l(N l(T))=N l(T)$ because $N l(T) \cap P F(S)=$ $T \cap \operatorname{PF}(S), M i(N l(T))=N l(T)$ and $X_{1}(T) \subseteq X_{1}(N l(T))$

Similarly $N u(N u(T))=N u(T)$ because $N u(T) \cap P F(S)=T \cap P F(S)$ and $X_{1}(T) \subseteq X_{1}(N u(T))$

Definition 3.27. An order ideal T of B is called lower Normalised if $N l(T)=$ T. It is called upper Normalised if $N u(T)=T$.

Theorem 3.28. If $A\left(T_{1} \cup S\right)=S$ and $N l\left(T_{1}\right) \subseteq T \subseteq N u\left(T_{1}\right)$ then $A(T \cup S)=S$
Proof: We know that $N l\left(T_{1}\right) \cap P F(S)=T \cap P F(S)=N u\left(T_{1}\right) \cap P F(S)$. Now given $P \in T \cap P F(S)$

- If $\bar{P} \in T_{1}$ then $\bar{P} \in N l\left(T_{1}\right)$ and $\bar{P} \in T$
- If $\bar{P} \notin T_{1}$ then by theorem 3.13 there is a red triangle (P, a, b) s.t. $a \in T_{1}$ and $\bar{b} \notin T_{1}$. Now $a \in N l\left(T_{1}\right)$ and hence $a \in T$. Also $\bar{b} \notin N u\left(T_{1}\right)$ so $\bar{b} \notin T$

Corollary 3.28.1. If T, T_{1} are as in the theorem then $T \cap P F(S)=T_{1} \cap P F(S)$, $M i\left(T_{1}\right) \subseteq M i(T)$ and $\operatorname{Tri}\left(T_{1}\right) \subseteq \operatorname{Tr} i(T)$

3.5 Differences of Pseudo-Frobenius Numbers

Remark 3.29. Our study of Numerical Semigroups of type 3 suggests that differences of Pseudo-Frobenius numbers play a key role in determining $P(S)$
Lemma 3.30. If $P, Q \in P F(S) \backslash\{F\}, P-Q \in B$, moreover $\forall R \in P F(S) \backslash$ $\{P, F\} R-Q \notin B$ and $\exists R_{1} \in P F(S) \backslash\{F\}$ s.t. $P-Q \preccurlyeq R_{1}$. Moreover if we assume that every good numerical set that has R_{1} also has $F-R_{1}$. Then Q cannot satisfy a red triangle.

Proof: Say Q satisfies a red triangle (Q, a, b) then by corollary 3.15.2 $a, b \preccurlyeq P-Q . a \in T \Longrightarrow P-Q \in T \Longrightarrow R_{1} \in T \Longrightarrow F-R_{1} \in T \Longrightarrow$ $F-(P-Q) \in T \Longrightarrow F-b \in T$. So the triangle cannot be satisfied.

Definition 3.31. A numerical semigroup is called P-minimal if $P(S)=2^{k}$.

Lemma 3.32. If $P, Q \in P F(S) \backslash\{F\}, P-Q \in B$, and $\forall R \in P F(S) \backslash\{Q, F\}$ $P-Q \npreceq R$ then S is not P-minimal

Proof: Q is the only maximal element above $P-Q$, hence $F-Q$ is the only minimal element below $F-(P-Q)$. Let $Y=\{x \mid x \preccurlyeq F-(P-Q)\}$, $T^{\prime}=B \backslash Y$. Then T^{\prime} is an order ideal, all Pseudo-Frobenius numbers except Q have their conjugates in T^{\prime}. Moreover $(Q, F-P, P-Q)$ is a red triangle, $F-P \in T^{\prime}$ and $\overline{P-Q} \notin T^{\prime}$, thus the triangle is satisfied and by theorem 3.13 $A\left(T^{\prime} \cup S\right)=S$

Finally T^{\prime} is not self dual since $Q \in T^{\prime}, F-Q \notin T^{\prime}(Q=F-(P-Q)$ iff $F=P$ which is impossible)

Theorem 3.33. Let $P F(S)=P_{1}<P_{2}<\cdots<P_{t-1}<F$, If for exactly one pair $i<j P_{j}-P_{i} \in B$ then:

- If $\nexists k \neq i$ s.t. $P_{j}-P_{i} \preccurlyeq P_{k}$ then $P(S)>2^{k}, S$ then S is not P-minimal
- If $\exists k \neq i$ s.t. $P_{j}-P_{i} \preccurlyeq P_{k}$ then $P(S)=2^{k}$ and S is P-minimal

Proof: The first case follows from lemma 3.32
In the second case P_{i} is the only Pseudo-Frobenius number with a red triangle by lemma 3.15.2. Moreover P_{k} does not have a red triangle and hence by lemma 3.30 Q does not satisfy a red triangle either. Therefore $P(S)=2^{k}$

Definition 3.34 (DPF-Poset). DPF-Poset is the poset whose set of vertices is $(P F(S) \cup\{P-Q \mid P, Q \in P F(S), P-Q \in B\}) \backslash\{F\}$. The poset structure is induced from the B-Poset

Definition 3.35. $D P F(S)=\{P-Q \mid P, Q \in P F(S) \backslash\{F\}, P-Q \in B\}$
Lemma 3.36. Say $P \in P F(S) \backslash\{F\}, A \subseteq P F(S) \backslash\{P, F\}, A \neq \emptyset$ If $Q \in$ $A \Longrightarrow P-Q \in B$ and $R \notin A, Q \in A \Longrightarrow P-Q \nless R$ then S is not P-minimal.

Proof: Let $T=\{x \mid \exists Q \in A, P-Q \preccurlyeq x\}$
If $Q \in T \cap P F(S)$ then $\exists Q^{\prime} \in A$ s.t. $P-Q^{\prime} \preccurlyeq Q .(Q, P-Q, F-P)$ is a red triangle, $P-Q \in T$ and $P \notin T$. Hence Q satisfies a red triangle and by theorem $3.13 A(T \cup S)=S$

We prove that T is not self dual. First notice that $P-Q$ s.t. $Q \in A$ are the minimal elements of $T\left(P-Q_{1} \preccurlyeq P-Q_{2} \Longrightarrow Q_{2} \preccurlyeq Q_{1}\right)$, so it has $|A|$ minimal elements. If it is self dual then it has $|A|$ maximal elements and hence $A \subseteq T$. Now let Q be the smallest (according to usual order in \mathbf{Z}) element of $A, F-Q \in T \Longrightarrow F-Q=P-Q^{\prime}$ for some $Q^{\prime} \in A$. Therefore $Q=(F-P)+Q^{\prime}>Q^{\prime}$ which is a contradiction.

Definition 3.37. If $Q \in P F(S), Q \neq F$ then $G P F_{Q}(S)$ is the graph obtained from $\operatorname{GPF}(S)$ by deleting all edges involving Q

Lemma 3.38. If $P_{1}+P_{2}=F+Q, Q \neq \frac{F}{2}$ and P_{1}, P_{2} are in different components of $G P F_{Q}(S)$ then S is not P-minimal

Proof: Let Z be the order ideal generated by the conjugates of PseudoFrobenius numbers in the component of P_{2} in $G P F_{Q}(S)$. Note $P_{1} \notin Z$. Let $T=Z \cup\{Q\}, T$ is also an order ideal. $R \in T \cap P F(S), R \neq Q$ implies $F-R_{1} \preccurlyeq R$ for some R_{1} in connected component of P_{2} of $G P F_{Q}(S)$, therefore R is in the same component and $F-R \in T .\left(Q, P_{1}-Q, F-P_{1}\right)$ is a red triangle, $P_{1}-Q=F-P_{2} \in T$ also $P_{1} \notin T$ and hence $A(T \cup S)=S$ by theorem 3.13. Moreover T is not self dual because $Q \in T, F-Q \notin Z$ and $F-Q \neq Q$. And hence S is not P-minimal.

Lemma 3.39. $Q \in P F(S) \backslash\{F\}$, Let $C=\{P \mid P-Q \in D P F(S)\}$. If $\forall P \in C$ $F-(P-Q) \notin P F(S)$ and $\forall P \in C \exists R \in P F(S) \backslash\{F\}$ s.t. $P-Q \preccurlyeq R$ and R cannot satisfy a triangle. We slso assume that each $\forall P \in C P$ cannot satisfy a triangle. Then Q cannot satisfy a triangle either.

Proof: Say (Q, a, b) is a Red triangle, say $F-P_{1} \preccurlyeq b$ and $F-P_{2} \preccurlyeq a$. Then by corollary $3.15 .2 a \preccurlyeq P_{1}-Q$ and $b \preccurlyeq P_{2}-Q$. Also say $P_{1}-Q \preccurlyeq R_{1}$, $P_{2}-Q \preccurlyeq R_{2}$ s.t. R_{1} and R_{2} cannot satisfy red triangles. Next we know that $F-P_{2} \prec P_{1}-Q$ (They are not equal) so by lemma 3.15F- $P_{2} \preccurlyeq P_{1}$

Now $a \in T \Longrightarrow P_{1}-Q \in T \Longrightarrow R_{1} \in T \Longrightarrow F-R_{1} \in T \Longrightarrow P_{2} \in$ $T \Longrightarrow F-P_{2} \in T \Longrightarrow P_{1} \in T \Longrightarrow F-P_{1} \in T \Longrightarrow R_{2} \in T \Longrightarrow F-R_{2} \in$ $T \Longrightarrow F-\left(P_{2}-Q\right) \in T \Longrightarrow F-b \in T$

Lemma 3.40. $Q \in P F(S) \backslash\{F\}$, Let $C=\{P \mid P-Q \in D P F(S)\}$. If $\forall P \in C$ $\exists R \in P F(S) \backslash\{F, Q\}$ s.t. $P-Q \preccurlyeq R$ And $\forall P_{1}, P_{2} \in C$ (if $P_{1}+P_{2}=F+Q$ then P_{1}, P_{2} belong to the same component of $\left.G P F_{Q}(S)\right)$. Moreover if no PseudoFrobenius number other than Q can satisfy a triangle.

Then Q cannot satisfy a triangle.
Proof: Say (Q, a, b) is a Red triangle, say $F-P_{1} \preccurlyeq b$ and $F-P_{2} \preccurlyeq a$. Then by corollary $3.15 .2 a \preccurlyeq P_{1}-Q$ and $b \preccurlyeq P_{2}-Q$. Also say $P_{1}-Q \preccurlyeq R_{1}$, $P_{2}-Q \preccurlyeq R_{2}$ s.t. $R_{1} \neq Q$ and $R_{2} \neq Q$ so they cannot satisfy red triangles.

First we assume $F+Q \neq P_{1}+P_{2}$ so we know that $F-P_{2} \prec P_{1}-Q$ (They are not equal) so by lemma $3.15 F-P_{2} \preccurlyeq P_{1}$. Now $a \in T \Longrightarrow P_{1}-Q \in T \Longrightarrow$ $R_{1} \in T \Longrightarrow F-R_{1} \in T \Longrightarrow P_{2} \in T \Longrightarrow F-P_{2} \in T \Longrightarrow P_{1} \in T \Longrightarrow F-$ $P_{1} \in T \Longrightarrow R_{2} \in T \Longrightarrow F-R_{2} \in T \Longrightarrow F-\left(P_{2}-Q\right) \in T \Longrightarrow F-b \in T$. So the triangle cannot work.

Next if $F+Q=P_{1}+P_{2}$ then $a \preccurlyeq P_{1}-Q=F-P_{2}$ so $a=P_{1}-Q=F-P_{2}$, similarly $b=P_{2}-Q=F-P_{1}$. We know that there is a path in $G P F_{Q}(S)$ from P_{2} to $P_{1}: P_{2}, Q_{1}, Q_{2}, \ldots, Q_{n}, P_{1}$. Now $a=F-P_{2} \in T \Longrightarrow Q_{1} \in T \Longrightarrow$ $F-Q_{1} \in T \Longrightarrow Q_{2} \in T \cdots \Longrightarrow Q_{n} \in T \Longrightarrow F-Q_{n} \in T \Longrightarrow P_{1} \in T$, $P_{1}=F-b$ so the triangle cannot work.

Theorem 3.41. Say S has type 4, $P F(S)=R<Q<P<F, G P F(S)$ has k connected components. Then S is P-minimal iff all of the following holds:

- not both $P-Q, P-R$ are in B
- If $P-Q \in B$ then $P-Q \preccurlyeq R$
- If $P-R \in B$ then $P-R \preccurlyeq Q$
- If $Q-R \in B$ then $Q-R \preccurlyeq P$

The only exception being if $F-P=Q-R, F \neq 2 R$ in which case S is not P-minimal

Proof:
Case 0: None of $P-Q, P-R, Q-R$ are in B : Then $P(S)=2^{k}$ by lemma ??

Case 1: Exactly one of them is in B
This case has been done in Theorem 3.33
Case 2: $P-Q$ and $P-R$ are in B

- $P-Q \npreceq P, P-R \npreceq P$, so $A=\{Q, R\}$ in lemma $3.36 P(S)>2^{k}$

Case 3: $P-Q, Q-R$ are in B : By lemma 3.15.2 $F-P \preccurlyeq P-Q$ and $F-Q \preccurlyeq Q-R$

- $P-Q \npreceq R$ or $Q-R \npreceq P$
then by lemma $3.32 P(S)>2^{k}$
- $P-Q \preccurlyeq R$ and $Q-R \preccurlyeq P$

By lemma $3.30 R$ cannot satisfy a red triangle (as P cannot)
And by a further application of lemma $3.30 Q$ cannot satisfy a red triangle either Therefore $P(S)=2^{k}$

Case 4: $P-R, Q-R$ are in B : Notice that $F-Q \preccurlyeq P-R$ iff $F-P \preccurlyeq Q-R$. $P-R, Q-R$ cannot be above $F-R$ by lemma 3.15.2

- $Q-R \nprec P$ or $P-R \nprec Q$

Then by Lemma 6.2 $P(S)>2^{k}$

- $F=2 R$

Then $R=F-R$ and every nemerical set is self dual, $P(S)=2^{k}$ (Note that $F=2 R \Longrightarrow Q-R \nprec R \Longrightarrow Q-R \preccurlyeq P$, similarly $F=2 R \Longrightarrow$ $P-R \preccurlyeq Q)$

- $P-R \preccurlyeq Q$ and $Q-R \preccurlyeq P, F \neq 2 R$

Note that R is the only Pseudo-Frobenius number with a triangle by corollary 3.15.2.
If $F+R \neq P+Q$ then by lemma $3.39 S$ is P-minimal
If $F+R=P+Q$ then $P-(F-Q)=R \notin S$ hence $G P F_{R}(S)$ is completely disconnected and hence by lemma $3.38 S$ is not P-minimal $\left(R \neq \frac{F}{2}\right)$
Case 5: $P-Q, P-R, Q-R$ are all in B Let $A=\{Q, R\}, P-R \nprec P$ and $P-Q \npreceq P$ so by lemma $3.36 P(S)>2^{k}$

Theorem 3.42. If the graph $G P F(S)$ is completely disconnected then S is not P-minimal iff $\exists R_{1}, R_{2}, R_{3} \in P F(S) \backslash\{F\}$ s.t. $F+R_{3}=R_{1}+R_{2}$ with $R_{1} \neq R_{2}$ $R_{3} \neq \frac{F}{2}$

Proof: First assuming no such R_{1}, R_{2}, R_{3} exist. Say the Pseudo-Frobenius numbers are $F>P_{1}>P_{2}>\cdots>P_{n}$. We proceed by strong induction to show that no P_{i} can satisfy a red triangle. The base case is clear, P_{1} cannot satisfy a red triangle.

If $P_{1}, \ldots P_{m-1}$ cannot satisfy a red triangle. If $P_{m}=\frac{F}{2}$ then $F-P_{m}=P_{m}$ so it doesn't need a triangle, so now assume $P_{m} \neq \frac{F}{2}$. Say $\left(P_{m}, a, b\right)$ is a red triangle. $a=F-P_{m}-b<F-P_{m}$, so $F-P_{i} \preccurlyeq a \Longrightarrow i \leq m-1$, similarly say $F-P_{j} \preccurlyeq b$ then $j \leq m-1$. If possible assume $i \neq j$. Now by corollary 3.15.2 $b \preccurlyeq P_{i}-P_{m}$ and $a \preccurlyeq P_{j}-P_{m}$. So $F-P_{i} \prec P_{j}-P_{m}\left(F-P_{i} \neq P_{j}-P_{m}\right.$ otherwise $F+P_{m}=P_{i}+P_{j}$) so by lemma $3.14 F-P_{i} \preccurlyeq P_{j}$. Now $G P F(S)$ being completely disconnected implies $i=j$, so $F-P_{i} \preccurlyeq a, b$. Also $G P F(S)$ being completely disconnected implies $a, b \preccurlyeq P_{i}$. Finally $a \in T \Rightarrow P_{i} \in$ $T \Longrightarrow F-P_{i} \in T \Longrightarrow F-b \in T$ (here we used $F-P_{i} \preccurlyeq F-b$ which is obtained from conjugation from $b \preccurlyeq P_{i}$). So the triangle cannot work. And by strong induction S is P -minimal.

Next if $F+R_{3}=R_{1}+R_{2}$ with $R_{1} \neq R_{2}$ and $R_{3} \neq \frac{F}{2}$. Let Z be the order ideal generated by $F-R_{1}$ and $T=Z \cup\left\{R_{3}\right\}$. $G P F(S)$ is completely disconnected so $x \in Z \Longrightarrow x \preccurlyeq R_{1} \Longrightarrow F-R_{1} \preccurlyeq F-x \Longrightarrow F-x \in Z$. $\left(R_{3}, F-R_{1}, F-R_{2}\right)$ is a red triangle, $F-R_{1} \in T, R_{2} \notin T$ (as $R_{2} \neq R_{1}$ and $R_{2}=R_{3} \Longrightarrow F=R_{1}$ which is impossible).

Therefore $A(T \cup S)=S, T$ is not self dual because $F-R_{3} \neq R_{3} \Longrightarrow$ $F-R_{3} \notin T$ but $R_{3} \in T$. So S is not P-minimal.

Lemma 3.43. If $\exists P \in P F(S) \backslash\{F\}$, s.t. $\forall P_{1}, P_{2} \in B,\left(P_{1}-P_{2} \in B \Longrightarrow\right.$ $\left.P_{1}=P\right)$ Then S is not P-minimal iff $\exists A \subseteq P F(S) \backslash\{F\}$ s.t. $A \neq \emptyset \forall Q \in A$ $P-Q \in B$ and $\forall Q \in A P-Q \preccurlyeq R \Longrightarrow R \in A$

Proof: If such an A exists then by lemma 3.36 S is not P -minimal.
Conversely if no such A exists, say $C=\{Q \mid P-Q \in B\}$. C does not satisfy the condition of A, so $\exists Q_{1} \in C$ s.t. $P-Q_{1} \preccurlyeq R$ for some $R \notin C$. It follows that R does not have a red triangle and hence by lemma $3.30 Q_{1}$ cannot satisfy a red triangle either. Now $C_{1}=C \backslash\left\{Q_{1}\right\}$ does not satisfy the condition of A, so $\exists Q_{2} \in C_{1}, P-Q_{2} \preccurlyeq R_{2}, R_{2} \notin C_{1}$ and $R_{2} \notin C_{1}$ implies R_{2} cannot satisfy a red triangle, so by lemma $3.30 Q_{2}$ does not satisfy a Red triangle. Continuing this way no Pseudo-Frobenius number satisfies a triangle and hence S is P-minimal.

Lemma 3.44. If $\exists A \subseteq P D F(S)$ s.t. $P-Q \in A \Longrightarrow \nexists R$ s.t. $R-P \in A$. Define $C=\{Q \mid \exists P, P-Q \in A\}$. If we further have that $\forall(P-Q) \in A P-Q \preccurlyeq$ $R \Longrightarrow R \in C$ then S is not P-minimal.

Proof: Let T be the order ideal generated by A, then we know that $T \cap$ $P F(S) \subseteq C$ so given $Q \in T \cap P F(S) \exists P$ s.t. $P-Q \in A$, hence $(Q, P-Q, F-P)$ is a red triangle, moreover $P \notin C$ so $P \notin T$. Hence $A(T \cup S)=S$

Conjecture 3.45. The DPF-Poset determines whether or not S is P-minimal. Here we assume not just the poset structure, but the knowledge of which elements are differences of which Pseudo-Frobenius numbers.

Conjecture 3.46. The stronger conjecture is that if we look at the containment poset of Non-Self-Dual Numerical sets that have the given Numerical Set as their associated semigroup. Then the minimal Numerical Sets in that poset are generated by elements of $D P F(S)$
Remark 3.47. The $D P F$-Poset cannot determine $P(S)$ in general, this is because for example in type $4 P(S)$ can take arbitrary large values, but there are only finitely many DPF-Posets possible.

Remark 3.48. A common occurrence in Numerical Semigroups is that the only red triangles involving a Pseudo-Frobenius number that work are of the form $(Q, P-Q, F-P)$. However this is not always the case for e.g. consider $S=<17,38,40,65,73,81>, T=\{x \mid 25 \preccurlyeq x\}$.

Moreover all examples I could find of numerical semigroups in which triangles not of this form are satisfied have $P_{1}, P_{2}, P_{3}, P_{4} \in P F(S)\{F\}$ s.t. $P_{1}-$ $P_{2}, P_{3}-P_{4} \in B(S)$ and $P_{1}-P_{2} \preccurlyeq P_{3}-P_{4}$ (which is quite rare)
Definition 3.49. If $A(T \cup S)=S$ then we define $D P(T)=\{P-Q \mid P, Q \in$ $\operatorname{PF}(S) \backslash\{F\}, P-Q \in B, Q \in T, \bar{Q} \notin T \exists$ red triangle $(Q, a, b), a \preccurlyeq P-Q, a \in$ $T, \bar{b} \notin T\}$
Conjecture 3.50. If $\forall P_{1}, P_{2}, Q \in P F(S) \backslash\{F\} P_{1}-Q, P_{2}-Q \in D P F(S) \Longrightarrow$ $P_{1}=P_{2}$. Then given T s.t. $A(T \cup S)=S$ Let T^{\prime} be the order ideal generated by $D P(T)$ then $A\left(T^{\prime} \cup S\right)=S$

4 Containment Poset

Definition 4.1. If $I \subseteq B, \bar{I}=\{x \mid \bar{x} \in I\}$. The adjoint of I is defined as $I^{*}=B \backslash \bar{I}$
Lemma 4.2. If I is an order ideal then I^{*} is also an order ideal
Proof: If $x \preccurlyeq y, x \in I^{*}$ then $x \notin \bar{I}$, i.e. $\bar{x} \notin I . \bar{y} \preccurlyeq \bar{x}$ so $\bar{y} \notin I$ i.e. $y \notin \bar{I}$ i.e. $y \in I^{*}$

Theorem 4.3. $A\left(I^{*} \cup S\right)=A(I \cup S), I_{1} \subseteq I_{2} \Longleftrightarrow I_{2}^{*} \subseteq I_{1}^{*}$ and $\left(I^{*}\right)^{*}=T$
Proof: $a \in A\left(I^{*} \cup S\right)$ iff $\forall x \in I^{*} \cup S a+x \in I^{*} \cup S$ iff $\forall y \notin I \cup S \overline{a+\bar{y}} \notin I \cup S$ iff $\forall \bar{y} \in I^{*} \cup S \overline{y+a} \in I^{*} \cup S$

And hence $A\left(I^{*} \cup S\right)=A(I \cup S)$.
$I_{1} \subseteq I_{2}$ iff $\overline{I_{1}} \subseteq \overline{I_{2}}$ iff $B \backslash \overline{I_{2}} \subseteq B \backslash \overline{I_{1}}$ iff $I_{2}^{*} \subseteq I_{1}^{*}$
Finally $a \in I \overline{\text { iff }} \bar{a} \in \bar{I}$ iff $\bar{a} \notin I^{*}$ iff $a \notin \overline{I^{*}}$ iff $a \in\left(I^{*}\right)^{*}$.
Under the adjoint, by the above theorem, we have that the containment poset of numerical sets satisfying $A(T \cup S)=S$, ordered by inclusion, is self dual under the adjoint operation.

Theorem 4.4. If $I \cup S$ is a Numerical Semigroup then $I^{*}=I$
Proof: $F(I \cup S)=F(I)=F$ so $a \in I \Longrightarrow F-a \notin I \Longrightarrow a \in I^{*}$
Theorem 4.5. If $\forall P \in P F(S) \backslash\{F\}$, for every triangle $(P, a, b)^{r}, a, b$ are above conjugates of Pseudo-Frobenius numbers in the connected component of P in $G P F(S)$, then for any numerical set T satisfying $A(T)=S, A((T \cap I) \cup S)=S$ for every self-dual order ideal I.

This shows that the containment poset is the product of smaller posets consisting of good numerical semigroups inside minimal self dual order ideals.

Proof: Follows from Theorem 3.13
Theorem 4.6. If F is even then $P(S)$ is even
Proof: $\frac{F}{2} \in T \Longleftrightarrow \frac{F}{2} \notin T^{*}$ therefore $T \neq T^{*}$

$5 \quad P(S)$ for Numerical Semigroups with fixed Frobenius Number

Theorem 5.1. S_{0} is a fixed numerical semigroup $\sum_{S_{0} \subseteq S, F(S)=F\left(S_{0}\right)} P(S)=\#$ order ideals of $B\left(S_{0}\right)$
Proof: If T^{\prime} is an order ideal of $B\left(S_{0}\right)$ then $A\left(T^{\prime} \cup S_{0}\right)$ is a numerical semigroup that contains S_{0} and has the same Frobenius number as S_{0}.

Conversely, if $S_{0} \subseteq S$ and $F(S)=F\left(S_{0}\right), A(T)=S$. Then we must have $T \subseteq S_{0} \cup B\left(S_{0}\right)$ because otherwise $\exists a \in T$ s.t. $F-a \in S_{0}$ now $F-a \in S_{0} \subseteq$ $S=A(T)$ so $(F-a)+T \subseteq T$ which implies $F=(F-a)+a \in T$ which is impossible.

It follows that Numerical Sets corresponding to Numerical semigroups containing S_{0} and having the same Frobenius number as S_{0} are precisely the order ideals of $B\left(S_{0}\right)$ union with S_{0} and the result follows.

Theorem 5.2. Given m, F s.t. $m \nmid F$, say $F=m q+r$ with $1 \leq r \leq m-1$ $\sum_{m \in S, F(S)=F} P(S)=(q+2)^{r-1}(q+1)^{m-r}$

Proof: Let $S_{0}=<m, F+1, F+2, \ldots, F+m>\left(\right.$ Note $\left.F\left(S_{0}\right)=F\right)$.
Next if $m \in S, F(S)=F$ then $S_{0} \subseteq S$. And conversely if $S_{0} \subseteq S$ and $F(S)=F$ then $m \in S$

Now the only atom of S_{0} less than F is m, so the B-poset is very simple, it is the disjoint union of $r-1$ chains with $q+1$ points each and $m-r$ chains with q points each. And hence the number of order ideals is $(q+2)^{r-1}(q+1)^{m-r}$

Theorem 5.3. If $S_{1}=S \cup\{Q\} B$-Poset of S_{1} is obtained from the B-Poset of S as follows:

Remove $Q, F-Q$ from the Void, for each red triangle (Q, a, b) add new relation $a \preccurlyeq F-b$ and $b \preccurlyeq F-a$.

Proof: It is clear that $B\left(S_{1}\right)=B(S) \backslash\{Q, F-Q\}$ moreover if $x, y \in B\left(S_{1}\right)$ and $y-x \in S$ then $y-x \in S_{1}$. New relations arise when $x, y \in B\left(S_{1}\right)$ and $y-x=Q$ (as Q is the only element of S_{1} that is not an element of S). Note that $y-x=Q$ iff $Q+x+(F-y)=F$

Remark 5.4. This gives a recursive method of computing $P(S)$ for each $N u$ merical semigroup of a fixed Frobenius number. We start with the semigroup $\{0, F+1 \rightarrow\}$. Semigroups above existing semigroup S are $S \cup\{P\}$ for $P \in$ $P F(S) \backslash\{F\}$ s.t. $2 P \in S$. The void poset and red triangles of $S \cup\{P\}$ are obtained as stated earlier.

Now we start with symmetric or pseudo-symmetric semigroups at the top, they have $P(S)=1$ or 2 . We then move downwards, for each semigroup S we calculate the number of order ideals in it's void poset and and subtract the $P\left(S^{\prime}\right)$ for all S^{\prime} that contain S (and have the same Frobenius number) to get $P(S)$

Remark 5.5. We had guessed based on small F that If $P(S)=2$, S is not Pseudo-Symmetric. Then S has a Pseudo-Frobenius number Q for which $2 Q \in$ S and $P(S \cup\{Q\}) \in\{1,2\}$
It is False: $<4,9,19>$ only has Numerical Semigroups with $P(S)=3$ directly above it
$<7,10,18>$ only has a Numerical Semigroup with $P(S)=3$ directly above it $<10,11,18,23>$ only has a Numerical Semigroup with $P(S)=6$ directly above it

6 Characterising all Good Numerical Sets when there is exactly one PF difference

This section was written quite early and checks red triangles for all points not just pseudofrobenuis numbers

Lemma 6.1. If $P, Q \in P F(S) \backslash\{F\}, P-Q \in B, F-P \preccurlyeq P-Q$ and $\forall R \in P F(S) \backslash\{Q, F\} P-Q \nprec R$ then

Consider the graph $G P F(S)$ and delete all edges involving Q, the component of Q will break into several components

Say the graph now has $k+n+1$ components ($n \geq 0$) (The point Q is a new component). Construct a set X by not including Q, not including the new component of P and randomly choosing whether or not the remaining $k+n-1$ components are included.

Let I_{1} be the order ideal generated by the conjugates of elements of X.
Let C be the collection of vertices originally connected to Q
Let $B_{2}=\{x \mid F-Q \preccurlyeq x, x \npreceq P, x \npreceq Q\}$, Construct I to be an order ideal of B_{2} that contains $X \cap C$. ($I=X \cap C$ works $)$.

Let $B_{1}=\{x \mid x \preccurlyeq Q$ and $x \npreceq P\}$ (Note $P-Q \in B_{1}$ and B_{1} is an order ideal)

Finally let Z be an order ideal of B_{1} containing $P-Q$, for e.g. $Z=$ $\{x \mid P-Q \preccurlyeq x\}$. Say there are s such order ideals $(s \geq 1)$

Finally letting $T_{1}=\left(I \cup I_{1} \cup Z\right) A\left(T_{1} \cup S\right)=S$ (This gives $\geq 2^{k+n-1} s$ numerical sets, all of which are non self-dual as $Q \in T_{1}, F-Q \notin T_{1}$)

Proof: First we need T_{1} to be an order ideal; this is true because I_{1}, I and Z are order ideals. (Check that I, Z are actually order ideals of B)

Note that $P \notin T_{1}$
If $x \in I_{1}$ then $\exists R \in X$ (so $R \neq P, Q$) s.t. $F-R \preccurlyeq x . x \in T_{1}$ so $x \nprec P$, now if $x \preccurlyeq Q$ then $x \in B_{1}$, we can therefore assume $x \nprec Q$ (We do the case of B_{1} later). Say $x \preccurlyeq R_{1}, R_{1} \neq P, Q, F-R \preccurlyeq R_{1}$ implies that R and R_{1} are in the same new connected component and hence $R_{1} \in X$ and $F-R_{1} \preccurlyeq F-x \in I$ and hence $F-x \in T_{1}$

Next if $x \in I$ then $\exists R \in X \cap C(R$ cannot be $Q)$ s.t. $F-Q \preccurlyeq x \preccurlyeq R$, hence $F-R \preccurlyeq F-x \in I$ and hence $F-x \in T_{1}$

Lastly, if $x \in B_{1} ;(Q, F-P, P-Q)$ is a red triangle, $x \in B_{1}$ implies $x \preccurlyeq Q$ and $x \npreceq P \Longrightarrow x \npreceq F-(P-Q)$ so by lemma $3.15(x, y, P-Q)$ is also a red triangle where $y=Q+F-P-x$.

Now $P-Q \in T_{1}$, this is because $P-Q \in Z$.
Finally we need $F-y \notin T_{1} ; F-y=P-Q+x$ implies $P-(F-y)=$ $Q-x \in S$ and hence $F-y \preccurlyeq P, F-y \notin T_{1}$

Therefore $A\left(T_{1} \cup S\right)=S$
T_{1} is not self-dual because $P-Q \in Z$ and $P-Q \preccurlyeq Q$ so $Q \in T$. $F-P \preccurlyeq$ $P-Q \preccurlyeq Q$ so $F-Q \preccurlyeq P$ and hence $F-Q \notin T_{1}$
Corollary 6.1.1. If $P-Q=F-P$ then the number of such T_{1} is 2^{k-1}
Proof: Notice that in this case the connected component of Q in $G P F(S)$ is $\{P, Q\}$. So there are $k-1$ ways of choosing X and hence I_{1} has 2^{k-1} choices. Also $B_{2}=\emptyset$ and hence $I=\emptyset$. Lastly B_{1} is the order ideal generated by $P-Q$ so Z must be the order ideal generated by $P-Q$

Lemma 6.2. If $P, Q \in P F(S) \backslash\{F\}, P-Q \in B$, and $\forall R \in P F(S) \backslash\{Q, F\} P-$ $Q \nprec R$ then

Consider the graph $\operatorname{GPF}(S)$ and delete all edges involving Q, so the component of Q will break into several components.

Say the graph now has $k+n+1$ components ($n \geq 0$) (Note that the point Q is a separate component). Construct a set X by not including Q, including the new component of P and randomly choosing whether or not the remaining $k+n-1$ components are included.

Let C be the collection of vertices originally connected to Q
Let I_{1} be the order ideal generated by the conjugates of elements of X. (Note $F-P \in I_{1}$) (also note $F-(P-Q) \notin I_{1}$)

Let $B_{2}=\{F-Q \preccurlyeq x, x \npreceq F-(P-Q), x \npreceq Q\}$. Construct I to be an order ideal of B_{2} that contains $X \cap C$ (for e.g. $I=X \cap C$ works)

Let $B_{1}=\{x \mid x \preccurlyeq Q, x \npreceq P, x \npreceq F-(P-Q)\}$. Construct Z to be an order ideal of B_{1} containing Q. Say there are s_{2} such ideals $\left(s_{2} \geq 1\right)$

Finally letting $T_{2}=\left(I \cup I_{1} \cup Z\right) A\left(T_{2} \cup S\right)=S$ (This gives $\geq 2^{k+n-1} s_{2}$ numerical sets) (Also note that each T_{2} is not self dual because $Q \in T_{2}, F-Q \notin$ T_{2})

Proof: First we observe that T_{2} is an order ideal because I, I_{1}, Z are order ideals. (Check that I and Z are actually order ideals of B)

Note that $F-(P-Q) \notin T_{2}$; The only minimal element below $F-(P-Q)$ is $F-Q$ so $F-(P-Q) \notin I_{1}$. Clearly $F-(P-Q) \notin I, Z$

If $x \in I_{1}$, say $R \in X$ (so $R \neq 0$), $F-R \preccurlyeq x$. Now if $x \preccurlyeq R_{1}$ for some $R_{1} \neq Q$ then R, R_{1} are in the same component of the new graph, $F-R_{1} \preccurlyeq F-x$ so $F-x \in I_{1}$ and hence $F-x \in T_{2}$. Now assume that Q is the only PseudoFrobenius number above x this would mean that $x \in B_{1}$ which is a case we consider later.

Next if $x \in I$ so $F-Q \preccurlyeq x$, say $x \preccurlyeq R$ (so $R \neq Q$). This means that $R \in X$ and $F-R \preccurlyeq F-x$ so $F-x \in I_{1}$

Now consider an $x \in B_{1} . \quad(Q, P-Q, F-P)$ is a red triangle, $x \preccurlyeq Q$ and $x \nprec F-(F-P)$. So by lemma $3.15(x, y, F-P)$ is a red triangle, where $y=Q+P-Q-x=P-x . F-(P-Q)-(F-y)=y-P+Q=P-x-P+Q=$ $Q-x \in S$ so $F-y \preccurlyeq F-(P-Q)$ so $F-y \notin T_{2}$ and the triangle is satisfied.

This ensures $A\left(T_{2} \cup S\right)=S$
Moreover T_{2} is not self dual because $Q \in Z, F-Q \preccurlyeq F-(P-Q)$ so $F-Q \notin T_{2}$

Corollary 6.2.1. If $P-Q=F-P$ then there are exactly 2^{k-1} such T_{2}, moreover these are the same sets as the ones in corollary 6.1.1

Proof: Notice that in this case the connected component of Q in $G P F(S)$ is $\{P, Q\}$. So there are $k-1$ ways of choosing X and hence I_{1} has 2^{k-1} choices. We know that $P \in X$ so I contains the order ideal of $F-P=P-Q$. Also $B_{2}=\emptyset$ and hence $I=\emptyset$. Lastly B_{1} is the order ideal generated by $P-Q=F-P$ so $Z \subseteq I_{1}$. Thus $T=I_{1}$, notice that these were the same sets in corollary 6.1.1

Theorem 6.3. Let $P F(S)=P_{1}<P_{2}<\cdots<P_{t-1}<F$, If for exactly one pair $i<j P_{j}-P_{i} \in B$ then:

- If $\nexists k \neq i$ s.t. $P_{j}-P_{i} \preccurlyeq P_{k}$ then $P(S)>2^{k}$ and all numerical sets are given by lemmas 6.1 and 6.2 (and the self dual ones)
Moreover If $P_{j}-P_{i}=F-P_{j}$ then $P(S)=3 \times 2^{k-1}$, the numerical sets from lemmas 6.1 and 6.2 are the same.
And if $P_{j}-P_{i} \neq F-P_{j}$ then $P(S) \geq 2^{k}+2^{k+n}$, the numerical sets obtained from lemmas 6.1 and 6.2 are distinct
- If $\exists k \neq i$ s.t. $P_{j}-P_{i} \preccurlyeq P_{k}$ then $P(S)=2^{k}$

Proof: Rename $P_{j}=P, P_{i}=Q$. Note that by corollary 3.15.2 Q is the only Pseudo-Frobenius number that can have a triangle, also $F-P \preccurlyeq P-Q$, it is the only minimal element below $P-Q$.

In the first case Q has the triangle $(Q, P-Q, F-P)$. We show that it cannot satisfy any other triangle, if (Q, a, b) is a triangle then $F-P \prec a, b \prec$ $P-Q$ by corollary 3.15.2. $a, b \neq P-Q$ so by corollary 3.14.1 $a, b \preccurlyeq P$. $a \in T \Longrightarrow P \in T$, since P does not have a triangle $F-P \in T .(Q, a, b)$ is a
red triangle, $F-P \prec a$ so by corollary $3.14 F-P \preccurlyeq F-b$ so $F-b \in T$ and the triangle doesn't work.

Therefore the only triangle that can work is $(Q, P-Q, F-P)$. Remember that it can work in two ways:

- First way is if $P-Q \in T$ and $P \notin T$.

In this case define $Z=\left\{x \mid x \in T_{1}, x \preccurlyeq Q\right\}$ (Note $x \in Z \Longrightarrow x \npreceq P$). Z is an order ideal of $B_{1}=\{x \mid x \preccurlyeq Q, x \npreceq P\}$ and $P-Q \in Z$.
Let $I=\{x \mid x \in T, F-Q \preccurlyeq x, x \nprec Q\}$, it is clear that I is an order ideal of $B_{2}=\{x \mid F-Q \preccurlyeq x, x \npreceq P, x \npreceq Q\}$.
Let $X=T \cap(P F(S) \backslash\{Q\})$. If $R \in X$ then R does not have a triangle so $F-R \in T$, let I_{1} be the order ideal generated by conjugates of elements of X, so $I_{1} \subseteq T$.
Now if $x \in T \backslash\left(I \cup I_{1} \cup Z\right)$ then $F-R_{1} \preccurlyeq x$ with $R_{1} \notin X, R_{1} \neq Q$ (together meaning $\left.R_{1} \notin T\right)$ and $x \nprec Q$, so say $x \preccurlyeq R(R \neq Q)$. So $R \in T$, R does not have a triangle so $F-R \in T . F-R_{1} \preccurlyeq R \Longrightarrow F-R \preccurlyeq R_{1}$ so $R_{1} \in T$ which is a contradiction. Therefore $T=\left(I \cup I_{1} \cup Z\right)$
Next if $R \in X$ is connected to $R_{1} \neq Q$ in $\operatorname{GPF}(S)$ then $F-R \preccurlyeq R_{1}$. $R \in T, R$ does not have a red triangle so $F-R \in T$ and hence $R_{1} \in T$. This means that if a Pseudo-Frobenius number is in T then all PseudoFrobenius numbers connected to it in the new graph are in T. $P \notin T$, so the new component of P cannot be in X.
We conclude that T is given by lemma 6.1

- Second way is $F-P \in T$ and $F-(P-Q) \notin T$

Let $Z=\{x \mid x \in T, x \preccurlyeq Q\} . x \in Z \Longrightarrow x \npreceq F-(P-Q) \Longrightarrow x \nless P$. It follows that Z is an order ideal of $B_{1}=\{x \preccurlyeq Q, x \npreceq P, x \npreceq F-(P-Q)\}$.
Let $X=(\{P\} \cup(T \cap P F(S))) \backslash\{Q\}$, if $R \in X\{P\}$ then R does not have a red triangle and hence $F-R \in T$, we also have $F-P \in T$. Let I_{1} be the order ideal generated by conjugates of elements of X, it follows that $I_{1} \subseteq T$
Let $I=\{x \mid x \in T, F-Q \preccurlyeq x, x \npreceq Q\}$, it is clearly an order ideal of $B_{2}=\{F-Q \preccurlyeq x, x \nprec F-(P-Q), x \nprec Q\}$
Now if $x \in T \backslash\left(I \cup I_{1} \cup Z\right)$ then $F-R_{1} \preccurlyeq x$ with $R_{1} \notin X, R_{1} \neq Q$ (together meaning $\left.R_{1} \notin T \cup\{P\}\right)$ and $x \npreceq Q$, so say $x \preccurlyeq R(R \neq Q)$. So $R \in T, R$ does not have a triangle so $F-R \in T$. $F-R_{1} \preccurlyeq R \Longrightarrow F-R \preccurlyeq R_{1}$ so $R_{1} \in T$ which is a contradiction. Therefore $T=\left(I \cup I_{1} \cup Z\right)$
Next if $R \in X$ is connected to $R_{1} \neq Q$ in $\operatorname{GPF}(S)$ then $F-R \preccurlyeq R_{1}$. $R \in T, R$ does not have a red triangle so $F-R \in T$ and hence $R_{1} \in T$. This means that if a Pseudo-Frobenius number is in X then all PseudoFrobenius numbers connected to it in the new graph are in T. And $P \in S$
Therefore T is given by lemma 6.2

Now if $P-Q=F-P$, then by corollaries 6.1 .1 and 6.2 .1 we know that both lemmas give the same numerical 2^{k-1} sets. So total number of sets is $2^{k}+2^{k-1}=3 \times 2^{k-1}$

And if $P-Q \neq F-P$, then the ones from lemma 6.1 don't have P in them, the ones from 6.2 have P (proved next)
$(Q, P-Q, F-P)$ is a red triangle $F-P \prec P-Q(F-P \neq P-Q)$ so by lemma $3.14 F-P \preccurlyeq P$ and hence $P \in T$

For the second case denote such a $P_{k}=R$. We have $F-P \preccurlyeq P-Q \preccurlyeq R$ and hence $F-R \preccurlyeq F-(P-Q) \preccurlyeq P$. If (Q, a, b) is a triangle then $a, b \preccurlyeq P-Q$ by lemma 3.15.2. So if the triangle is satisfied then $P-Q \in T$, so $R \in T$, so $F-R \in T$ so $F-(P-Q) \in T$ so $F-a, F-b \in T$. And hence the triangle cannot be satisfied. Therefore $P(S)=2^{k}$

7 Arf Semigroups

Lemma 7.1. S is an Arf Numerical semigroup of multiplicity m. If $x \in B \backslash$ $P F(S)$ then $x+m \in B$

Proof: $x \notin P F(S)$ so $\exists s_{1} \in S$ s.t. $s_{1} \neq 0 x+s_{1} \notin S$. Now if $x+m \in S$ then $m \leq s_{1}$ and $m \leq x+m$ so $x+s_{1}=s_{1}+(x+m)-m \in S$ (because S is Arf) which is a contradiction. Next if $F-(x+m) \in S$ then $F-x=(F-(x+m))+m \in S$ which contradicts $x \in B$. Therefore $x+m \in B$

Corollary 7.1.1. If S is an Arf numerical semigroup then. The width of the B-Poset is $t-1$, where t is the type of $S(t=m-1$ as Arf Semigroups have max embedding dimension)

Remark 7.2. The $S t(m, n)$ families are always Arf
Conjecture 7.3 (April Conjecture). The cover relations of the B posets are always small generators, within the first $\frac{1}{3}$ of the set of generators.
Remark 7.4. Approach towards April Conjecture:
Every Arf Numerical semigroup can be obtained via a sequence (and every semigroup obtained this way is Arf):
$S_{0}=\mathbb{N}, S_{1}=\left(x_{1}+S_{0}\right) \cup\{0\}, S_{2}=\left(x_{2}+S_{1}\right) \cup\{0\}, \ldots, S_{n}=\left(x_{n}+\right.$ $\left.S_{n-1}\right) \cup\{0\}$ s.t. $x_{i} \in S_{i-1}$ for each i

Now $B\left(S_{0}\right)=B\left(S_{1}\right)=\cdots=B\left(S_{k-1}\right)$ s.t. k is the first entry for which $x_{k} \geq 3$.

Next if the denote $\operatorname{Brel}(S)=\{y-x \mid x, y \in B(S), y-x \in S\}$ then $r \geq k$ implies $\operatorname{Brel}\left(S_{r+1}\right)=\left(x_{r}+\operatorname{Brel}\left(S_{r}\right)\right) \cup\{0\}$

We then need to determine which elements of $\operatorname{Brel}\left(S_{r}\right)$ cannot be written as sum of other elements of $\operatorname{Brel}\left(S_{r}\right)$

It looks like the cover relations of $B(S)$ are first several consecutive generators of S. And the ratio of the number of generators and the multiplicity (which is also the embedding dimension) is at most $\frac{1}{x_{k}}$
x_{k} being at least 3 leads to the April Conjecture

8 Families of Semigroups

Chris's Cowardly Conjecture

At approximately 9:15am on June 21, Christopher O'Neill conjectured that the type of a semigroup S and $P(S)$ were related. Some investigation finds us many, many semigroups where $P(S)=2$, but $T(S) \neq 2$.
Definition 8.1 (Additive Semiclosure). Given a numerical semigroup S, and a finite set $\left\{a_{i}\right\} \subset \mathbb{N} \backslash S$, the additive semiclosure of S with respect to $\left\{a_{i}\right\}$ is the set S^{\prime} constructed by adjoining a_{i}, and then iteratively adding elements in order to satisfy additive closure.

By applying TBUS and the concept of additive semiclosure to semigroups with fixed Frobenius numbers, we identified all of the numerical sets that map to them. In this way, we found some families with $P(S)=2$, but $T(S) \neq 2$.

Definition 8.2 (Quasisymmetric Semigroups). A numerical Semigroup for which the size of the B set is 2 is called a Quasisymmetric semigroup.

Theorem 8.3. Quasisymmetric Semigroups have $P(S)=2$ unless $B=\{a, F-$ a\} and $F=3 a$

Proof: If $B=\{a, F-a\}$, we know that $A(S)=S$ and $A(B \cup S)=S \ldots$
E.g. For an even number $2 n$, the semigroup $\{0, n+1, n+2 \ldots 2 n, 2 n+1 \rightarrow\}$ has $P(S)=2$ but $T(S)=3$. In particular, $P F(S)=\left\{\frac{F(S) \pm 1}{2}, F(S)\right\}$.

Definition 8.4 (YET UNNAMED SEMIGROUPS). The semigroup $\{0, n, n+$ $1, \ldots 2 n-5,2 n-2,2 n \rightarrow\}$ has $P F(S)=\{2 n-4,2 n-3,2 n-1\}$, but $P(S)=2$.

Proof: This is a semigroup since all nontrivial elements are greater than $\frac{F(S)}{2}$. The Pseudo-Frobenius numbers are just the gaps larger than $\frac{F(S)}{2}$, i.e. $\{2 n-4,2 n-3,2 n-1\}$.

The only numerical sets corresponding to this semigroup are S and $B \cup S$. $B=\{2,3,2 n-4,2 n-3\}$. If $b \in T, \bar{b} \in T$. If $2 \in T$, thus $2 n-3 \in T$, and since $2 n-6 \in S, 2 n-4 \in T$ so $3 \in T$ which is $B \cup S$. If $3 \in T, 2 n-4 \in T$, and since $2 n-6 \in T, 2 n-3 \in T$ and $2 \in T$. Again this is $B \cup S$, so if any element of B is in $T, T=B \cup S$. This shows $P(S)=2$.

In fact, when $P(S)=2$, both $|B|$ and the type of the semigroup can be unbounded, as evidenced by the following families:

Example 8.5 (3n Semigroups). For $n \in \mathbb{N}$, the family $S_{n}=\{0,3,6, \ldots 3 n \rightarrow\}$ has $|B|=n$ and $P\left(S_{n}\right)=2$.

Proof: Note that every multiple of 3 is contained in every S_{n}. For $b \leq$ $F(S)$, if $b \equiv 1 \bmod 4$, then $F(S)-b \equiv 1 \bmod 4$ so $b, F(S)-b \notin S$, but if $b \equiv 2$ $\bmod 4, F(S)-b \in S$. Thus, B is exactly the elements of S that are $1 \bmod 4$, so $|B|=n$.

Furthermore, if $A(T)=S$ and $T \neq S$, then $T=B \cup S$. Since $T \neq S$, $b \in T \backslash S$, so $b=3 k+1$. Then, since $b+S \subseteq S$, then for $0 \leq l \in \mathbb{N}, 3(k+l)+1 \in S$,
so every element of B larger than b is also in T. Then, since $3 n-2 \in T$, but $3 n-2 \notin A(T), 1 \in T$. After this, every element of B is also in T, so $T=B \cup S$.

Example 8.6 (2 2^{n} Semigroups). For $n \in \mathbb{N}$, the family $S_{n}=\{0, m, m+1, \ldots m+$ $n, m+n+2, \ldots m+2 n, \ldots 2 m-2,2 m \rightarrow\}$, where $m=2^{n}+n-1$ and the Pseudo-Frobenius numbers are $\left\{2 m-2^{k-1}-k+1 \mid 1 \leq k \leq n\right\} . P\left(S_{n}\right)=2$ and $T\left(S_{n}\right)=n$.

Proof: First, each S_{n} is a semigroup, since every nontrivial element of S_{n} is larger than $\frac{F\left(S_{n}\right)}{2}$. Similarly, each element of $P F(S)$ is larger than $\frac{F\left(S_{n}\right)}{2}$, so $2 m-2^{k-1}-k+1+S \subseteq S$.

Now, if $A(T)=S$ and $T \neq S$, then $T=B \cup S$. In this case, B is composed of the Pseudo-Frobenius numbers (except F, where $k=1$) and their conjugates. If T contains some Pseudo-Frobenius number $P F_{k}=2 m-2^{k-1}-k+1$, it also contains its conjugate $F-P F_{k}=2^{k-1}+k-2$. Since for higher values of k, the gaps are $2^{k-1}+1$ apart, for $k<n$, if $P F_{k} \in T, P F_{k+1} \in T$. If $P F_{n} \in T$, then its conjugate $2^{n-1}+n-2 \in T$. Then, since for $n>2, m \leq P F_{2}-\left(2^{n-1}+n-2\right)<$ $P F_{n}$, if $P F_{n} \in T$, then $P F_{2} \in T$. Thus, if one Pseudo-Frobenius number is in T, then all of them are, so the only semigroups with $A(T)=S$ are S and $T B U S$.

8.1 Noble Semigroups

Definition 8.7. A semigroup is Noble if for all $P \in P F(S), b \in B$, we have that $P+b \in B \Longrightarrow b=F-P$. Otherwise, it is Ignoble.

Theorem 8.8. If S is noble, then it is P-Minimal.
Proof: Let T be a numerical set such that $A(T)=S$; it suffices to show that $T \backslash S$ is self-dual, so let $P \in T \cap P F(S)$. There must be $t \in T \cap B$ such that $P+t \notin T$. If $P+t \notin B$, we have from the proof of Theorem 3.11 that $F-P \in T$. If $P+t \in B$, there is $Q \in P F(S)$ such that $Q-(P+t) \in S$, and so $Q-P=(Q-P-t)+t \in T \cap B$ and $P+(Q-P)=Q \in P F(S)$; we thus have $Q-P=F-P \in T$. Either way $P \in T \Longrightarrow F-P \in T$, and so $T \backslash S$ is self-dual.

8.2 $\mathrm{P}(\mathrm{S})$ for Semigroups of Type 3

From the symmetric semigroups, we know that if $T(S)=1, P(S)=2$. From Theorem 3.2, we can see that $T(S)=2$ implies $P(S)=2$. In the following section, we will show that $T(S)=3$ implies that $P(S)=2,3,4$, and $P(S)$ can be arbitrarily large for $T(S)=4$.

Theorem 8.9. If $t=3$ and number of connected components of $\operatorname{GPF}(S)$ is 2, then $P(S)=4$.

Proof: Let P and Q be the maximal elements of the B Poset (with $P<$ Q), so their conjugates are the minimal ones. In order to have two connected
components in $G P F(S)$ we must have $F-P \npreceq Q$. So $F-P \preccurlyeq P$ and $F-Q \preccurlyeq Q$. Now assume we have a red triangle $P+x+y=F$ then $F-P \npreceq x, y$. So $F-Q \preccurlyeq x, y \preccurlyeq Q$. It follows that if either of x, y are in T then $Q \in T$ and hence $F-Q \in T$ and conjugates of both x, y are in T so the triangle cannot work. Hence, $P(S)=4$.

Theorem 8.10. If $t=3, P F(S)=\{P, Q, F\}$ with $P<Q<F, Q-P \notin B$, then S is noble.

Proof: Follows from corollary 3.15.2
Lemma 8.11. If $t=3, Q-P \in B$, and (P, x, y) is a red triangle, then $x \preccurlyeq Q-P$. (The same applies to y.)

Proof: Follows from corollary 3.15.2
Lemma 8.12. If $t=3, Q-P \in B$, and $x \preccurlyeq Q-P$ and $x \neq Q-P$ then $x \preccurlyeq Q$.
Proof: Follows from lemma 3.14
Lemma 8.13. If $t=3, Q-P \in B$, and $b \| Q-P$ then $b \preccurlyeq Q$
Proof: If possible, assume $b \npreceq Q$. Then, $b \preccurlyeq P$ i.e. $P-b \in S$. Also $Q-b \notin S$ therefore either $Q-b \in B$ or $Q-b \in G a p \backslash B$

If $Q-b \in B$ then $Q-b$ cannot be below Q, and hence it must be below P i.e. $P-Q+b \in S$ which means $Q-P \preccurlyeq b$, which is a contradiction.

Next assume $Q-b \in G a p \backslash B$, which implies $F-Q+b \in S$, but then $F-(Q-P)=(F-Q+b)+(P-b) \in S$, which is also a contradiction because $Q-P \in B$.

We conclude that $b \preccurlyeq Q$.
Lemma 8.14. If $t=3, Q-P \in B$, and $\overline{Q-P} \preccurlyeq b$ and $\overline{Q-P} \neq b$ then $F-Q \preccurlyeq b$

Proof: $F-(Q-P) \preccurlyeq b \Longrightarrow \bar{b} \preccurlyeq Q-P$ and $\bar{b} \neq Q-P$ hence by lemma $8.12 \bar{b} \preccurlyeq Q$ i.e. $\bar{Q} \preccurlyeq b$

Theorem 8.15. If $t=3$ then $P(S) \leq 4$
Proof: The only case remaining is when $G P F(S)$ is connected and $Q-P \in$ S. $G P F(S)$ being connected means $F-Q \preccurlyeq P$ and $F-P \preccurlyeq Q$,

Consider T s.t. $A(T)=S$ and let $T^{\prime}=T \backslash S$. If $T^{\prime} \neq \emptyset$, then T has at least one Pseudo-Frobenius number. If it has Q, then it has $F-Q$ and hence also P, i.e. $T^{\prime} \neq \emptyset \Longrightarrow P \in T^{\prime}$.

Now if $F-P \in T^{\prime}$, then $Q \in T^{\prime}$, which implies $F-Q \in T^{\prime}$, which implies $T^{\prime}=B$. Therefore $T^{\prime} \neq \emptyset, B \Longrightarrow P \in T^{\prime}$ and $F-P \notin T^{\prime}$. Hence P must satisfy a red triangle and by lemma 8.11 we know $Q-P \in T^{\prime}$

Let $T_{1}=\{x \mid Q-P \preccurlyeq x\}$, by lemma 8.12 and lemma 8.13 we see that $T^{\prime} \neq \emptyset, B, T_{1} \Longrightarrow Q \in T \Longrightarrow \bar{Q} \in T$ So $F-Q \preccurlyeq x \Longrightarrow x \in T$

Let $T_{2}=\{x \mid F-Q \preccurlyeq x\}$. If $x \| F-(Q-P)$ then $F-x \| Q-P$ and hence by Lemma $8.13 F-x \preccurlyeq Q$, hence $F-Q \preccurlyeq x$ and $x \in T_{2}$. Next if $F-(Q-P) \preccurlyeq x, x \neq F-(Q-P)$ then by Lemma $8.14 F-Q \preccurlyeq x$ and $x \in T_{2}$

Finally if $T^{\prime} \neq \emptyset, B, T_{1}, T_{2}$ then $\exists x \in T^{\prime}$ s.t. $x \preccurlyeq F-(Q-P)$. Hence $F-(Q-P) \in T^{\prime}$. Now if a red triangle (P, y, x) works i.e. $y \in T^{\prime}, F-x \notin T^{\prime}$ then by Lemma 8.12, $x \preccurlyeq Q-P$ and hence $F-(Q-P) \preccurlyeq F-x$. It follows that no triangle can work, which is a contradiction.

We have shown that $P(S) \leq 4$.
Lemma 8.16. If $t=3$, the graph $G P F(S)$ is connected and $Q-P \in B$ then $A\left(T_{1} \cup S\right)=S$

Proof: Firstly T_{1} is an order ideal and P is the only Pseudo-Frobenius number in $T_{1}\left(Q \in T_{1} \Longrightarrow Q-P \preccurlyeq Q \Longrightarrow P=Q-(Q-P) \in S\right.$ which is impossible). Moreover ($P, Q-P, F-Q$) is a red triangle with $Q-P \in T_{1}$ and $Q=F-(F-Q) \notin T_{1}$. Hence by theorem 3.13 $A\left(T_{1} \cup S\right)=S$

Theorem 8.17. If $t=3$ then $P(S)=2$ iff $G P F(S)$ is connected and $Q-P \notin B$
Proof: Firstly if $\operatorname{GPF}(S)$ is connected and $Q-P \notin B$ then by Theorem 8.10, S is noble and hence $P(S)=2$.

Conversely assuming $P(S)=2$, if $G P F(S)$ is not connected then $P(S)=4$ so $G P F(S)$ must be connected. And if $Q-P \in B$ then by lemma $8.16 A\left(T_{1}\right)=S$ and $P(S) \geq 3$

Lemma 8.18. If $t=3, G P F(S)$ is connected, $Q-P \in B$ then $A\left(T_{2} \cup S\right)=S$
Proof: Let $T_{2}=\{x \mid F-Q \preccurlyeq x\}$. Note that $P \in T_{2}$ and Q may or may not be in it.
$(P, F-Q, Q-P)$ is a red triangle, $F-Q \in T_{2}$. Moreover $(F-(Q-P))-$ $(F-Q)=P \notin S$ and hence $\bar{Q} \npreceq \overline{Q-P}$ i.e. $\overline{Q-P} \notin T_{2}$. Therefore the triangle is satisfied.

If $Q \in T_{2}$ then we know that $\bar{Q} \in T_{2}$.
Therefore by theorem 3.13 $A\left(T_{2} \cup S\right)=S$
Theorem 8.19. if $t=3, G P F(S)$ is connected and $Q-P \in B$ then:
if $F=2 Q-P$ then $P(S)=3$, otherwise $P(S)=4$
Proof: $T_{1}=T_{2}$ iff $Q-P=F-Q$
Remark 8.20. Note That $T_{1}^{*}=T_{2}$

8.3 Chris's Courageous Conjecture

Definition 8.21. Given a Numerical Semigroup S and $\beta \geq 2$, f s.t. $\beta \wedge f$, $f>\beta(F(S)+2 m(S))$ define $M(S, \beta, f)=\beta S \cup\{0, f+1 \rightarrow\}$

Conjecture 8.22. If we fix S and β then $P(M(S, \beta, f))$ is eventually a quasipolynomial is f

Notation: denote by F the Frobenius number of S, by m the multiplicity of S (as opposed to those of $M(S, \beta, f)$)

Remark 8.23. $S t(m, n)=M(\mathbb{N}, m, n m-1)$ and

$$
S t(l, m, n)=M(\{0, l \rightarrow\}, m, m(l+n)-1)
$$

Definition 8.24. Given a Numerical Semigroup S and $\beta \geq 2$ we define the βS-Poset to be the Poset whose elements are $\mathbb{N} \backslash(\beta S)$ and $x \preccurlyeq y$ iff $y-x \in \beta S$ (Note that it has infinitely many elements)
Definition 8.25. Given a numerical Semigroup S the S-poset is the poset whose elements are \mathbb{N} and $x \preccurlyeq y$ iff $y-x \in S$.

The Gap-Poset is the poset whose elements are $\mathbb{N} \backslash S$ and $x \preccurlyeq y$ iff $y-x \in S$
Remark 8.26. Note that the B-Poset is obtained from the Gap-Poset by deleting everything that is below the Frobenius number in the poset.
Lemma 8.27. The βS-Poset has the following description:
Let $C_{i}=\{x \mid x \equiv i(\bmod \beta)\}$ if $1 \leq i \leq \beta-1$ and $C_{\beta}=\{x \mid x=\beta t, t \notin S\}$. Note that the sets C_{i} are mutually parallel.

If $i \leq \beta-1$, then C_{i} is isomorphic to the S poset, with $q_{1} \beta+i \preccurlyeq q_{2} \beta+i$ in the βS-Poset iff $q_{1} \preccurlyeq q_{2}$ in the S-Poset. In addition, C_{β} is isomorphic to the Gap-Poset, $\beta t_{1} \preccurlyeq \beta t_{2}$ in βS-Poset iff $t_{1} \preccurlyeq t_{2}$ in the Gap-Poset.
Corollary 8.27.1. If $S=\{0, k, \rightarrow\}$ the βS-Poset has the following description:
The sets C_{i} are mutually parallel.
For $i \leq \beta-1, x, y \in C_{i}$ then $x \preccurlyeq y$ iff $y-x \geq \beta k$.
C_{β} is a Chaos Poset of size $k-1$.

We describe the structure of C_{i} as a poset $(i \neq \beta)$ by arranging them in towers. The first layer has those elements that are between $1 \leq x<m \beta$, the second layer those between $m \beta \leq x<2 m \beta$ and so on.

Note that we cannot have edges within a layer, this is because if $q_{1} \beta+i$ and $q_{2} \beta+i$ are in the same layer then $q_{2}-q_{1}<m$ and hence $q_{2}-q_{1} \notin S$. Let a be the largest atom of S then we can never have a direct edge from the $l^{t h}$ layer to the $l_{2}^{t h}$ layer with $l_{2}-l_{1} \geq\left\lceil\frac{a}{m}\right\rceil+1$. This is because if such an edge exists, say between points $q_{1} \beta+i$ and $q_{2} \beta+i$, with $\left(l_{1}-1\right) m \leq q_{1}<m l_{1}$ and $\left(l_{2}-1\right) m \leq q_{2}<m l_{2}$. Note that by the lemma 8.27 this is equivalent to there being a direct edge from q_{1} to q_{2} in the S poset i.e. $q_{2}-q_{1}$ is an atom (generator) of S. But $q_{2}-q_{1} \geq m\left(\left(l_{2}-1\right)-l_{1}\right) \geq m\left(\left\lceil\frac{a}{m}\right\rceil\right)>a(m \nmid a)$ which is impossible.

Also note that elements in the $l^{t h}$ layer are obtained by adding $(l-1) m \beta$ to elements in the $1^{\text {st }}$ layer. Note also that $x+m \beta \cdots \preccurlyeq x+(l-1) m \beta$. Thus, the edges between the $l^{\text {th }}$ and $l+1^{\text {th }}$ layers are in natural correspondence with edges between $1^{s t}$ and $2^{n d}$ layer and the edges between $l^{t h}$ and $l+2^{t h}$ layer are in natural correspondence with edges between $1^{\text {st }}$ and $3^{r d}$ layers. Continuing this process, edges between $l^{t h}$ and $l+\left\lceil\frac{a}{m}\right\rceil^{t h}$ layer are in natural correspondence with edges between $1^{\text {st }}$ and $\left\lceil\frac{a}{m}\right\rceil+1^{\text {th }}$ layers.

Lemma 8.28. The B-Poset of $M(S, \beta, f)$ (assuming $f>\beta F(S)$) has the following description:

It is a sub-Poset of the βS-Poset.
Say $f \equiv r(\bmod \beta) 1 \leq r<\beta$,
Then from $C_{j}(j \neq r, j \neq \beta)$ we remove all elements $\geq f$ Let $D_{j}=\{x \mid x \in$ $\left.C_{j}, x<f\right\}$. From C_{r} we remove everything except $D_{r}=\{f-\beta g, g \in \mathbb{N} \backslash S\}$ $(f>\beta F(S))$. Note that D_{r} as a Poset is the dual of the Gap-Poset of $S . C_{\beta}$ remains as it is $(f>\beta F(S))$.

Corollary 8.28.1. In case of $S=\{0, k \rightarrow\}$ the Gap-Poset of $\{0, k \rightarrow\}$ is the chaos poset of $k-1$ elements and hence the B-Poset is $M(\{0, k \rightarrow\}, \beta, f)$ (we assume $f>\beta k$) is the disjoint union of $\beta-1$ cut-off S-Posets and two chaos Posets of size $k-1$ each.

Definition 8.29. The S cut off at n Poset is the poset whose elements are natural numbers less than n with $x \preccurlyeq y$ iff $y-x \in S$

Remark 8.30. In the B-Poset of $M(S, \beta, f)$. If $f \equiv r(\bmod \beta)$, with $1 \leq r<\beta$ Then for $j<r$ then D_{j} is naturally isomorphic to S cut off at $\left\lceil\frac{f}{\beta}\right\rceil$ and for $j>r D_{j}$ is naturally isomorphic to S cut off at $\left\lfloor\frac{f}{\beta}\right\rfloor$
Lemma 8.31. The maximal elements of S cut off at n Poset are $n-1$ and $n-1-x$ where x is a minimal element of the Gap-Poset of S

Corollary 8.31.1. $\operatorname{PF}(M(S, \beta, f+\beta)) \backslash C_{\beta}=\beta+\left(P F(M(S, \beta, f)) \backslash C_{\beta}\right)$
And of course $\operatorname{PF}(M(S, \beta, f+\beta)) \cap C_{\beta}=\operatorname{PF}(M(S, \beta, f)) \cap C_{\beta}$
Corollary 8.31.2. Type of $M(S, \beta, f)$ is $t(S)+(\beta-1)(1+\#\{$ minimal elements of Gap Poset $\})=$ $t(S)+(\beta-1) m(S)$

Lemma 8.32. If $P \in P F(M(S, \beta, f)) \backslash\left(\{f\} \cup C_{\beta}\right)$ and (P, a, b) is a red triangle of $M(S, \beta, f)$ then $P+m \beta \geq f$ and hence $a+b<m \beta$ and a, b and $\bar{P}=a+b$ are in the bottom layer.

Corollary 8.32.1. If $f \equiv r(\bmod \beta)$ then D_{r} has no elements in the bottom layer if $f>(F+m) \beta$.

And hence the a, b, \bar{P} from the lemma cannot be in D_{r}
Lemma 8.33. If $P \in P F(M(S, \beta, f)) \backslash\left(\{f\} \cup C_{\beta}\right)$ then (P, a, b) is a red triangle of $M(S, \beta, f)$ iff $(P+\beta), a, b)$ is a red triangle of $M(S, \beta, f+\beta))$

Note that a, b were not in D_{r} of $P F(M(S, \beta, f))$ and hence so a, b are the B-Poset of $M(S, \beta, f+\beta)$

Also note that if at least one of $x, y(s a y x)$ is a newly added element of the B-Poset of $M(S, \beta, f+\beta)$ (i.e. it was not in the B-Poset of $M(S, \beta, f)$) then x is in the top layer of the B-poset and hence $(P+\beta, x, y)$ is not a red triangle of $M(S, \beta, f+\beta)$.

Remark 8.34. We fix S and β, move f within a particular equivalence class $\bmod \beta$ (while ensuring $f>(F+m) \beta$). For $j \neq \beta$ We denote the numerically largest element of D_{j} by $P(j, 0)$ (so $P(r, 0)$ is the Frobenius number) and we define $P(j, g p)=P(j, 0)-g p$ for $g p \in \mathbb{N} \backslash S$

We also define $P(\beta, p)=\beta$ for $p \in P F(S)$.
Note that these are all the Pseudo-Frobenius numbers.
Remark 8.35. We divide order ideals of the B-Poset of $M(S, \beta, f)$ into categories depending on which elements of the first layer are in the order ideal and which elements in the first layer have their conjugates in the order ideal, which elements of C_{β} are in the order ideal, which elements of D_{r} are in the order ideal.

Lemma 8.36. For $P \in T \cap P F(M(S, \beta, f)) \backslash\left(\{f\} \cup C_{\beta}\right)$ note that whether or not $\bar{P} \in T$ and whether or not P satisfies a triangle is determined by which category P is in.

Lemma 8.37. For $P \in C_{\beta} \cap P F(M(S, \beta, f))$ if P has a red triangle (P, a, b) with $a \in C_{\beta} \cup D_{r}$ Then whether or not an order ideal satisfies the red triangle is determined by the category.

Proof: If $a \in C_{\beta}$ then $f-b=P+a \equiv 0(\bmod \beta)$ and $f-b \in C_{\beta}$ and the category determines whether or not this order ideal is satisfied.

If $a \in D_{r}$ then $f-b=P+a \equiv r(\bmod \beta)$. Therefore whether or not $a \in T$ and $f-b \in T$ is determined by the category.

Lemma 8.38. If $i \neq r, \beta$ and $x \in D_{i}$ then the set $\left\{y \mid x<y, y \in D_{i}, x \| y\right\}$ is the same as the set $\{x+g p \beta \mid g p \in \mathbb{N} \backslash S, g p \beta<f-x\}$ with $x<f-F \beta$ then the set $\left\{y \mid x<y, y \in D_{i}, x \| y\right\}$ is the same as the set $\{x+g p \beta \mid g p \in \mathbb{N} \backslash S\}$ and as a poset is isomorphic to the Gap-Poset of S

Lemma 8.39. If $i \neq r, \beta$ and $x \in D_{i}$ then the set $\left\{y \mid y<x, y \in D_{i}, x \| y\right\}$ is the same as the set $\{x-g p \beta \mid g p \in \mathbb{N} \backslash S, g p \beta<x\}$ with $x>F \beta$ then the set $\left\{y \mid x<y, y \in D_{i}, x \| y\right\}$ is the same as the set $\{x-g p \beta \mid g p \in \mathbb{N} \backslash S\}$ and as a poset is isomorphic to the duel of the Gap-Poset of S

Notation: For each pair of disjoint subsets A, B of the set of maximal elements of C_{β} let $\gamma_{\infty, A, B}$ be the number of order ideals of Gap poset of S for which $\forall p \in A$ either $\frac{p}{\beta}$ is in the order ideal or there is a pair of elements of the poset that differ by $\frac{p}{\beta}$, the smaller element is in the order ideal, the larger element is not. Moreover $\forall p^{\prime} \in B$ such a pair does not exist and $\frac{p^{\prime}}{\beta}$ is not in the order ideal.

And let $\gamma_{n, A, B}$ be the number of order ideals of poset obtained from Gap poset of S by throwing away everything numerically bigger than n, we only count order ideals that satisfy: $\forall p \in A$ either $\frac{p}{\beta}$ is in the order ideal or there is a pair of elements of the poset that differ by $\frac{p}{\beta}$, the smaller element is in the order ideal, the larger ideal is not. And for $\forall p^{\prime} \in B$ such a pair does not exist
and $\frac{p^{\prime}}{\beta}$ is not in the order ideal.
If in a category we had chosen an element but excluded an element above it then the category has no order ideals and we throw it away.

For the remaining categories we count the number of good numerical sets in them:

Counting Good Numerical Sets with Towers

Fix a category. Let A be the set of elements of maximal elements of C_{β} that are chosen in the category, while their conjugates are not chosen.

If the category was not thrown out then it has three kinds of towers $\left(D_{i}\right.$, $i \neq r$ are called towers).

1. At least one element of first layer and all elements whose conjugates are in first layer are chosen.
2. No element of first layer is chosen and at least one element whose conjugate is in the first layer is not chosen.
3. No element of the first layer is chosen, all elements whose conjugates are in the first layer are chosen.

In a tower of the first kind, all but finitely many elements are above the chosen minimal elements (the set of the remaining ones does not change when we change f within an equivalence class).

In a tower of the second kind, all but finitely many elements are below one of the maximal elements that is not chosen (the set of the remaining ones does not change when we change f within an equivalence class)

We divide the category into sub-categories by randomly choosing which of the remaining elements of towers of the first and second kind are to be included in the order ideal.

If while making the subcategory we picked an element but missed something above it, then the subcategory has no order ideals in it and we throw it away.

If the subcategory survives then some of the elements of A might satisfy a triangle within the decided elements (decided elements are those that are chosen or excluded). We remove those elements from A and create a modified A set.

Now we have a subcategory and a modified A set. We still have towers of third kind to consider.

Given a tower of the third kind, say D_{i}. If $i<r$ it has $\left\lceil\frac{f}{\beta}\right\rceil$ elements and if $r<i$ it has $\left\lfloor\frac{f}{\beta}\right\rfloor$ elements; in either case, denote the number of elements in D_{i} by n. The first m of these are in the first layer and have been excluded, while the last m have their conjugates in the first layer and have been included. The remaining $n-2 m$ elements have to be decided. Suppose the smallest (numerically) element among these that is included in the order ideal is x; then everything above x is included, and everything numerically smaller than x is thrown away. Note that the set $\left\{y \mid x<y, y \in D_{i}, x \| y\right\}$ remains to be decided.

Suppose we have picked the x in each tower of the third kind. If there are s_{1} towers of the third kind with $i<r$ and s_{2} towers of third kind with $i>r$, there are $\left(\left\lceil\frac{f}{\beta}\right\rceil-2 m\right)^{s_{1}}\left(\left\lceil\frac{f}{\beta}\right\rceil-2 m-1\right)^{s_{2}}$ ways of picking the elements x from each tower.

Note that any $p \in A$ (the modified A) cannot satisfy a triangle with the decided elements, because if $x+p$ is either undecided, or in the top layer and hence chosen or not in the B-Poset at all. And if $x \preccurlyeq a$ then $a+p$ is either chosen or not in the B-Poset at all.

Now we need to decide the remaining elements, so we first split the subcategory into several divisions. Each division is a tuple $D=\left(\sigma_{g p 1}, \sigma_{g p 2}, \ldots, \sigma_{F}, r_{1}, r_{2}\right)$ where $g p 1, g p 2, \ldots$ are the Gaps of $S, \sigma_{g p}$ is how many towers (of third kind) have the poset of undecided elements naturally isomorphic to Gap-Poset of S cut off at $g p . r_{1}$ is how many towers D_{i} (of third kind) with $i<r$ have $f-x>F \beta$ (and hence the poset of undecided elements naturally isomorphic to Gap-Poset of S) and r_{2} is how many towers (of third kind) with $i>r f-x>F \beta$. Each division D has a coefficient a_{D} which is the number of ways of partitioning the towers of the third kind into $g+2$ parts s.t. all towers D_{i} in the $g+1^{t h}$ part have $i<r$ and all towers D_{i} in the $g+2^{t h}$ part have $i>r$.

Denote the number of towers of the third kind by d.
Note that $\sigma_{g p 1}+\sigma_{g p 2}+\cdots+\sigma_{F}+r_{1}+r_{2}=d$ otherwise the division has $a_{D}=0$ and can be ignored.

Lastly we further split each division into several Partitions. Each partition is a tuple $\left(A_{1}, A_{2}, \ldots, A_{d}\right)$ s.t. $A_{1} \cup A_{2} \cup \cdots \cup A_{d}=A$. Define $B_{i}=A \backslash$ A_{i}. We define function g on the components of the tuple, g maps the first $\sigma_{g p 1}$ components to $g p 1$, then next $\sigma_{g p 2}$ components to $g p 2, \ldots$ further σ_{F} components to F and last $r_{1}+r_{2}$ components to ∞

The number of good numerical sets in a partition is $a_{d} \prod_{i=1}^{d} \gamma_{g\left(A_{i}\right), A_{i}, B_{i}}\left(\left\lceil\frac{f}{\beta}\right\rceil-\right.$ $2 m-F)^{s_{1}}\left(\left\lceil\frac{f}{\beta}\right\rceil-2 m-1-F\right)^{s_{2}}$.
Theorem 8.40. If we fix S and β then $P(M(S, \beta, f))$ is eventually a quasipolynomial is f with period β

Proof: Once we have fixed S, β and which equivalence class $\bmod \beta f$ is in, we can determine all the categories, all of their subcategories, all of their divisions and all of their partitions. Once we do this we have a polynomial in $\left\lceil\frac{F}{\beta}\right\rceil$ as the number of good numerical sets within a partition.

Once we sum these polynomials over all partitions of all divisions of all subcategories of all categories we get the polynomial expression of $P(M(S, \beta, f))$, the polynomial depends on which equivalence class $\bmod \beta f$ is in.

Corollary 8.40.1. The degree of the polynomial is the largest d among all good categories (that have a good numerical set). d is the number of towers of the third kind.

Proof: Once we have such a category we can pick a subcategory and then take the division $\left(0,0, \ldots, 0, s_{1}, s_{2}\right)$ and then all of its partitions have polynomials of degree $s_{1}+s_{2}=d$

8.3.1 Staircase $S t(m, n)$ families

Definition 8.41. $S t(m, n)=\{0, m, 2 m \ldots, n m, \rightarrow\}$
Lemma 8.42. The B-Poset of $\operatorname{St}(m, n)$ has a simple structure, it is the disjoint union of $m-2$ chains of length n each. The $r^{\text {th }}$ chain $(1 \leq r \leq m-2)$ is $r \preccurlyeq r+m \preccurlyeq r+2 m \preccurlyeq \cdots \preccurlyeq r+(n-1) m$

Lemma 8.43. If P is a Pseudo-Frobenius number of $\operatorname{St}(m, n),(P, a, b)$ is a red triangle then a, b are minimal elements of the B-Poset

Theorem 8.44. For a fixed m there is a polynomial $g_{m}(x)$ s.t. $P(S t(m, n))=$ $g_{m}(n)$

Proof: We partition the numerical sets into categories, created as follows:
We partition equivalence classes mod $m, 1 \leq r \leq m-2$ into 3 kinds: those included completely, those not included at all, those included partially (in a way that ensures it is an order ideal, i.e. where if an element is included, so are all the elements above it).

There are finitely many ways of making those selections. Note that these selections do not depend on the value of n.

Note that if one order ideal in a category has $A(T \cup S)=S$, then T satisfies the condition of theorem 3.13 for each Pseudo-Frobenius number in T then all order ideals in that category satisfy the condition of theorem 3.13. This is because if (P, a, b) is a red triangle, $P \in P F(S) \backslash\{F\}$, then a, b are minimal elements of the B-Poset by lemma 8.43 and hence $a \in T$ means the entire equivalence class of a is in T amd $\bar{b} \notin T$ means no element in the equivalence class of \bar{b} is in T. And therefore either all order ideals in the category satisfy a triangle or none do.

Note that whether or not a selection satisfies the condition of theorem 3.13 does not depend on the value of n

If a category has d equivalence classes in the third kind then it has $(n-1)^{d}$ order ideals.

Now if $a_{m, d}$ is the number of categories that satisfy condition of theorem 3.13 and have d equivalence classes in the third kind.

Then $P(S)=\sum_{d \geq 0} a_{m, d}(n-1)^{d}$. (Note that this is a finite sum as $d \leq m-2) \square$

We next describe a way to compute the polynomials $g_{m}(x)$
Theorem 8.45. Fix m, consider the numerical sets for which $A(T \cup S t(m, 1))=$ $S t(m, 1)$.

We create a diagram with them, place a set in the $h^{\text {th }}$ row if T has h elements $(h \geq 0)$. Now if $T_{1} \subseteq T_{2}$ and $\forall x \in T_{2} x+T_{1} \nsubseteq T_{2} \cup S t(m, 1)$ then we draw an edge from T_{1} to T_{2}. Length of the edge is size of $T_{2} \backslash T_{1}$

If there are $b_{m, d}$ edges of length d then $a_{m, d}=b_{m, d}$ and $g_{m}(x)=\sum_{d \geq 0} b_{m, d}(x-$ 1) ${ }^{d}$

Proof: Consider a category that satisfies condition of theorem 3.13. Say the equivalence classes of the first kind are $r_{1}, \ldots, r_{l}\left(1 \leq r_{i} \leq m-2\right)$. Then $T_{1}\left\{r_{1}, r_{2} \ldots r_{l}\right\}$ is a good numerical set of $\operatorname{St}(m, 1)$ as it satisfies the condition of Theorem 3.13. Next if the equivalence classes of the third kind are s_{1}, \ldots, s_{d} then $T_{2}\left\{r_{1}, \ldots, r_{l}\right\} \cup\left\{s_{1}, \ldots s_{d}\right\}$ is also a good set of $S t(m, 1)$ as it satisfies the condition of theorem 3.13

Moreover for each $x \in T_{2}$, the class of x has Pseudo-Frobenius number $P_{i}=x+m(n-1) \in T$ if it satisfies a triangle $\left(P_{i}, a, b\right)($ so $1 \leq a, b \leq m-2)$ $a \in T$ means the class of a is in the first kind. $F-b=m n-1-b \notin T$ means the class of $m-b-1$ is of the second kind. Also $F=P_{i}+a+b$ means $m n-1=(x+m n-m)+a+b$ so $x+a=m-1-b \notin T_{2} \cup S t(m, 1)$ (as $m-1-b \leq m-2)$ and hence $x+T_{1} \nsubseteq T_{2} \cup S t(m, 1)$. Next if it does not satisfy a triangle then $F-P_{i} \in T, F-P_{i}=m-1-x(1 \leq m-1-x \leq m-2)$, $F-P_{i} \in T$ means $m-1-x \in T_{1}$ and hence $x+T_{1} \nsubseteq T_{2} \cup S t(m, 1)$

And course the size of $T_{2} \backslash T_{1}$ is the number of equivalence classes in the category.

Conversely if T_{1}, T_{2} are good numerical sets of $S t(m, n)$ s.t. $T_{1} \subseteq T_{2}$ and $\forall x \in T_{2} x+T_{1} \nsubseteq T_{2} \cup S t(m, 1)$.

Construct a category by having the classes of T_{1} in the first kind, classes of $T_{2} \backslash T_{1}$ in third category and the remaining classes in the second category. We will show that an order ideal in this class satisfies the condition of theorem 3.13. Let T be an order ideal in the category. Say P is a Pseudo-Frobenius number in T, it is in the class of $x(1 \leq x \leq m-2)(P=x+m(n-1))$, the class of x is in the first or third kind so $x \in T_{2} . x+T_{1} \notin T_{2} \cup S t(m, 1)$ i.e. $\exists y \in T_{1}$ s.t. $x+y \notin T_{2} \cup S t(m, 1)$ that means $x+y \leq m-1$ and $x+y \notin T_{2}$. $y \in T_{1}$ means the class of y is in the first kind and hence $y \in T$. First consider the case if $x+y=m-1$ so $P+y=x+m n-m+y=m n-1=F$ i.e. $y=F-P \in T$. Next consider the case $x+y \neq m-1$, so $1 \leq x+y \leq m-2$, $x+y \notin T_{2}$ means the class of $x+y$ is of the second kind. $z=F-P-y=$ $(m n-1)-(x+m n-m)-y=m-1-(x+y)$ so $1 \leq z \leq m-2,(P, y, z)$ is a red triangle, $y \in T, F-z=(m n-1)-(m-1-(x+y))=m n-m+(x+y)$ which is in the class of $x+y$ which is in the second kind and hence $F-z \notin T$ and the condition of theorem 3.13 is satisfied.

Also again the number of classes in the third kind is the size of $T_{2} \backslash T_{1}$

BUS

S

Example 8.46. $P(S t(2, n))=1$
$P(S t(3, n))=2$
$P(S t(4, n))=3$
$P(S t(5, n))=6+2(n-1)=2 n+4$
$P(S t(6, n))=10+8(n-1)=8 n+2$
$P(S t(7, n))=20+26(n-1)+4(n-1)^{2}=4 n^{2}+18 n-2$
$P(S t(8, n))=37+70(n-1)+28(n-1)^{2}$
$P(S t(9, n))=74+179(n-1)+122(n-1)^{2}+10(n-1)^{3}$
$P(S t(10, n))=140+414(n-1)+403(n-1)^{2}+106(n-1)^{3}+2(n-1)^{4}$
$P(S t(11, n))=280+969(n-1)+1218(n-1)^{2}+546(n-1)^{3}+40(n-1)^{4}$
$P(S t(12, n))=542+2150(n-1)+3327(n-1)^{2}+2206(n-1)^{3}+464(n-$ $1)^{4}+12(n-1)^{5}$
$P(S t(13, n))=1084+4839(n-1)+8816(n-1)^{2}+7710(n-1)^{3}+2850(n-$ $1)^{4}+274(n-1)^{5}+6(n-1)^{6}$
$P(S t(14, n))=2118+10492(n-1)+21952(n-1)^{2}+23728(n-1)^{3}+$ $12699(n-1)^{4}+2598(n-1)^{5}+106(n-1)^{6}$
$P(S t(15, n))=4236+23060(n-1)+54306(n-1)^{2}+69446(n-1)^{3}+$ 48618($n-1)^{4}+16206(n-1)^{5}+1804(n-1)^{6}+42(n-1)^{7}$
$P(S t(16, n))=8337+49444(n-1)+129225(n-1)^{2}+190086(n-1)^{3}+$ $163972(n-1)^{4}+77174(n-1)^{5}+16016(n-1)^{6}+952(n-1)^{7}+14(n-1)^{8}$
$P(S t(17, n))=16647+107099(n-1)+307386(n-1)^{2}+509320(n-1)^{3}+$ $518866(n-1)^{4}+315277(n-1)^{5}+100766(n-1)^{6}+12956(n-1)^{7}+452(n-$ $1)^{8}+6(n-1)^{9}$
$P(S t(18, n))=32963+227682(n-1)+710703(n-1)^{2}+1305834(n-1)^{3}+$ $1526512(n-1)^{4}+1131718(n-1)^{5}+494043(n-1)^{6}+107072(n-1)^{7}+8430(n-$ $1)^{8}+116(n-1)^{9}$
$P(S t(19, n))=6592+6487946(n-1)+1646834(n-1)^{2}+3319058(n-$ $1)^{3}+4362414(n-1)^{4}+3796502(n-1)^{5}+2100180(n-1)^{6}+662816(n-1)^{7}+$ $96906(n-1)^{8}+4646(n-1)^{9}+68(n-1)^{10}$

$$
\begin{aligned}
& P(S t(20, n))=130787+1031600(n-1)+3738425(n-1)^{2}+8183350(n- \\
&1)^{3}+11902732(n-1)^{4}+11829600(n-1)^{5}+7884416(n-1)^{6}+3289314(n- \\
&1)^{7}+746888(n-1)^{8}+72022(n-1)^{9}+2022(n-1)^{10}+16(n-1)^{11} \\
& P(S t(21, n))=261574+2192679(n-1)+8497908(n-1)^{2}+20074322(n- \\
&1)^{3}+31959848(n-1)^{4}+35588411(n-1)^{5}+27632358(n-1)^{6}+14345136(n- \\
&1)^{7}+4541440(n-1)^{8}+742606(n-1)^{9}+47647(n-1)^{10}+922(n-1)^{11}+6(n-1)^{12} \\
& P(S t(22, n))=520095+4613914(n-1)+19027321(n-1)^{2}+48188560(n- \\
&1)^{3}+83180055(n-1)^{4}+102214578(n-1)^{5}+90121675(n-1)^{6}+55675764(n-1)^{7}+ \\
& 22668899(n-1)^{8}+5424436(n-1)^{9}+628142(n-1)^{10}+26024(n-1)^{11}+348(n-1)^{12}
\end{aligned}
$$

Theorem 8.47. The diagrams described in theorem 8.45 have the following property: the diagram of $\operatorname{St}(m, 1)$ is contained in $\operatorname{St}(m+1,1)$

Proof: First we prove that if $A(T \cup S t(m, 1))=S t(m, 1)$ then $A(T \cup$ $S t(m+1,1))=S t(m+1,1)$. The B-Poset of both is the chaos poset, so $A(T \cup S t(m+1,1)) \subseteq S t(m+1,1)$. Now, given $x \in T$ we know that $x \notin$ $A(T \cup S t(m, 1))$ so $\exists y \in T \cup S t(m, 1)$ s.t. $x+y \notin T \cup S t(m, 1) . y \in S t(m, 1) \Longrightarrow$ $x+y \in S t(m, 1) \cup\{x\}$ therefore $y \in T$. It follows that $x+T \nsubseteq T \cup S t(m+1,1)$ i.e. $x \notin A(T \cup S t(m+1,1))$ and hence $A(T \cup S t(m+1,1))=S t(m+1,1)$

Moreover if there was an edge from T_{1} to T_{2} in the $m^{t h}$ diagram then $T_{1} \subseteq T_{2}$ and $\forall x \in T_{2} x+T_{1} \nsubseteq T_{2} \cup S t(m, 1)$ which implies $\forall x \in T_{2} x+T_{1} \nsubseteq$ $T_{2} \cup S t(m+1,1)$ and hence there is an edge from T_{1} to T_{2} in the $m+1^{t h}$ diagram as well.

Corollary 8.47.1. degree $\left(g_{m}(x)\right) \leq \operatorname{degree}\left(g_{m+1}(x)\right)$
Corollary 8.47.2. $a_{m, d} \leq a_{m+1, d}$
Lemma 8.48. Given T_{1}, T_{2} s.t. $A\left(T_{1} \cup S t(m, 1)\right)=A\left(T_{2} \cup S t(m, 1)\right)=S t(m, 1)$ and there is an edge between T_{1} and T_{2}. If $\left|T_{1}\right|=k-1$ then $\left|T_{2}\right| \leq m-2-\left\lfloor\frac{m-2}{k}\right\rfloor$

Proof: Let $G=\mathbb{N} \backslash\left(T_{2} \cup S t(m, 1)\right),|G|=g+1$. Also say $m-1=q k+r$, $0 \leq r \leq k-1$. We know that $\forall x \in T_{2} \exists y \in T_{1}$ s.t. $x+y \in G$. Given $z \in G$ it can appear as $x+y$ for at most $k-1 x \in T_{2}$. Of course the same x could have multiple z correspond to it, so there could be some double counting. Therefore $\left|T_{2}\right| \leq(k-1)|G|$ and $\left|T_{2}\right| \leq(k-1)|G|-a$ (for some $a \geq 0$). Finally note that $\left|T_{2}\right|+|G|=m-1$ i.e. $k|G|-a=m-1$.

Now if $r=0$ then $|G| \geq \frac{m-1}{k}=1+\left\lfloor\frac{m-2}{k}\right\rfloor$, so $\left|T_{2}\right|=m-1-|G| \leq$ $m-2-\left\lfloor\frac{m-2}{k}\right\rfloor$

And if $r>0$ then $k \mid r+a$ so $a \geq k-r$ and hence $k|G|=m-1+a \geq$ $m-1+k-r=k(q+1)$ and hence $|G| \geq q+1$. Remember $m-1=k q+r$, so $r \geq 1 \Longrightarrow\left\lfloor\frac{m-2}{k}\right\rfloor=q$. Lastly $\left|T_{2}\right|=m-1-|G| \leq m-2-q=m-2-\left\lfloor\frac{m-2}{k}\right\rfloor$

Lemma 8.49. Given $2 \leq k \leq m-1$. Let $T_{1}=\{y \mid 1 \leq y \leq k-1\}$ and $T_{2}=\{x \mid 1 \leq x \leq m-2, k \nmid x\}$.

Then $A\left(T_{1} \cup S t(m, 1)\right)=A\left(T_{2} \cup S t(m, 1)\right)=S t(m, 1)$ and there is an edge from T_{1} to T_{2} of length $m-2-\left\lfloor\frac{m-2}{k}\right\rfloor$

Proof: Firstly we know that $S t(m, 1) \subseteq A\left(T_{1} \cup S t(m, 1)\right)$ and $S t(m, 1) \subseteq$ $A\left(T_{2} \cup S t(m, 1)\right)$.

Next, given $y \in T_{1}$ we see that $k-y \in T_{1}, y+(k-y)=k \notin T_{1} \cup S t(m, 1)$ therefore $y \notin A\left(T_{1} \cup S t(m, 1)\right)$ and $A\left(T_{1} \cup S t(m, 1)\right)=S t(m, 1)$

Next, given $x \in T_{2}$ Case 1: $x+k-1 \leq m-1$. Now say $x \equiv y(\bmod k)$ $(1 \leq y \leq k-1)$. We see that $k-y \in T_{2}$ and $k-y \in T_{1}(1 \leq k-y \leq k-1)$, and $x+k-y \notin T_{2} \cup S t(m, 1)$ which means $x \notin A\left(T_{2} \cup S t(m, 1)\right)$ and $x+T_{1} \nsubseteq$ $T_{2} \cup S t(m, 1)$

Case 2: $x+k-1>m-1$ i.e. $(m-1)-x<k-1$ so $(m-1)-x \in T_{1}$ and $(m-1)-x \in T_{2}$ and $x+((m-1)-x)=m-1 \notin T_{2} \cup S t(m, 1)$ which means $x \notin A\left(T_{2} \cup S t(m, 1)\right)$ and $x+T_{1} \nsubseteq T_{2} \cup S t(m, 1)$.

Combining we see that $A\left(T_{2} \cup S t(m, 1)\right)=S t(m, 1)$ and that there is an edge from T_{1} to T_{2}.

Theorem 8.50. $\operatorname{degree}\left(g_{m}(x)\right)=m-1-\lceil\sqrt{m-2}\rceil-\left\lfloor\frac{m-2}{\lceil\sqrt{m-2}\rceil}\right\rfloor$
Proof: Given an edge from T_{1} to T_{2} of length d, if $\left|T_{1}\right|=k-1$ then by lemma $8.48\left|T_{2}\right| \leq m-2-\left\lfloor\frac{m-2}{k}\right\rfloor$ so $d \leq m-1-k-\left\lfloor\frac{m-2}{k}\right\rfloor$ and by elementary calculus we see that $d \leq m-1-\lceil\sqrt{m-2}\rceil-\left\lfloor\frac{m-2}{\lceil\sqrt{m-2}\rceil}\right\rfloor$.

Finally picking $k=\lceil\sqrt{m-2}\rceil$ in lemma 8.49 we find an edge of length $m-1-\lceil\sqrt{m-2}\rceil-\left\lfloor\frac{m-2}{\lceil\sqrt{m-2}\rceil}\right\rfloor$. Therefore it is the length of the longest edge and hence the degree of $g_{m}(x)$

Remark 8.51. The sequence $\operatorname{deg}\left(g_{m}(x)\right)$ can be described combinatorially as follows: let $n=m-1$ we draw a lattice spiral of n points $(0,0),(0,1),(1,1),(1,0),(0,2),(1,2),(2,2),(2,1),(2,0)$, Let the number of lattice squares (of area 1) formed be d_{n}. Note that each point leads to a new square except for $k^{2}+1^{\text {th }}$ point $(k \geq 0)$ and $k^{2}+k+1^{\text {th }}$ point $(k \geq 1)$. Say $(a-1)^{2}<n-1 \leq a^{2} \quad($ So $a=\lceil\sqrt{n-1}\rceil)$

- If $n-1 \neq a^{2}$. Then $\#\left\{k^{2}+1 \mid 0 \leq k, k^{2}+1 \leq n\right\}=a$.

Now if $n<(a-1)^{2}+(a-1)+1$ (i.e. $n-1<(a-1) a$) then $\#\left\{k^{2}+k+1 \mid 1 \leq\right.$ $\left.k, k^{2}+k+1 \leq n\right\}=a-2=\left\lfloor\frac{n-1}{a}\right\rfloor$. (Notice that $a-2=\frac{a^{2}-2 a}{a}<\frac{a^{2}-2 a+1}{a} \leq$ $\left.\frac{n-1}{a}<a-1\right)$. Hence $d_{n}=n-a-\left\lfloor\frac{n-1}{a}\right\rfloor$
On the other hand if $n \geq(a-1)^{2}+(a-1)+1$ (i.e. $n-1 \geq(a-1) a$) then $\#\left\{k^{2}+k+1 \mid 1 \leq k, k^{2}+k+1 \leq n\right\}=a-1=\left\lfloor\frac{n-1}{a}\right\rfloor($ as $a-1 \leq$ $\left.\frac{n-1}{a}<\frac{a^{2}}{a}=a\right)$. Therefore $d_{n}=n-a-\left\lfloor\frac{n-1}{a}\right\rfloor$

- If $n-1=a^{2}$. Then $\#\left\{k^{2}+1 \mid 0 \leq k, k^{2}+1 \leq n\right\}=a+1$

Also $n>(a-1)^{2}+(a-1)+1$ (i.e. $n-1 \geq(a-1)$ a) and hence $\#\left\{k^{2}+k+1 \mid 1 \leq k, k^{2}+k+1 \leq n\right\}=a-1=\left\lfloor\frac{n-1}{a}\right\rfloor-1\left(\right.$ as $\left.\frac{n-1}{a}=a\right)$. Therefore $d_{n}=n-a-\left\lfloor\frac{n-1}{a}\right\rfloor$

8.3.2 Transposed Staircase $S t(l, m, n)$ Families

Definition 8.52. $S t(l, m, n)=\{0, l m,(l+1) m, \ldots(l+n) m \rightarrow\}$.
In general, for constant l and m, the P values these semigroups follow the same pattern as the corresponding $S t(m, n)$ staircase for n large enough.

Theorem 8.53. When $m=2, P(S)$ is constant. In particular, with l constant, as sufficiently large n grows, the size of the void and the structure of the red triangles stays the same.

Proof: Consider $S=2 l, 2 l+2, \ldots 2 m \rightarrow$, with $F=2 m-1$. Then, $B(S)=\{2,4, \ldots 2 l-2, F-2 l+2, \ldots F-2\}$. Then, $|B(S)|$ does not depend on $2 m$. Furthermore, if $(a, b, c) \in B$ is a red triangle, then $a+b+c=F$. However, the first half of B is even, and the second half is odd, so without loss of the generality, let $c=F-2 k, a, b$ even. Then for a different semigroup in the family, S^{\prime} with Frobenius number F^{\prime}, all red triangles $(a, b, F-2 k)$ of S correspond to red triangles of $S^{\prime},\left(a, b, F^{\prime}-2 k\right)$.

Let $T \subseteq B$ have $A(T \cup S)=S$. Then, for semigroup S^{\prime} with $S \subseteq S^{\prime}$, define T^{\prime} as \bar{T} except for $a>\frac{F}{2}, a^{\prime}=a+F^{\prime}-F \in T^{\prime}$. Then, $T^{\prime} \subseteq B^{\prime}$ and $A\left(T^{\prime} \cup S^{\prime}\right)=S^{\prime}$.

If $s \in T^{\prime}$, then if $s<\frac{F^{\prime}}{2}, s \in T$, so it must cancel. If $s>\frac{F^{\prime}}{2}, s+F-F^{\prime} \in T$, so either $F^{\prime}-s \in T$ or there is a triangle with two even elements (which are the same in T and T^{\prime} so it cancels.

If $s \in S \subseteq S^{\prime}, s+T T \cup S$. For $t \in T$ with $t<\frac{F}{2}, t$ is even so $s+t \in S^{\prime}$. If $t>\frac{F}{2}$, it is shifted down along with F^{\prime}, so $s+t^{\prime} \subseteq T^{\prime} \cup S^{\prime}$.

If $s \in S^{\prime} \backslash S$, let $t^{\prime} \in T^{\prime}$. If $t^{\prime}>\frac{F}{2}$, and $s^{\prime}<F^{\prime}, s^{\prime}+t^{\prime}$ is even so it is in S. If $t^{\prime}<\frac{F^{\prime}}{2}$, it is equivalent to $t \in T$. Then, if $s+t \notin T^{\prime} \cup S^{\prime}, s+t^{\prime}<F^{\prime}$, but then $s+F-F^{\prime}+t^{\prime}<F$, but $s+F-F^{\prime} \in S$, which is a contradiction.

Thus, $A\left(T^{\prime} \cup S^{\prime}\right)=S^{\prime}$.
For $m=3$, it is also constant. To map one T numerical set to another, if $a \in T$ is $0 \bmod 3$, keep it the same. If $a \equiv 1 \bmod 3$, and $F-1 \in T$, delete a if
$a>F^{\prime}$ and leave it otherwise; if $F-1 \notin T$, replace it with $a-F+F^{\prime}$. If $a \equiv 2$ $\bmod 3$, replace with $a-F+F^{\prime}$.

We can also look at the P values for transposed staircase semigroups where the conductor is not necessarily a multiple of m. For example, the $3 n$ staircase $\{0,6,9,12,15,17 \rightarrow\}$.

Example 8.54. The P values for some of these families:
$S=\{0,10,15,20,25, \ldots c \rightarrow\}: P(S)= \begin{cases}26\left\lfloor\frac{c}{5}\right\rfloor+58 & c \equiv 0,1 \bmod 5 \\ 26\left\lfloor\frac{c}{5}\right\rfloor+54 & c \equiv 3 \bmod 5 \\ 100 & c \equiv 2,4 \bmod 5\end{cases}$
$S=\{0,15,20,25,30,35 \ldots c \rightarrow\}: P(S)= \begin{cases}532\left\lfloor\frac{c}{5}\right\rfloor+1096 & c \equiv 0,1 \bmod 5 \\ 532\left\lfloor\frac{c}{5}\right\rfloor+998 & c \equiv 3 \bmod 5 \\ 2184 & c \equiv 2,4 \bmod 5\end{cases}$
$S=\{0,12,18,24,30, \ldots c \rightarrow\}: P(S)= \begin{cases}200\left\lfloor\frac{c}{6}\right\rfloor+115 & c \equiv 0,1 \bmod 6 \\ 100\left\lfloor\frac{c}{6}\right\rfloor+132 & c \equiv 2 \bmod 6 \\ 150\left\lfloor\frac{c}{6}\right\rfloor+160 & c \equiv 3 \bmod 6 \\ 100\left\lfloor\frac{c}{6}\right\rfloor+166 & c \equiv 4 \bmod 6 \\ 150\left\lfloor\frac{c}{6}\right\rfloor+326 & c \equiv 5 \bmod 6\end{cases}$
$S=\{0,14,21,28,35, \ldots c \rightarrow\}: P(S)= \begin{cases}172\left\lfloor\frac{c}{7}\right\rfloor^{2}+834\left\lfloor\frac{c}{7}\right\rfloor+716 & c \equiv 0,1 \bmod 7 \\ 86\left\lfloor\frac{c}{7}\right\rfloor^{2}+597\left\lfloor\frac{c}{7}\right\rfloor+667 & c \equiv 2 \bmod 7 \\ 86\left\lfloor\frac{c}{7}\right\rfloor^{2}+780\left\lfloor\frac{c}{7}\right\rfloor+642 & c \equiv 3 \bmod 7 \\ 86\left\lfloor\frac{c}{7}\right\rfloor^{2}+552\left\lfloor\frac{c}{7}\right\rfloor+544 & c \equiv 4 \bmod 7 \\ 86\left\lfloor\frac{c}{7}\right\rfloor^{2}+736\left\lfloor\frac{c}{7}\right\rfloor+808 & c \equiv 5 \bmod 7 \\ 86\left\lfloor\frac{c}{7}\right\rfloor^{2}+927\left\lfloor\frac{c}{7}\right\rfloor+1501 & c \equiv 6 \bmod 7\end{cases}$

9 Max Embedding Dimension

Definition 9.1. Given a Numerical Semigroup S, we define the void-height of S as following:

Say Apery set of S is $\left(0, P_{1}, P_{2}, \ldots, P_{m-1}\right)$ s.t. $P_{i} \equiv i(\bmod m)$.
Then the void-height of S is the smallest element of the set $D=\left\{\left.\frac{P_{i}+P_{j}-P_{r}}{m} \right\rvert\, i+\right.$ $j \equiv r(\bmod m) 1 \leq i, j, r \leq m-1\}$. It is denoted by $h(S)$

Lemma 9.2. S is of maximum embedding dimension iff $h(S) \geq 1$
Definition 9.3. Given a numerical semigroup S with Apery set $\left(0, P_{1}, P_{2}, \ldots, P_{m-1}\right)$ s.t. $P_{i} \equiv i(\bmod m)$. We define $E(S, n)$ to be the numerical semigroup generated by $\left\{m, P_{1}+m n, P_{2}+m n, \ldots, P_{m-1}+m n\right\}$

Remark 9.4. Note that $E\left(E\left(S, n_{1}\right), n_{2}\right)=E\left(S, n_{1}+n_{2}\right)$ and $E(S, n) \subseteq S$.
Lemma 9.5. $h(E(S, n))=h(S)+n, F(E(S, n))=F(S)+n m$
Corollary 9.5.1. If $n \geq 1$ then $E(S, n)$ has max embedding dimension.

Lemma 9.6. If $x \geq 0$ then $m n+x \in E(S, n)$ iff $x \in S$
Lemma 9.7. $x \in E(S, n)$ iff $m \mid x$ or $x-m n \in S$
In the next few lemmas we describe how to obtain the B-Poset of $E(S, n)$ given the B-Poset of S

Lemma 9.8. If the Apery Poset of S is $\left(0, P_{1}, P_{2}, \ldots, P_{m-1}\right)$ s.t. $P_{i} \equiv i(\bmod m)$ and $P_{b}=\operatorname{Max}\left\{P_{i}\right\}$ (i.e. $F(S)=P_{b}-m$) then $B(E(S, n))=B(S) \cup\left\{P_{i}+a m \mid 0 \leq\right.$ $a \leq n-1, b \neq i\}$

Proof: If $x \in B(S)$ then $x \notin S$ and hence $x \notin E(S, n)$. If $F(E(S, n))-x \in$ $E(S, n)$ then $F(S)+m n-x \in E(S, n)$ and by lemma $9.6 F(S)-x \in S$ which is a contradiction. Therefore $x \in B(E(S, x))$ and $B(S) \subseteq B(E(S, x))$.

If $x \in G a p(S) \backslash B(S)$ then $F(S)-x \in S$ and hence $F(E(S, n))-x=$ $F(S)-x+m n \in E(S, n)$ and $x \notin B(E(S, n))$

Finally if $x \in \operatorname{Gap}(E(S, n)) \cap S$ then $x=P_{i}+m l$ for some $i, 0 \leq l \leq n-1$. $F(E(S, n))-x=F(S)+m n-\left(P_{i}+m l\right)=F(S)-P_{i}+m(n-l)$

Case 1: $i=b$, then $F(E(S, n))-x=\left(P_{i}-m\right)-P_{i}+m(n-l)=m(n-1-l) \in$ $E(S, n)$ and $x \notin B(E(S, n))$

Case 2: $i \neq b$, then $m \nmid F(E(S, n))-x$ therefore by lemma 9.7 $F(E(S, n))-$ $x \in E(S, n)$ iff $F(E(S, n))-x-m n \in S$, but $F(E(S, n))-x-m n=F(S)-$ $P_{i}-m l$ and if it was in S then $F(S)=\left(F(S)-P_{i}-m l\right)+\left(P_{i}+m l\right) \in S$ which is impossible. Therefore $F(E(S, n))-x \notin E(S, n)$ and hence $x \in B(E(S, n))$ (remember $x \in \operatorname{Gap}(E(S, n))$)

Lemma 9.9. If $x \in B(E(S, n)) \backslash B(S), y \in B(E(S, n))$ then $x \preccurlyeq y \Longrightarrow m \mid y-x$ (\preccurlyeq is of $B(E(S, n))$)

Proof: By lemma $9.8 x \in B(E(S, n)) \backslash B(S)$ implies $x=P_{i}+a m$ with $i \neq b$ and $0 \leq a \leq n-1 . \quad x \preccurlyeq y$ means that $y-x \in E(S, n)$. By lemma 9.7 either $m \mid y-x$ or $y-x-m n \in S$.

If $m \nmid y-x$ then $y-x-m n \in S$. Note that $x \in S$ and hence $y-m n \in S$ and hence $y \in E(S, n)$ which is a contradiction.

Lemma 9.10. If $x \in B(S), y \in B(E(S, n))$ and $m \nmid y-x$ then
$x \preccurlyeq y$ in $B(E(S, n))$ implies $y-m n \in B(S)$
Proof: We know that $y-x \in E(S, n)$ and $m \Lambda y-x$ so by lemma 9.7 $y-x-m n \in S . B(S)+S \in S \cup B(S)$ therefore $y-m n=x+(y-x-m n) \in$ $S \cup B(S)$. Now if $y-m n \in S$ then $y \in E(S, n)$ which is a contradiction. Therefore $y-m n \in B(S)$
Lemma 9.11. If $z \in B(S)$ then $z+m n \in B(E(S, n))$
Proof: We know that $B(S)+S \subseteq S \cup B(S)$ so $z+m n \in S \cup B(S)$. $z+m n \in B(S) \Longrightarrow z+m n \in B(E(S, n))$, on the other hand if $z+m n \in S$ then $z+m n=P_{i}+a m$ for some $i, a \geq 0$. So $z=P_{i}-(n-a) m$, since $z \notin S$ we must have $n-a \geq 1$. Moreover we have $\left(P_{i}-m\right)-z=(n-a-1) m \in S$ so $P_{i}-m \neq F(S)$ i.e. $i \neq b$ and hence by lemma $9.8 z+m n \in B(E(S, n))$

Lemma 9.12. If $x \in B(S), y \in B(E(S, n))$ and $m \nmid y-x$ then $x \preccurlyeq y$ in $B(E(S, n))$ iff $x \preccurlyeq y-m n$ in $B(S)$

Proof: We know that $m \wedge y-x$ so by lemma $9.7 y-x \in E(S, n)$ iff $y-x-m n \in S$

Definition 9.13. Say the Apery Set of S is $\left(0, P_{1}, P_{2}, \ldots, P_{m-1}\right)$ we define $L(S)$ to be the Numerical Semigroup generated by $\left\{m, P_{1}-m, P_{2}-m, \ldots, P_{m-1}-m\right\}$

Lemma 9.14. $L(E(S, 1))=S$
Moreover if all $P_{i}>2 m$ and $h(S) \geq 1$ then $E(L(S), 1)=S$
Lemma 9.15. If $h(S)=h$ and $m \geq 3$ then $P_{l}>h m$ for each l
If $P_{l} \neq F+m$ then $\exists l^{\prime} \neq 0$ s.t. $P_{l+l^{\prime}(\bmod m)}=F+m$ and hence $h m \leq$ $P_{l}+P_{l^{\prime}}-(F+m)<P_{l}\left(\right.$ As $\left.P_{l^{\prime}}<F+m\right)$. Moreover if $P_{l}=F+m$ then pick an $P_{a} \neq F+m$ (such a exists as $m>2$) then $k m<P_{a}<F+m$

Corollary 9.15.1. If $h(S) \geq 2$ then $E(L(S), 1)=S$
Corollary 9.15.2. Say $h(S)=h, S_{1}=L(S), S_{2}=L\left(S_{1}\right), \ldots S_{h-1}=L\left(S_{h-2}\right)$. Then $E\left(S_{h-1}, h-1\right)=S$ and $h\left(S_{h-1}\right)=1$

Lemma 9.16. As always let the Apery set of S be $\left(0, P_{1}, P_{2}, \ldots, P_{m-1}\right)$, assume $h(S) \geq 1$, let $S^{\prime}=E(S, n)$. If $\left(P_{i}+(n-1) m, a, b\right)$ is a red triangle of $E(S, n)$ then $a, b \in B(S)$

Proof: If $a \notin B(S)$ then $a \in B(E(S, n)) \backslash\{B(S)\}$ and by lemma 9.8 $a=P_{j}+l m$ s.t. $P_{j}-m \neq F(S)$ and $0 \leq l \leq n-1$.
$F(E(S, n))=P_{i}+(n-1) m+a+b$, hence $b=F(E(S, n))-P_{i}-(n-1) m-a=$ $F(S)+m n-P_{i}-m n+m-P_{j}-l m=F(S)-P_{i}-P_{j}+m-l m$. Now $h(S) \geq 1$ means that $P_{i}+P_{j}-m \in S$ and hence $P_{i}+P_{j}-m+l m \in S$ and $b=F(S)-\left(P_{i}+P_{j}-m+l m\right) \in G a p(S) \backslash B(S)$ and by lemma 9.8 this contradicts the fact that $b \in B(E(S, n))$

Lemma 9.17. If $h(S) \geq 1,\left(0, P_{1}, P_{2}, \ldots, P_{m-1}\right)$ is the Apery Set of S as always. Then $\left(P_{i}+(n-1) m, a, b\right)$ is a red triangle of $E(S, n)$ iff $\left(P_{i}-m, a, b\right)$ is a red triangle of S

Proof: Firstly note that if $\left(P_{i}+(n-1) m, a, b\right)$ is a red triangle of $E(S, n)$ then $a, b \in B(S)$. Also of course if $\left(P_{i}-m, a, b\right)$ is a red triangle of S then $a, b \in B(S)$. Therefore in both directions we can assume $a, b \in B(S)$

Now $\left(P_{i}+(n-1) m, a, b\right)$ is a red triangle of $E(S, n)$ iff $F(E(S, n))=$ $P_{i}+n m-m+a+b$ iff $F(S)=P_{i}-m+a+b$ iff $\left(P_{i}-m, a, b\right)$ is a red triangle of S

Lemma 9.18. $F(E(S, n))-\left(P_{i}+(n-1) m\right)=F(S)-\left(P_{i}-m\right) \in B(S)$
Definition 9.19. Assume $h(S) \geq 1$ We define categories among subsets of $B(E(S, n))$. If T is an order ideal of $B(E(S, n))$ the category of T is $(T \cap$ $B(S),\{x \mid x \in B(S), F(E(S, n))-x \in T\})$

Lemma 9.20. Assume $h(S) \geq 1$. If T is an order ideal of $B(E(S, n))$ and T^{\prime} is an order ideal of $B\left(E\left(S, n^{\prime}\right)\right)$ s.t. T and T^{\prime} have the same category.

Then $A(T \cup E(S, n))=E(S, n)$ iff $A\left(T^{\prime} \cup E\left(S, n^{\prime}\right)\right)=E\left(S, n^{\prime}\right)$
Proof: Assume $A(T \cup E(S, n))=E(S, n)$. Now if $P_{i}+\left(n^{\prime}-1\right) m \in T^{\prime}$, note that $x=F\left(E\left(S, n^{\prime}\right)\right)-\left(P_{i}+\left(n^{\prime}-1\right) m\right)=F(S)-\left(P_{i}-m\right) \in B(S)$. Now T and T^{\prime} have the same category so $F(E(S, n))-x \in T$. Note that $F(E(S, n))-x=F(E(S, n))-F(S)+P_{i}-m=P_{i}+(n-1) m$

Now we know from theorem 3.13 that either $F(E(S, n))-\left(P_{i}+(n-1) m\right) \in$ T or there is a triangle $\left(P_{i}+(n-1) m, a, b\right)$ of $B(E(S, n))$ for which $a \in T$ and $F(E(S, n))-b \notin T$

Case 1: $F(E(S, n))-\left(P_{i}+(n-1) m\right) \in T$, then note that $F(E(S, n))-$ $\left(P_{i}+(n-1) m\right)=F(S)-\left(P_{i}-m\right) \in B(S)$. Now since T and T^{\prime} have the same category $F(S)-\left(P_{i}-m\right) \in T^{\prime}$. Finally note that $F(S)-\left(P_{i}-m\right)=$ $F\left(E\left(S, n^{\prime}\right)\right)-\left(P_{i}+\left(n^{\prime}-1\right) m\right)$

Case 2: $\left(P_{i}+(n-1) m, a, b\right)$ is a triangle of $B(E(S, n))$ for which $a \in T$ and $F(E(S, n))-b \notin T$. Lemma 9.17 tells us that $\left(P_{i}-m, a, b\right)$ is a red triangle of $S, a, b \in B(S)$. A further application of lemma 9.17 tells us that $\left(P_{i}+\left(n^{\prime}-1\right) m, a, b\right)$ is a red triangle of $E\left(S, n^{\prime}\right)$. Moreover $a, b \in B(S), a \in T$, $F(E(S, n))-b \notin T$ so T and T^{\prime} having the same category implies that $a \in T^{\prime}$ and $F\left(E\left(S, n^{\prime}\right)\right)-b \notin T^{\prime}$

With theorem 3.13 we conclude that $A\left(T^{\prime} \cup E\left(S, n^{\prime}\right)\right)=E\left(S, n^{\prime}\right)$
Lemma 9.21. If T is an order ideal of $B(E(S, n))$ and $T^{\prime} \subseteq B\left(E\left(S, n^{\prime}\right)\right)$ and T, T^{\prime} have the same category and $x, y \in B\left(E\left(S, n^{\prime}\right)\right), m \mid y-x, x \in T^{\prime}$ implies $y \in T^{\prime}$
then T^{\prime} is an order ideal of $B\left(E\left(S, n^{\prime}\right)\right)$
Proof: Let $x \in T^{\prime}, x \preccurlyeq y$ in B-Poset of $E\left(S, n^{\prime}\right)$. Now if $m \mid y-x$ then $y \in T^{\prime}$. So now assume $m \bigwedge y-x$, lemma 9.9 says $x \in B(S)$. Next lemma 9.10 says $y-m n^{\prime} \in B(S)$ and lemma 9.12 says $x \preccurlyeq y-m n^{\prime}$ in B-Poset of S. A further application of lemma 9.12 says $x \preccurlyeq y-m n^{\prime}+m n$ in the B-Poset of $E(S, n)$.
$x \in B(S), T$ and T^{\prime} have the same categories, hence $x \in T$ which implies $y-m n^{\prime}+m n \in T$.
$F(E(S, n))-\left(y-m n^{\prime}+m n\right)=F(S)+m n-y+m n^{\prime}-m n=F(S)-\left(y-m n^{\prime}\right)$. We know that $y-m n^{\prime} \in B(S)$ which means $F(S)-\left(y-m n^{\prime}\right), T$ and T^{\prime} have the same categories, therefore $F\left(E\left(S, n^{\prime}\right)\right)-\left(F(E(S, n))-\left(y-m n^{\prime}+m n\right)\right) \in T^{\prime}$. But $F\left(E\left(S, n^{\prime}\right)\right)-\left(F(E(S, n))-\left(y-m n^{\prime}+m n\right)\right)=F\left(E\left(S, n^{\prime}\right)\right)-\left(F(S)-\left(y-m n^{\prime}\right)\right)=$ $F(S)+m n^{\prime}-F(S)+y-m n^{\prime}=y$. Thus $y \in T^{\prime}$ and T^{\prime} is an order ideal.

Lemma 9.22. The number of good numerical sets of $E(S, n)$ within a fixed category is eventually a polynomial of n.

Moreover its degree is then number of P_{i} s.t. $\forall y \in B(S) y \equiv(F(S)-$ $\left.\left(P_{i}-m\right)\right)(\bmod m)$ implies y is in the second component of the category and $\forall x \in B(S) x \preccurlyeq P_{i}-m$ implies x is not in the first component of the category

Remark 9.23. In most examples it seems that $P(E(S, n))$ is not just eventually a polynomial, but a polynomial from the start $(h(S) \geq 1)$.

However I am not entirely sure if this is true, $S=<14,34,43,54,63,72,74,83,92,94,101,103,121,123>$ might be a counter e.g.
$P(E(S, 0))=1214, P(E(S, 1))=22180, P(E(S, 2))=136690, P(E(S, 3))=$ 517844, $P(E(S, 4))=1488694, P(E(S, 5))=3580084, P(E(S, 6))=7595690$

Remark 9.24. Remember these definitions for the next theorem:
given an order ideal T of $B(S)$, $\operatorname{Tri}(T)=\{(a, b) \mid a, b \in B(S), \exists P \in T \cap$ $P F(S), P+a+b=F(S), a \in T, F(S)-b \notin T\}, X_{1}(T)=\{a \mid \exists b,(a, b) \in \operatorname{Tr} i(T)\}$ and $X_{2}(T)=\{y \mid \exists a,(a, F(S)-y) \in \operatorname{Tri}(T)\}$

Remark 9.25. We will show that $P(E(S, 1)) \geq P(S)$ if $h(S) \geq 1$. In order to do this we define an injective map from good numerical sets of S to good numerical sets of $E(S, 1)$. Given T s.t. $A(T \cup S)=S$ define $f_{1}(T)=\{x+m \mid x \in$ $T\} \cup\left\{x \mid x \in T, \forall z \in X_{2}(T), x \not \equiv z(\bmod m)\right\}$

Lemma 9.26. If $h(S) \geq 1$ and T is an order ideal of $B(S)$ then $f_{1}(T)$ is an order ideal of $E(S, 1)$

Proof: if $x \in f_{1}(T)$ and $x \preccurlyeq y$ in $B(E(S, 1))$

- if $x-m \in T$ and $x \equiv y(\bmod m)$ then $x-m, y-m \in B(S), x-m \leq y-m$ so $x-m \preccurlyeq y-m$ in $B(S)$ which implies $y-m \in T$ which implies $y \in f_{1}(T)$
- if $x \in T, \forall z \in X_{2}(T), x \not \equiv z(\bmod m)$ and $x \equiv y(\bmod m)$; then $y \in T$ $(x \leq y)$. And $\forall z \in X_{2}(T), y \not \equiv z(\bmod m)$. Therefore $y \in f_{1}(T)$
- if $x \not \equiv y(\bmod m)$ then $y-x \in E(S, 1) \Longrightarrow(y-m)-x \in S$. Now if $x \in B(S)$ then $x \in T$ and hence $y-m \in T$ and $y \in f_{1}(T)$. On the other hand if $x \notin B(S)$ then $x-m \in P F(S)$ which implies $x \in P F(E(S, 1))$ which implies $y=x$

It follows that $f_{1}(T)$ is an order ideal of $B(E(S, 1))$
Theorem 9.27. If $h(S) \geq 1$ and $A(T \cup S)=S$ then $A\left(f_{1}(T) \cup E(S, 1)\right)=$ $E(S, 1)$

Proof: If $P \in f_{1}(T) \cap P F(E(S, 1))$ then $P-m \in T$ which means $P-m \in$ $T \cap P F(S)$. Now theorem 3.13 implies that either $F(S)-(P-m) \in T$ or $\exists(a, b) \in \operatorname{Tr} i(T)$ s.t. $P-m+a+b=F(S)$

- if $F(S)-(P-m) \in T$; If $\exists z \in X_{2}(T)$ s.t. $z \equiv F(S)-(P-m)(\bmod m)$ then $F(S)-(P-m) \preccurlyeq z$ which implies $z \in T$ and we have a contradiction. Therefore $\forall z \in X_{2}(T) z \not \equiv F(S)-(P-m)(\bmod m)$ and hence $F(S)-$ $(P-m) \in f_{1}(T)$ Finally note that $F(S)-(P-m)=F(E(S, 1))-P$
- Next if $\exists(a, b) \in \operatorname{Tr} i(T)$ s.t. $P-m+a+b=F(S)$. By corollary 3.19.1 $\forall z \in X_{2}(T) z \not \equiv a(\bmod m)$ and hence $a \in f_{1}(T)$. And $F(E(S, 1))-b-m=$ $F(S)-b \notin T, F(E(S, 1))-b-m \in X_{2}(T)$, hence $F(E(S, 1))-b \notin f_{1}(T)$

It follows from theorem 3.13 that $A\left(f_{1}(T) \cup E(S, 1)\right)=E(S, 1)$
Corollary 9.27.1. $f_{1}(T) \cap \operatorname{PF}(E(S, 1))=((T \cap P F(S))+m), \quad M i(T)=$ $M i\left(f_{1}(T)\right)$ and $\operatorname{Tri}(T) \subseteq \operatorname{Tri}\left(f_{1}(T)\right)$

Theorem 9.28. If $h(S) \geq 1$ then $P(E(S, 1)) \geq P(S)$
Proof: We just need to show that the map is injective. Let T_{1}, T_{2} be good numerical sets of S s.t. $f_{1}\left(T_{1}\right)=f_{1}\left(T_{2}\right)$. Then T_{1} and T_{2} have the same Pseudo-Frobenius numbers and the conjugates of the same Pseudo-Frobenius numbers.

If $x \in T_{1}$ and $x-m \in T_{1}$ then $x \in\left(f_{1}\left(T_{1}\right) \cap B(S)\right)=\left(f_{1}\left(T_{2}\right) \cap B(S)\right)$ and hence $x \in T_{2}$

If $x \in T_{1}$ and $\forall z \in X_{2}\left(T_{1}\right) z \not \equiv x(\bmod m)$ then $x \in\left(f_{1}\left(T_{1}\right) \cap B(S)\right)=$ $\left(f_{1}\left(T_{2}\right) \cap B(S)\right)$ and hence $x \in T_{2}$

If $(a, b) \in \operatorname{Tri}\left(T_{1}\right)$, say $a+b+P=F(S)$ for $P \in T_{1} \cap P F(S)$. Then $a \in f_{1}\left(T_{1}\right)$ as seen above and hence $a \in T_{2}$. Next $F(S)-b+m \notin f_{1}\left(T_{1}\right)$ because $F(S)-b \notin T_{1}$ and $F(S)-b+m \equiv F(S)-b(\bmod m)$ Now if $F(S)-b \in T_{2}$ then $F(S)-b+m \in f_{1}\left(T_{2}\right)=f_{1}\left(T_{1}\right)$ which is a contradiction. Therefore $\operatorname{Tri}\left(T_{1}\right)=\operatorname{Tri}\left(T_{2}\right)$

Finally if $x \in T_{1}, x-m \notin T_{1}$ and $\exists z \in X_{2}\left(T_{1}\right) z \equiv x(\bmod m)$. Then $x+m \in f_{1}\left(T_{1}\right)=f_{1}\left(T_{2}\right)$. Now $z \in X_{2}\left(T_{2}\right)$ as $\operatorname{Tri}\left(T_{1}\right)=\operatorname{Tri}\left(T_{2}\right)$ therefore $x \in T_{2}$

We conclude that $T_{1}=T_{2}$ and the map is injective.
Definition 9.29. We define a new map $f_{2}(T)=\{x+m \mid x \in T\} \cup\{x \mid x \in T, \exists a \in$ $\left.X_{1}(T), x \equiv a(\bmod m)\right\} \cup M i(T)$

Lemma 9.30. If $h(S) \geq 1$ and T is an order ideal of $B(S)$ then $f_{2}(T)$ is an order ideal of $B(E(S, 1))$

Proof: if $x \in f_{2}(T)$ and $x \preccurlyeq y$ in $B(E(S, 1))$

- if $x-m \in T$ and $x \equiv y(\bmod m)$ then $x-m, y-m \in B(S), x-m \leq y-m$ so $x-m \preccurlyeq y-m$ in $B(S)$ which implies $y-m \in T$ which implies $y \in f_{2}(T)$
- if $x \in T, \exists a \in X_{1}(T), x \equiv a(\bmod m)$ and $x \equiv y(\bmod m)$; then $y \in T$ $(x \leq y)$. And $y \equiv a(\bmod m)$. Therefore $y \in f_{2}(T)$
- if $x \in M i(T)$ and $x \equiv y(\bmod m)$; then either $x=y$ in which case we are done or $x \preccurlyeq y-m$ in $B(S)$ which implies $y-m \in T$ which implies $y \in f_{2}(T)$
- if $x \not \equiv y(\bmod m)$ then $y-x \in E(S, 1) \Longrightarrow(y-m)-x \in S$. Now if $x \in B(S)$ then $x \in T$ and hence $y-m \in T$ and $y \in f_{2}(T)$. On the other hand if $x \notin B(S)$ then $x-m \in P F(S)$ which implies $x \in P F(E(S, 1))$ which implies $y=x$

It follows that $f_{2}(T)$ is an order ideal of $B(E(S, 1)) \square$

Theorem 9.31. If $h(S) \geq 1$ and $A(T \cup S)=S$, then $A\left(f_{2}(T) \cup E(S, 1)\right)=$ $E(S, 1)$

Proof: If $P \in f_{2}(T) \cap P F(E(S, 1))$ then $P-m \in T$ which means $P-m \in$ $T \cap P F(S)$. Now theorem 3.13 implies that either $F(S)-(P-m) \in T$ or $\exists(a, b) \in \operatorname{Tr} i(T)$ s.t. $P-m+a+b=F(S)$

- if $F(S)-(P-m) \in T$; then $F(S)-(P-m) \in M i(T) \subseteq f_{2}(T)$ Finally note that $F(S)-(P-m)=F(E(S, 1))-P$
- Next if $\exists(a, b) \in \operatorname{Tr} i(T)$ s.t. $P-m+a+b=F(S)$. Then $a \in X_{1}(T)$ and hence $a \in f_{2}(T)$. $F(S)-b \notin T ; F(E(S, 1))-b-m \in B(S) \Longrightarrow$ $F(E(S, 1))-b \notin M i(T)$. Also $F(E(S, 1))-b-m=F(S)-b \notin T$, by corollary 3.19.1 $\exists \exists a^{\prime} \in X_{1}(T) a^{\prime} \equiv F(S)-b(\bmod m)$ and hence $F(E(S, 1))-b \notin f_{2}(T)$.

It follows from theorem 3.13 that $A\left(f_{2}(T) \cup E(S, 1)\right)=E(S, 1)$
Corollary 9.31.1. $f_{2}(T) \cap \operatorname{PF}(E(S, 1))=((T \cap P F(S))+m), M i(T)=$ $M i\left(f_{2}(T)\right), \operatorname{Tr} i(T) \subseteq \operatorname{Tr} i\left(f_{2}(T)\right)$

Lemma 9.32. If $h(S) \geq 1$, then f_{2} is an injective map.
Proof: If $f_{2}\left(T_{1}\right)=f_{2}\left(T_{2}\right)$, then T_{1} and T_{2} have the same Pseudo-Frobenius numbers and $M i\left(T_{1}\right)=M i\left(T_{2}\right)$.

If $x \in T_{1}$ and $x-m \in T_{1}$, then $x \in\left(f_{2}\left(T_{1}\right) \cap B(S)\right)=\left(f_{2}\left(T_{2}\right) \cap B(S)\right)$ and hence $x \in T_{2}$.

If $x \in T_{1}$ and $\exists a \in X_{1}\left(T_{1}\right)$ with $a \equiv x(\bmod m)$, then $x \in\left(f_{2}\left(T_{1}\right) \cap B(S)\right)=$ $\left(f_{2}\left(T_{2}\right) \cap B(S)\right)$, and hence $x \in T_{2}$.

If $x \in T_{1}$ and $x \in M i\left(T_{1}\right)$ then $x \in T_{2}$.
If $(a, b) \in \operatorname{Tri}\left(T_{1}\right)$, say $a+b+P=F(S)$ for $P \in T_{1} \cap P F(S)$. Then $a \in f_{2}\left(T_{1}\right)$ and hence $a \in T_{2}$. Next $F(S)-b+m \notin f_{2}\left(T_{1}\right)$ because $F(S)-b \notin T_{1}$, $F(S)-b+m \notin M i(T)$ and $\forall a^{\prime} \in X_{1}\left(T_{1}\right): F(S)-b \not \equiv a^{\prime}(\bmod m)$. Now if $F(S)-b \in T_{2}$ then $F(S)-b+m \in f_{2}\left(T_{2}\right)=f_{2}\left(T_{1}\right)$ which is a contradiction. Therefore $\operatorname{Tri}\left(T_{1}\right)=\operatorname{Tri}\left(T_{2}\right)$.

Finally if $x \in T_{1}, x-m \notin T_{1}, x \notin M i\left(T_{1}\right)$ and $\forall a^{\prime} \in X_{1}\left(T_{1}\right) x \not \equiv$ $a^{\prime}(\bmod m)$. Then $x+m \in f_{2}\left(T_{1}\right)=f_{2}\left(T_{2}\right)$. Now $x+m \notin M i\left(T_{2}\right), \forall a^{\prime} \in X_{1}\left(T_{2}\right)$ $x+m \not \equiv a^{\prime}(\bmod m)$ as $\operatorname{Tri}\left(T_{1}\right)=\operatorname{Tri}\left(T_{2}\right)$ therefore the fact that $x+m \in f_{2}\left(T_{2}\right)$ implies $x \in T_{2}$.

We conclude that $T_{1}=T_{2}$ and the map is injective.
Lemma 9.33. $h(S) \geq 1, T$ is an order ideal of $B(S)$ then $f_{2}(T) \subseteq f_{1}(T)$
Theorem 9.34. If $h(S) \geq 1$, If $\exists T$ s.t. $A(T \cup S)=S$ and $f_{1}(T) \neq f_{2}(T)$ then $P(E(S, 1))>P(S)$

Proof: If possible assume that $P(E(S, 1))=P(S)$. Then the maps f_{1} and f_{2} are both surjective. Now consider the set $Z=\left\{T^{\prime} \mid f_{1}\left(T_{1}\right)=T^{\prime}=f_{2}\left(T_{2}\right), T_{1} \neq\right.$ $\left.T_{2}\right\}$. The assumption implies that f_{1} and f_{2} are not identical functions and hence
Z is non empty. Now consider a maximal element of Z (under containment), say it is $T^{\prime}=f_{1}\left(T_{1}\right)=f_{2}\left(T_{2}\right)$ with $T_{1} \neq T_{2}$. Now $f_{1}\left(T_{1}\right)=f_{2}\left(T_{2}\right) \subseteq f_{1}\left(T_{2}\right)$ by lemma 9.33. Moreover the fact that $T_{1} \neq T_{2}$ and f_{1} being injective imply that $f_{1}\left(T_{2}\right)$ is strictly bigger than T^{\prime} (under containment). But the maximality of T^{\prime} implies that $f_{1}\left(T_{2}\right)=f_{2}\left(T_{2}\right)$ which is a contradiction.

Remark 9.35. The previous theorem tell us that if $h(S) \geq 1$ and $P(E(S, 1))=$ $P(S)$ then for every good numerical set of $S f_{1}(T)=f_{2}(T)$ which means that $\{x(\bmod m) \mid x \in T\} \backslash\left\{y(\bmod m) \mid y \in X_{2}(T)\right\}=\left\{a(\bmod m) \mid a \in X_{1}(T)\right\} \cup$ $\{z(\bmod m) \mid z \in M i(T)\}$

Definition 9.36. If $h(S) \geq 1$ and T^{\prime} is a good numerical set of of $E(S, 1)$. Then define $g_{1}\left(T^{\prime}\right)=\left(T^{\prime} \cap B(S)\right) \cup\left\{x-m \mid x \in T^{\prime}, \exists z \in X_{2}\left(T^{\prime}\right) x \equiv z(\bmod m)\right\}$ (note that $g_{1}\left(T^{\prime}\right)$ is not always an order ideal of $B(S)$, but it is always a subset)

Lemma 9.37. If $h(S) \geq 1$ and T is an order ideal of of $B(E(S, 1))$. Then $g_{1}(N u(T))$ is an order ideal of $B(S)$

Proof: Say $x \in g_{1}(N u(T))$ and $x \preccurlyeq y$ in $B(S)$. (Also assume $x \neq y$ as otherwise we have nothing to prove)

- If $x \in N u(T) ; y-x \in S$ and hence $y-x+m \in E(S, 1)$ which implies $y+m \in$ $N u(T)$. If possible assume $y \notin N u(T)$ then either $\exists P \in P F(E(S, 1)) \backslash T$ s.t. $y \preccurlyeq P$ in $B(E(S, 1))$ or $\exists z \in X_{2}(T)$ s.t. $y \preccurlyeq z$.

Note that we also have $x \not \equiv y(\bmod m)$ (because $x \equiv y(\bmod m)$ and $x<y$ imply $y \in N u(T))$. Now $y+m-x \in E(S, 1), y-x \notin E(S, 1)$ imply $y+m-x \in A p(E(S, 1))$

- If $\exists P \in P F(E(S, 1)) \backslash T$ s.t. $y \preccurlyeq P$ in $B(E(S, 1))$; then $y+m \nprec P$ in $B(E(S, 1))$. Therefore $y \not \equiv P(\bmod m), P-y \in E(S, 1)$ and $P-y-m \notin E(S, 1)$ i.e. $P-y \in A p(E(S, 1))$
Finally $h(E(S, 1)) \geq 2$, so $P-y, y+m-x \in A p(E(S, 1))$ imply $(P-y)+(y+m-x)-2 m \in E(S, 1) .(P-y)+(y+m-x)-2 m=$ $P-x$ meaning $x \preccurlyeq P$ in $B(E(S, 1))$ and hence $P \in T$ which is a contradiction
$-\exists z \in X_{2}(T)$ s.t. $y \preccurlyeq z$; Replace P with z in the previous argument and it will work here.

So $y \in N u(T) \cap B(S)$ and hence $y \in g_{1}(N u(T))$

- If $x \notin N u(T) ;$ then $x \in g_{1}(T)$ implies $\exists z \in X_{2}(T) x \equiv z(\bmod m)$ and $x+m \in N u(T)$.
Now $x+m \in N u(T)$ implies $z \leq x$
If $z<x$ then by corollary $3.14 .2 x \in N u(T)$ which is a contradiction. And hence $z=x$
Note that we also have $x \not \equiv y(\bmod m)$ (because $x \equiv y(\bmod m)$ and $x<y$ imply $y \in N u(T))$.

By corollary 3.14.2 $z=x \prec y+m$ (in $B(E(S, 1))$) implies $y+m \in T \subseteq$ $N u(T)$
If possible assume $y \notin g_{1}(N u(T))$ then $y \notin N u(T)$ and $\exists z^{\prime} \in X_{2}(T)$ $y+m \equiv z^{\prime}(\bmod m)$
Now $y \notin N u(T)$ so either $\exists P \in P F(E(S, 1)) \backslash T$ s.t. $y \preccurlyeq P$ in $B(E(S, 1))$ or $\exists z_{1} \in X_{2}(T)$ s.t. $y \preccurlyeq z_{1}$
We combine the two cases, denote either P or z_{1} by α, note that $\alpha \notin$ $N u(T)$
$\alpha-y \in E(S, 1)$ and $\alpha-(y+m) \notin E(S, 1)$, so $\alpha-y \in A p(E(S, 1))$
$y+m-x \in E(S, 1)$, so $y+m-x=\beta+l m$ for some $\beta \in A p(E(S, 1))$ and $l \geq 0$.
Now $h(E(S, 1)) \geq 2$ so $(\alpha-y)+\beta-2 m \in E(S, 1)$ which implies $(\alpha-y)+$ $(\beta+l m)-2 m \in E(S, 1) .(\alpha-y)+(\beta+l m)-2 m=(\alpha-y)+(y+m-x)-2 m=$ $\alpha-x-m$ i.e. $x+m \preccurlyeq \alpha$ in $B(E(S, 1))$ which contradicts $\alpha \notin N u(T)$

Lemma 9.38. If $h(S) \geq 1$ and T is an order ideal of of $B(E(S, 1))$. $\left(g_{1}(N u(T)) \cap\right.$ $P F(S))+m=N u(T) \cap P F(E(S, 1))=T \cap P F(E(S, 1))$

Proof: Firstly it is clear that $\left(\left(g_{1}(N u(T)) \cap P F(S)\right)+m\right) \subseteq N u(T) \cap$ $\operatorname{PF}(E(S, 1))$

Next if $P \in N u(T) \cap P F(E(S, 1))$ and $P-m \notin g_{1}(N u(T))$ then $P-m \notin$ $N u(T)$ and $\nexists z \in X_{2}(T)$ s.t. $z \equiv P(\bmod m)$.
$P-m \notin N u(T)$ implies either $\exists Q \in P F(E(S, 1)) \backslash T$ s.t. $P-m \preccurlyeq Q$ in $B(E(S, 1))$ or $\exists z \in X_{2}(T)$ s.t. $P-m \preccurlyeq z$

Obviously $P-m \neq Q ; z=P-m$ would imply $x \equiv z(\bmod ; m)$ which is not the case.

Now we combine the two cases by denoting by α either Q or z. We have $P-m \prec \alpha$ in $B(E(S, 1))$ (they are not equal). $\alpha \notin N u(T) \Longrightarrow \alpha \neq P$ and hence $P-m \not \equiv \alpha(\bmod m)$. It follows that $P-m \prec \alpha-m$ in $B(S)$ which is impossible as $P-m \in P F(S)$.

Theorem 9.39. If $h(S) \geq 1$ and $A(T \cup E(S, 1))=E(S, 1)$. Then $A\left(g_{1}(N u(T)) \cup\right.$ $S)=S$

Proof: Firstly we have shown that $g_{1}(N u(T))$ is an order ideal of $B(S)$
Given $P \in g_{1}(N u(T)) \cap P F(S)$ we know that $P+m \in T \cap P F(S)$. And by theorem 3.13 either $F(E(S, 1))-(P+m) \in T$ or there is a red triangle $(P+m, a, b)$ s.t. $a \in T$ and $F(E(S, 1))-b \notin T$.

- If $F(E(S, 1))-(P+m) \in T ; F(E(S, 1))-(P+m)=F(S)-P \in$ $N u(T) \cap B(S)$ which implies $F(S)-P \in g_{1}(N u(T))$
- If there is a red triangle $(P+m, a, b)$ s.t. $a \in T$ and $F(E(S, 1))-b \notin T$; $a \in T \Longrightarrow a \in N U(T) \cap B(S) \Longrightarrow a \in g_{1}(N u(T))$.
Also $F(E(S, 1))-b=F(S)-b+m \notin N U(T)$ implies $F(S)-b \notin g_{1}(N u(T))$

Corollary 9.39.1. If $h(S) \geq 1$ and $A(T \cup E(S, 1))=E(S, 1)$. Then $\operatorname{Mi}(N u(T))=$ $M i\left(g_{1}(N u(T))\right)$ and $\operatorname{Tr} i(N u(T))=\operatorname{Tri}\left(g_{1}(N u(T))\right)$

Proof: It is clear that $\operatorname{Mi}(N u(T))=\operatorname{Mi}\left(g_{1}(N u(T))\right)$ and $\operatorname{Tri}(N u(T)) \subseteq$ $\operatorname{Tr} i\left(g_{1}(N u(T))\right)$. If $(a, b) \in \operatorname{Tri}\left(g_{1}(N u(T))\right) \backslash \operatorname{Tr} i(N u(T))$ then either $a \notin$ $N u(T)$ or $F(E(S, 1))-b \in N u(T)$

- If $a \notin N u(T)$ then $a+m \in N u(T)$ and $\exists z \in X_{2}(N u(T))$ s.t. $z \equiv$ $a(\bmod m)$.
$a+m \in N u(T) \Longrightarrow z \leq a$
If $z<a$ then by corollary $3.14 .2 a \in N u(T)$ which is not the case. Therefore $z=a$
But $z-m \in X_{2}\left(g_{1}(N u(T))\right)$ and $a \in X_{1}\left(g_{1}(N u(T))\right)$ and we get a contradiction to corollary 3.19.1
- If $a \in N u(T)$ then $F(E(S, 1))-b \in N u(T)$ and $F(S)-b \notin g_{1}(N u(T))$ which implies that $F(S)-b \notin N u(T)$ and $\exists z \in X_{2}(N u(T))$ s.t. $z \equiv$ $a(\bmod m)$
$F(S)-b \notin N u(T)$ implies either $\exists P \in P F(E(S, 1)) \backslash T$ s.t. $F(S)-b \preccurlyeq P$ or $\exists z \in X_{2}(N u(T))$ s.t. $F(S)-b \preccurlyeq z$
In the second case $z \neq F(S)-b$; In the first case $P \neq F(S)-b$ as $F(S)-b+m \in B(E(S, 1))$
We combine the two cases by denoting either P or z by α, so $F(S)-b \prec \alpha$ in $B(E(S, 1))$ and $\alpha \notin N u(T)$
$\alpha-F(S)+b \in E(S, 1), \alpha-F(S)+b-m \notin E(S, 1)$ i.e. $\alpha-F(S)+b \in$ $\operatorname{Ap}(E(S, 1))$
Say Q was the Pseudo-Frobenius number of S for which $Q+a+b=F(S)$ so $F(S)-b=Q+a$. Thus $\alpha-F(S)+b=\alpha-Q-a=\alpha-a+m-(Q+m)$ i.e. $\alpha-a+m=(Q+m)+(\alpha-F(S)+b)$ i.e. $\alpha-a+2 m=(Q+2 m)+$ $(\alpha-F(S)+b)$. And $h(E(S, 1)) \geq 2$ implies $\alpha-a+2 m-2 m \in E(S, 1)$ which implies $\alpha \in N u(T)$ which is a contradiction.

Corollary 9.39.2. If $h(S) \geq 1$ and $A(T \cup E(S, 1))=E(S, 1)$. Then $f_{1}\left(g_{1}(N u(T))\right) \subseteq$ $N u(T)$

Proof: It follows from the previous corollary and the definitions of g_{1} and f_{1}

Definition 9.40. If $h(S) \geq 1$ and T^{\prime} is a good numerical set of of $E(S, 1)$. Then define $g_{2}\left(T^{\prime}\right)=\left(T^{\prime} \cap B(S)\right) \cup\left\{x-m \mid x \in T^{\prime} \backslash X_{1}(T), F(S)-x \notin P F(S)\right\}$ (note that $g_{2}\left(T^{\prime}\right)$ is not always an order ideal of $B(S)$)
Lemma 9.41. If $h(S) \geq 1$ and T is an order ideal of of $B(E(S, 1))$. Then $g_{2}(N l(T))$ is an order ideal of $B(S)$

Proof: Say $x \in g_{2}(N l(T))$ and $x \preccurlyeq y$ in $B(S)$. (Also assume $x \neq y$ as otherwise we have nothing to prove)

- If $x \in N l(T) ; y-x \in S$ and hence $y-x+m \in E(S, 1)$ which implies $y+m \in \operatorname{Nl}(T)$. Now $y \in B(S) \Longrightarrow F(S)-(y+m) \notin P F(S)$. By lemma 3.14 (and the fact that $x \prec y+m$ in $B(E(S, 1))$ we know that $y+m \notin X_{1}(N l(T))$ and hence $y \in g_{2}(N l(T))$.
- If $y \equiv x(\bmod m)$ then $y \in g_{2}(N l(T))$
- If $y-x \in E(S, 1)$ then $x+m \prec y+m$ in $B(E(S, 1))$ so $y+m \in N l(T)$ and by lemma $3.14 y+m \notin X_{1}(N l(T))$. Also $y \in B(S) \Longrightarrow F(S)-(y+m) \notin$ $P F(S)$ and hence $y \in g_{2}(N l(T))$
- If $x \notin N l(T)$ then $x+m \in N l(T) \backslash X_{1}(N l(T))$. Now $x+m \notin X_{1}(N l(T)) \Longrightarrow$ $x+m \notin X_{1}(T)$ and $x \in B(S) \Longrightarrow x+m \notin M i(T)$, moreover $x \prec y$ in $B(S)$ implies $x \notin P F(S) \Longrightarrow x+m \notin P F(E(S, 1))$. It follows that $\exists \alpha \in X_{1}(T) \cup M i(T)$ s.t. $\alpha \prec x+m$ in $B(E(S, 1))$. Now $\alpha \not \equiv x(\bmod ; m)$ (otherwise $x \in N l(T)$). Observe that $x+m-\alpha \in E(S, 1), x-\alpha \notin E(S, 1)$ i.e. $x+m-\alpha \in \operatorname{Ap}(E(S, 1))$.

We can assume $y \not \equiv x(\bmod m)$ and $y-x \notin E(S, 1)$ (otherwise we are back to a previous case). Also $y-x \in S \Longrightarrow y-x+m \in E(S, 1)$ and hence $y+m-x \in \operatorname{Ap}(E(S, 1))$ (we have already done the case when $y-x \in E(S, 1))$
Next $h(E(S, 1)) \geq 2$ so $(y+m-x)+(x+m-\alpha)-2 m \in E(S, 1)$ i.e. $y-\alpha \in E(S, 1) . \alpha \in X_{1}(T) \cup M i(T) \Longrightarrow \alpha \in N l(T) \Longrightarrow y \in$ $N l(T) \Longrightarrow y \in g_{2}(N l(T))$

Lemma 9.42. $h(S) \geq 1$. If T is an order ideal of $B(E(S, 1))$ then $T \cap$ $P F(E(S, 1))=\left(g_{2}(T) \cap P F(S)\right)+m$

Lemma 9.43. If $h(S) \geq 1$ and T is a good numerical set of $E(S, 1)$. Then $A\left(g_{2}(N l(T)) \cup S\right)=S$

Proof: Firstly we have shown that $g_{2}(N l(T))$ is an order ideal of $B(S)$
Say $P \in g_{2}(N l(T)) \cap P F(S)$ then $P+m \in N l(T) \cap P F(S) \Longrightarrow P+m \in$ $T \cap P F(S)$. So either $F(E(S, 1))-(P+m) \in T$ or there is a a red triangle $(P+m, a, b)$ s.t. $a \in T$ or $F(E(S, 1))-b \notin T$

- If $F(E(S, 1))-(P+m) \in T$; Note $F(E(S, 1))-(P+m)=F(S)-P \in$ $N l(T) \cap B(S) \Longrightarrow F(S)-P \in g_{2}(N l(S))$
- If there is a a red triangle $(P+m, a, b)$ s.t. $a \in T$ or $F(E(S, 1))-b \notin T$.

So $P+a+b=F(S), a \in N l(T) \cap B(S)$ and hence $a \in g_{2}(N l(T))$.

$$
F(S)-b+m=F(E(S, 1))-b \notin N l(T) \Longrightarrow F(S)-b \notin g_{2}(N l(T))
$$

So by theorem 3.13 $A\left(g_{2}(N l(T)) \cup S\right)=S$
Corollary 9.43.1. If $h(S) \geq 1$ and $A(T \cup E(S, 1))=E(S, 1)$. Then $M i(N l(T))=$ $M i\left(g_{2}(N l(T))\right)$ and $\operatorname{Tri}(N l(T))=\operatorname{Tri}\left(g_{2}(N l(T))\right)$

Proof: Firstly we know $\left(g_{2}(N l(T)) \cap P F(S)\right)+m=N l(T) \cap P F(E(S, 1))=$ $T \cap P F(E(S, 1))$. And $M i(N l(T)) \subseteq M i\left(g_{2}(N l(T))\right), \operatorname{Tri}(N l(T)) \subseteq \operatorname{Tri}\left(g_{2}(N l(T))\right)$.

First we show that $M i\left(g_{2}(N l(T))\right)=M i(N l(T))$. If $P \in\left(g_{2}(N l(T)) \cap\right.$ $P F(S))$ s.t. $F(S)-P \in g_{2}(N l(T))$ but $F(S)-P \notin N l(T)$. This means that $F(S)-P+m \in N l(T)$ and $F(S)-P+m \in\left(X_{1}(N l(T)) \cup M i(T)\right)$

Obviously $F(S)-P+m \notin M i(T)$ so $F(S)-P+m \in X_{1}(T)$
Now $x \preccurlyeq F(S)-P+m$ in $B(E(S, 1))$ and $x \neq F(S)-P, F(S)-P+m$ imply $x \preccurlyeq F(S)-P$ in $B(S)$ which is impossible. Therefore $F(S)-P+m$ is a minimal element of $N l(T)$ and hence belongs to $X_{1}(T) \cap M i(T) \cap(T \cap P F(E(S, 1)))$.

We know $F(S)-P+m \notin\left(X_{1}(T) \cap M i(T)\right)$, hence $F(S)-P+m \in$ $P F(E(S, 1)) \cap T$. Which means that $F(S)-P+m \notin B(S)$ but this contradicts $F(S)-P+m \in X_{1}(T)$

Therefore $\operatorname{Mi}\left(g_{2}(N l(T))\right)=M i(N l(T))$.
Next we show that $\operatorname{Tri}(N l(T))=\operatorname{Tri}\left(g_{2}(N l(T))\right)$. If possible say $(a, b) \in$ $\operatorname{Tri}\left(g_{2}(N l(T))\right) \backslash \operatorname{Tri}(N l(T))$. So $a \in g_{2}(N l(T)), F(S)-b \notin g_{2}(N l(T))$ and either $a \notin N l(T)$ or $F(S)+m-b \in N l(T)$

- If $a \notin N l(T)$; then $a \in g_{2}(N l(T))$ implies $a+m \in N l(T)$ and $a+m \in$ $X_{1}(N l(T)) \cup M i(N l(T))$
Obviously $a+m \notin M i(N l(T))$, so $a+m \in X_{1}(N l(T))$. But $X_{1}(N l(T)) \subseteq$ $X_{1}\left(g_{2}(N l(T))\right)$ so both $a, a+m \in X_{1}\left(g_{2}(N l(T))\right)$ which is a contradiction to corollary 3.19.1.
- And if $a \in N l(T)$ then $F(S)+m-b \in N l(T)$. Now $F(S)-b \notin g_{2}(N l(T))$ implies $F(S)+m-b \in X_{1}(N l(T)) \cup M i(N l(T))$
Obviously $F(S)-b+m \notin M i(N l(T))$, So $F(S)-b+m \in X_{1}(N l(T))$ but then $F(S)-b+m \in X_{1}\left(g_{2}(N l(T))\right)$ and $F(S)-b \in X_{2}\left(g_{2}(N l(T))\right)$ which contradicts corollary 3.19.1

Therefore $\operatorname{Tri}\left(g_{2}(N l(T))\right)=\operatorname{Tri}(N l(T))$
Corollary 9.43.2. If $h(S) \geq 1$ and $A(T \cup E(S, 1))=E(S, 1)$. Then $N l(T)=$ $f_{2}\left(g_{2}(N l(T))\right)$

Proof: Follows from previuos corollary and the definitions of g_{2} and f_{2}
Remark 9.44. Summarising several of the previous lemmas and theorems:
If $h(S) \geq 1$ and T is a good numerical set of $E(S, 1)$ then $g_{2}(N l(T))$ and $g_{1}(N u(T))$ are good numerical sets of $S, f_{2}\left(g_{2}(N l(T))=N l(T)\right.$ and $f_{1}\left(g_{1}(N u(T))=\right.$ $N u(T)$

Consider the following sets of Numerical Sets:
$Z_{1}(T)=\left\{T^{\prime} \subseteq B(S) \mid A\left(T^{\prime} \cup S\right)=S, g_{2}(N l(T)) \subseteq T^{\prime} \subseteq g_{1}(N u(T)), f_{2}\left(T^{\prime}\right) \subseteq\right.$ $T\}$
$Z_{2}(T)=\left\{T^{\prime} \subseteq B(S) \mid A\left(T^{\prime} \cup S\right)=S, g_{2}(N l(T)) \subseteq T^{\prime} \subseteq g_{1}(N u(T)), T \subseteq\right.$ $\left.f_{1}\left(T^{\prime}\right)\right\}$

We know that $g_{2}(N l(T)) \in Z_{1}$ and $g_{2}(N u(T)) \in Z_{2}$, so they are non empty.

Remark 9.45. By continuing in this direction by picking a large $T_{1} \in Z_{1}$ and a small T_{2} in Z_{2} hope to show $T_{1}=T_{2}$ and $f_{2}\left(T_{1}\right) \subseteq T \subseteq f_{1}\left(T_{1}\right)$

Possible approach: Try to find conditions under which for a given $T_{1} \exists T^{\prime}$ s.t. $f_{2}\left(T_{1}\right)=f_{1}\left(T^{\prime}\right)$

Conjecture 9.46. For each good numerical set T of $E(S, 1)$ there is a good numerical set T_{1} of S s.t. $f_{2}\left(T_{1}\right) \subseteq T \subseteq f_{1}\left(T_{1}\right)$

Remark 9.47. Consequences of the conjecture:

- $P(S)=P(E(S, 1))$ iff f_{1}, f_{2} are identical functions
- $P(S)=P(E(S, 1))$ iff $P(E(S, 1))=P(E(S, 2))$

Another possible consequence might be that $P(E(S, n))$ is a polynomial from the start.

Lemma 9.48. If $h(S) \geq 1$ and $A(T \cup E(S, 1))=E(S, 1)$ then $\operatorname{Mi}(N l(T)) \cup$ $X_{1}(N l(T))=M i(T) \cup X_{1}(T)$

Proof: We know that $\operatorname{Mi}(N l(T))=M i(T), \operatorname{Tri}(T) \subseteq \operatorname{Tri}(N l(T))$.
If $(a, b) \in \operatorname{Tr} i(N l(T)) \backslash \operatorname{Tri}(T)$, then using the fact that $N l(T)$ is generated by $M i(T) \cup X_{1}(T) \cup(T \cap P F(E(S, 1)))$ corollary ?? implies $a \in M i(T) \cup X_{1}(T) \cup$ $(T \cap P F(E(S, 1)))$. But $a \in T \cap P F(E(S, 1))$ is impossible as then $a \notin B(S)$. Therefore $X_{1}(N l(T)) \subseteq X_{1}(T) \cap M i(T)$

Definition 9.49 (term could be changed later or removed). Call a max embedding dimension semigroup covered if for each good numerical set of it $f_{1}(T)=$ $f_{2}(T)$.

Note that this is iff $\{x(\bmod m) \mid x \in T\} \subseteq\left\{a(\bmod m) \mid a \in X_{1}(T)\right\} \cup$ $\{z(\bmod m) \mid z \in \operatorname{Mi}(T)\} \cup\left\{y(\bmod m) \mid y \in X_{2}(T)\right\}$

Remark 9.50. Note that f_{1}, f_{2} are identical iff S is covered
Theorem 9.51. For a fixed multiplicity m, and natural number P if there is no max embedding dimension, non-bad (bad semigroups are defined in a later section) semigroup s.t. $m(S)=m, P(S)=P, P(E(S, 1))=P(S)$
then numerical semigroups with $P(S)=P$ have density 0 (within semigroups of multiplicity m)

Proof: under conditions of the theorem $\#\{S \mid m(S)=m, P(S)=P$, Snotbad, $F(S) \leq$ $F\} \leq \#\{S \mid m(S)=m, h(S)=1, F(S) \leq F\}$ as $P(S)=P$ at most once on each ray. Finally semigroups with height 1 have density 0

Conjecture 9.52. For each multiplicity the set $\{P \mid \exists S, m(S)=m, P=P(S)=$ $P(E(S, 1)), h(S) \geq 1, S$ is not bad $\}$ is finite

9.1 Semigroups Along a Ray on a face of the Kunz Polyhedron

Semigroups whose Kunz tuples all lie on the same face of the Kunz Polyhedron have the same Apery Poset. Furthermore, we can find the Apery sets for all semigroups that lie along the same ray on a facet of the Kunz Polyhedron.

Lemma 9.53. If S_{0} with Apery set $\left\{0, a_{1}, a_{2}, \ldots, a_{m-1}\right\}$ is the first semigroup on a ray, semigroups S_{k} with Apery sets $\left\{0, a_{1}+m k a_{1}, a_{2}+m k a_{2}, \ldots, m k a_{m-1}\right\}$ lie on the same ray.

Proof: $\left\{0, a_{1}, a_{2}, \ldots, a_{m-1}\right\}$ is the first integer tuple on the ray, and the ray is then $\left(\left\lfloor\frac{a_{1}}{m}\right\rfloor+\frac{1}{m},\left\lfloor\frac{a_{2}}{m}\right\rfloor+\frac{2}{m}, \ldots,\left\lfloor\frac{a_{m-1}}{m}\right\rfloor+\frac{m-1}{m}\right)$. To get another integer value, if the greatest common divisor of the a_{i} s is 1 , we must add m times the ray to the first tuple, which gives a tuple of $\left(\frac{m a_{1}+a_{1}-1}{m}, \frac{m a_{2}+a_{2}-2}{m} \ldots \frac{m a_{m-1}+a_{m-1}-m+1}{m}\right)$, corresponding to Apery set $\left\{0, a_{1}+m k a_{1}, a_{2}+m k a_{2}, \ldots, a_{m-1}+m k a_{m-1}\right\}$.

If the greatest common divisor is not 1 , the semigroups of this form do still lie along the ray, but if $d=g c d$, then adding $\frac{m}{d}$ times the ray to the initial semigroup will also produce integer points.

Lemma 9.54. If the void of S_{0} is B_{0}, then B_{k} the void of S_{k} is constructed by B_{0} by noting for each $b \in B_{0}$, for $0 \leq l \leq m k, b+m b k+m l \in B_{k}$.

Proof: Let a_{f} be the largest element of the Apery set, so $a_{f}-m=F$, the Frobenius number. Then, the Frobenius number of B_{k} is $a_{f}+m a_{f} k-m=$ $F+m(F+m) k$. Note also that for $i, j<m$ where $i+j \equiv f \bmod m$, all elements of the void set in the i equivalence class are between a_{i} and $F-\left(a_{j}-m\right)$.

The largest element in equivalence class i is $a_{i}-m$, and the smallest element is $F-a_{j}+m$. Then, the largest element of B_{k} in equivalent class i is $a_{i}+m k a_{i}-m=\left(a_{i}-m\right)+m\left(a_{i}-m\right) k+m^{2} k$ which is satisfied by letting $l=m k$, and the smallest element is $F+m(F+m) k-\left(a_{j}+m k a_{j}\right)=$ $\left(F-a_{j}+m\right)+m\left(F-a_{j}+m\right) k$ which is reached when $l=0$.

Note that this means the void set grows by $m\left|B_{0}\right|$ as we move along the line. If the greatest common divisor is not 1 , then the void grows by $\frac{m\left|B_{0}\right|}{d}$ between semigroups.

Considering only cases where the greatest common divisor of the elements of the ray is 1 , we see that the structure of the void poset for semigroups further along the line can be constructed from the first one.

Note that the void elements of B_{k} corresponding to b are unique. If there is some element of B_{k} that corresponds to both b and $b^{\prime}, b+m b k+m l=$ $b^{\prime}+m b^{\prime} k+m l^{\prime}$, note that $b \equiv b^{\prime}$, so $b^{\prime}=b+m a$, so

$$
\begin{gathered}
b+m a+m(b+m a) k+m l^{\prime}=b+m b k+m l \\
b+m a+m b k+m^{2} a k+m l^{\prime}=b+m b k+m l \\
a+m a k+l^{\prime}=l \\
a(1+m k)=l-l^{\prime}
\end{gathered}
$$

But l and l^{\prime} must be within $m k$, and so $a=0$, so $b=b^{\prime}$.
Thus every element in B_{k} corresponds to exactly one element of B_{0}. Furthermore, if we denote the generators of S_{0} as $\left\langle m, g_{2}, \ldots g_{n}\right\rangle$ and S_{k} as $\left\langle m, g_{2}+m k g_{2}, \ldots g_{n}+m k g_{n}\right\rangle$, we know from Lemma 2.19 that every cover relation in the B poset is a generator.

Lemma 9.55. For every element b in B_{0}, if its cover relations are some subset of the generators, then g_{i} is an upper cover of b if and only if the corresponding generator of $S_{k}, g_{i}+m k g_{i}$ is an upper cover of the corresponding void element, $b+m b k+m l$.

If g_{i} is an upper cover of $b, b+g_{i}=c \in B_{0}$. Then $b+m b k+m l+g_{i}+m k g_{i}=$ $c+m c k+m l$ for every $0 \leq l \leq m k$, so $g_{i}+m k g_{i}$ is an upper cover for elements of B_{k} corresponding to b.

If $g_{i}+m k g_{i}$ is an upper cover for $b+m k+m l$, then $b+m b k+m l+g_{i}+$ $m k g_{i}=c+m c k+m l^{\prime}$, though l^{\prime} is not necessarily equal to l. Then $b+g_{i} \equiv c$ $\bmod m$, so $b+g_{i}+m a=c$. Substituting, we get $m+m b k+m l+g_{i}+m k g_{i}=$ $b+g_{i}+m a+m\left(b+g_{i}+m a\right) k+m l^{\prime}$. Then, $l+k g_{i}=a+g_{i} k+m a k+l^{\prime}$, so $l-l^{\prime}=a(1+m k)$. If $a \neq 0,\left|l-l^{\prime}\right|>m k$ which is impossible, so $a=0$ and $b+g_{i}=c$, so g_{i} is an upper cover for b.

Lemma 9.56. The red triangles of B_{k} correspond exactly to the red triangles of B_{0}.

If (P, a, b) form a red triangle in $B_{0}, P+a+b=F_{0}$, then $((1+m k) P+$ $\left.m^{2} k,(1+m k) a,(1+m k) b\right)$ also forms a red triangle. The Frobenius number $F_{k}=F_{0}+\left(m F_{0}+m^{2}\right) k$ because for a_{i} the maximal element of the Apery set of $S_{0}, F_{k}=m\left(m a_{i} k+a_{i}\right)-m=(1+m k) F_{0}+m^{2} k$. Thus, $(1+m k) P+m^{2} k+$ $(1+m k) a+(1+m k) b=(1+m k) F_{0}+m^{2} k=F_{k}$, so this forms a red triangle. Note that $(1+m k) a$ and $(1+m k) b$ are both minimal elements of B_{k}.

Pseudo-Frobenius numbers of B_{k} are of the form $(1+m k) P+m^{2} k$ because they are the largest elements corresponding to the maximal elements of B_{0}. Thus, if $\left((1+m k) P+m^{2} k,(1+m k) a+m l,(1+m k) b+m l^{\prime}\right)$ is a red triangle in $B_{k},(P, a, b)$ is a triangle in B_{0}.

Note also that if I is an order ideal in B_{0}, then the set of all elements in B_{k} corresponding to the elements of I form an order ideal in B_{k}.

Theorem 9.57. For semigroups formed in this way, the P value is a polynomial as we travel along the ray.

Proof: First, we prove that an order ideal of B_{k} is a numerical set if and only if every "slice" of its poset is a numerical set in B_{0}. The l th slice of the B_{k} poset is just the B_{0} poset, but for every $b \in B_{0}$, we change it to $b_{k}=b+m b k+m l$.

If there is some slice l that is not a numerical set, either it is not an order ideal, in which case B_{k} would also not be an order ideal, or the slice contains a Pseudo-Frobenius number and neither its conjugate nor a red triangle. If it contains some bad Pseudo-Frobenius number P_{0} in B_{0}, then since the
corresponding Pseudo-Frobenius number of B_{k} is above $P+m P k+m l, P_{k} \in T$, but its conjugate is below the conjugate of P_{0}, so $\overline{P_{k}} \notin T$. Similarly, P_{0} cannot satisfy any red triangles $\left(P_{0}, a_{0}, b_{0}\right)$, but since the red triangles of B_{0} and B_{k} correspond exactly, $a_{k} \preccurlyeq a_{0}+m a_{0} k+m l$ and $\overline{b_{0}}+m \overline{b_{0}} k+m l \preccurlyeq \overline{b_{k}}$, so a_{k} cannot be included, which would mean the original order ideal of B_{k} is not a numerical set.

In the other direction, if every slice of the order ideal I_{k} is a numerical set (and itself an order ideal), then every Pseudo-Frobenius number in that slice satisfies either its conjugate or some red triangle in B_{0}. Assume for the sake of contradiction that I_{k} is not a numerical set. If I_{k} contains a Pseudo-Frobenius number P_{k} in B_{k}, then the top slice contains the corresponding Pseudo-Frobenius number P_{0} where $P_{k}=(1+m k) P_{0}+m^{2} k$. Since every slice is a numerical set, then the top slice must either contain the conjugate \bar{P}_{0},
if Consider the slice where $l=0$, and suppose the numerical set contains a Pseudo-Frobenius number P_{0}. Then, $P_{0}(1+m k) \in I_{k}$, and since P_{k} is above that and I_{k} is an order ideal, $P_{k} \in I_{k}$.

Now, to count the number of good numerical sets, we just need to stack slices chosen from the good numerical sets of B_{0} in such a way that the result is an order ideal in B_{k}.

Remark 9.58. This behavior also appears to apply to semigroups along rays in a face that do not start from the vertex; the void set grows by the same amount each time, the void poset maintains the same general structure, and the P values grow at the same rate.

9.2 Asymptotics for $P(S)=2,3$

Theorem 9.59. If S is of max embedding dimension and $m(S) \geq 5$ then $P(S) \geq 4$.

Proof: Denote $m(S)=m$. Let the Apery set be $\left(0, P_{1}, P_{2}, \ldots, P_{m-1}\right)$ s.t. $P_{i} \equiv i(\bmod m)$

Let $h(S)=h$, say $P_{i}+P_{j}=P_{r}+h m$. (Note $h \geq 1$ as S has max embedding dimension)

Note that $P_{l}>h m$ for each l by lemma $9.15(m>2)$
Now $P_{j}>h m$ so $P_{i}<P_{r}$ and similarly $P_{j}<P_{r}$ and hence $P_{i} \neq F-m$ and $P_{j} \neq F-m$

By corollary 9.15.2 there is an S^{\prime} s.t. $E\left(S^{\prime}, h-1\right)=S . h\left(S^{\prime}\right)=1, S^{\prime}$ is of max embedding dimension. Apery Set of S^{\prime} is $\left(0, P_{1}-(h-1) m, \ldots, P_{m-1}-\right.$ $(h-1) m)$. Hence $P_{i}-h m \in B\left(S^{\prime}\right) \subseteq B(S)$ by lemma 9.8

Next if $P_{i}-h m \preccurlyeq x$ in the void then $x-\left(P_{i}-h m\right)$ is a multiple of m by lemma 9.12 (Remember that $P_{i}-h m$ is a Pseudo-Frobenius number of S^{\prime})

Therefore the order ideal generated by $P_{i}-h m$ is $T_{1}=\left\{P_{i}-n m \mid 1 \leq\right.$ $n \leq h\}$. Similarly $P_{j}-h m \in B$ and the order ideal generated by it is $T_{2}=$ $\left\{P_{j}-n m \mid 1 \leq n \leq h\right\}$. Let $T=T_{1} \cup T_{2}$, it is an order ideal, the Pseudo-Frobenius numbers in it are $P_{i}-m, P_{j}-m$.

Case 1: If $P_{r}=F+m$ then $\overline{P_{i}-m}=F-\left(P_{i}-m\right)=F+m-P_{i}=$ $\left(P_{i}+P_{j}-h m\right)-P_{i}=P_{j}-h m \in T$ and similarly $\overline{P_{j}-m}=P_{i}-h m \in T$. Therefore $A(T \cup S)=S$, also note that T has at most 2 Pseudo-Frobenius numbers (maybe just one if $i=j$) but the void has $m-2 \geq 3$ Pseudo-Frobenius numbers and hence $T \neq B$ and $P(S) \geq 3$.

In this case T is self dual, $T \neq \emptyset, B$ means that we have at least 2 connected components in $\operatorname{GPF}(S)$ and hence $P(S) \geq 4$

Case 2: If $P_{r} \neq F+m$ then $P_{r}-m \in B$ and $\left(P_{i}-m, P_{j}-h m, \overline{P_{r}-m}\right)$ is red triangle, $P_{j}-h m \in T$ and $P_{r}-m \notin T$ so $P_{i}-m$ satisfies a red triangle, similarly $P_{j}-m$ satisfies the red triangle ($\left.P_{j}-m, P_{i}-h m, \overline{P_{r}-m}\right)$. Therefore $A(T \cup S)=S, T \neq B, \emptyset$ so $P(S) \geq 3$.

If $T=T^{*}$ then $a \in T \Longleftrightarrow \bar{a} \notin T$. Since the only Pseudo-Frobenius numbers in T are $P_{i}-m$ and $P_{j}-m$ the rest of the Pseudo-Frobenius numbers have their conjugates in T. But the only possible minimal elements in T are $P_{i}-h m$ and $P_{j}-h m$. Now if $i=j$ then $t-1 \leq 2$ which is impossible as $m \geq 5$. Therefore $i \neq j$ and $t-1 \leq 4$. Therefore $m \leq 6$

If $m=5$ then $P F(S)=\left\{P_{i}-m, P_{j}-m, P_{r}-m, F\right\} . P_{r}-m \notin T \Longrightarrow$ $F-\left(P_{r}-m\right) \in T \Longrightarrow F-\left(P_{r}-m\right) \in\left\{P_{i}-h m, P_{j}-h m\right\}$. WLoG say $F-\left(P_{r}-m\right)=P_{j}-h m$ and $P_{j}+P_{r}=(F+m)+h m$ and hence we are back to case 1.

If $m=6$ then $\operatorname{PF}(S)=\left\{P_{i}-m, P_{j}-m, P_{r}-m, P_{l}-m, F\right\}$ and $\left\{F-\left(P_{r}-\right.\right.$ $\left.m), F-\left(P_{l}-m\right)\right\}=\left\{P_{i}-h m, P_{j}-h m\right\}$. WLoG say $F-\left(P_{r}-m\right)=P_{j}-h m$ i.e. $P_{j}+P_{r}=(F+m)+h m$ and we are back to case 1 .

Therefore $T \neq T^{*}$ and $P(S) \geq 4$
Corollary 9.59.1. If $m(S) \geq 5$ and S has max embedding dimension and $P(S)=4$ then one of the following happens

- $G P F(S)$ has two connected components and all the good numerical sets are self-dual.
- $\operatorname{GPF}(S)$ is connected, there is exactly one (un-ordered)triple (i, j, r) s.t. $P_{i}+P_{j}=P_{r}+h m, P_{r}-m \neq F$, let T be the order ideal generated by $P_{i}-h m, P_{j}-h m$ and the only good numerical sets are \emptyset, B, T, T^{*}
Remark 9.60. The following result (told to us by Chris) leads to the next theorem

For a fixed multiplicity m

$$
\lim _{F \rightarrow \infty} \frac{\#\{S \mid m(S)=m, F(S) \leq F, S \text { has max embedding dimension }\}}{\#\{S \mid m(S)=m, F(S) \leq F\}}=1
$$

Theorem 9.61. For fixed multiplicity $m \geq 5$

$$
\lim _{F \rightarrow \infty} \frac{\#\{S \mid m(S)=m, F(S) \leq F, P(S)=1\}}{\#\{S \mid m(S)=m, F(S) \leq F\}}=0
$$

and

$$
\lim _{F \rightarrow \infty} \frac{\#\{S \mid m(S)=m, F(S) \leq F, P(S)=2\}}{\#\{S \mid m(S)=m, F(S) \leq F\}}=0
$$

and

$$
\lim _{F \rightarrow \infty} \frac{\#\{S \mid m(S)=m, F(S) \leq F, P(S)=3\}}{\#\{S \mid m(S)=m, F(S) \leq F\}}=0
$$

Remark 9.62. For multiplicity $m=2$, all semigroups have $P(S)=1$
For multiplicity $m=3$, all max E.D. semigroups have $P(S)=2$ and hence

$$
\begin{aligned}
& \lim _{F \rightarrow \infty} \frac{\#\{S \mid m(S)=3, F(S) \leq F, P(S)=1\}}{\#\{S \mid m(S)=3, F(S) \leq F\}}=0 \\
& \lim _{F \rightarrow \infty} \frac{\#\{S \mid m(S)=3, F(S) \leq F, P(S)=2\}}{\#\{S \mid m(S)=3, F(S) \leq F\}}=1
\end{aligned}
$$

Lemma 9.63. If $m(S)=4$ and S has max embedding dimension. Say the Apery set is $\left(0, P_{1}, P_{2}, P_{3}\right)$

- If $P_{3}+P_{1}>2 P_{2}$ then $P(S)=2$
- If $P_{3}+P_{1}=2 P_{2}$ then $P(S)=3$
- If $P_{3}+P_{1}<2 P_{2}$ then $P(S)=4$

Proof:
Case 1: $F=P_{3}-4 ; P_{1}+P_{2} \geq P_{3}+4$ i.e. $P_{1}+P_{2}-P_{3}-4 \in S$ (it is divisible by 4$)$. Which means $\left(P_{1}-4\right)+\left(P_{2}-4\right)-F \in S$ and $G P F(S)$ is connected. $P_{1}-P_{2} \equiv 3(\bmod 4) \Longrightarrow\left(P_{1}-4\right)-\left(P_{2}-4\right) \notin B . P_{2}<2 P_{1} \Longrightarrow$ $P_{2}-P_{1}<P_{1} \Longrightarrow\left(P_{2}-4\right)-\left(P_{1}-4\right) \notin S$. Therefore $\left(P_{2}-4\right)-\left(P_{1}-4\right) \in B$ iff $F-\left(P_{2}-P_{1}\right) \notin S$ iff $\left(P_{3}-4\right)-P_{2}+P_{1}<P_{2}$ iff $P_{3}+P_{1}<2 P_{2}+4$ iff $P_{3}+P_{1} \leq 2 P_{2}$.

It follows that $P_{1}+P_{3}>2 P_{2}$ implies $\left(P_{1}-4\right)-\left(P_{2}-4\right),\left(P_{2}-4\right)-\left(P_{1}-4\right) \notin$ B and hence $P(S)=2$

On the other hand if $P_{1}+P_{3} \leq 2 P_{2}$, then $\left(P_{2}-4\right)-\left(P_{1}-4\right)=P_{2}-P_{1} \in B$. Now $P(S)=3$ if $P_{2}-P_{1}=F-\left(P_{2}-4\right)$ (i.e. $P_{3}+P_{1}=2 P_{2}$) and $P(S)=4$ otherwise.

Case 2: $F=P_{2}-4$ then $P_{1}+1 \leq P_{2}$ and $P_{3}+3 \leq P_{2}$ therefore $P_{1}+P_{3}+4 \leq$ $2 P_{2}$ which implies $P_{1}+P_{3}-4<2 P_{2}$ i.e. $\left(P_{1}-4\right)+\left(P_{3}-4\right)-\left(P_{2}-4\right)<P_{2}$ which means $\left(P_{1}-4\right)+\left(P_{3}-4\right)-\left(P_{2}-4\right) \notin S$ and hence $G P F(S)$ is not connected and $P(S)=4$

Case 3: $F=P_{1}-4$; is similar to Case 1
Corollary 9.63.1. For Numerical semigroups with multiplicity 4 density of $P(S)=1$ and $P(S)=3$ is 0 . Density of $P(S)=2$ is ≈ 0.38 and density of $P(S)=4$ is ≈ 0.62 (exact values can be determined by computing volumes)

9.3 Rays with $P(S)=4$

In this section we show that if $E(S, n)=4$ for a particular n then it is true for all n (assuming S is of max E.D.)

Definition 9.64. Assume $h(S) \geq 1$ We define new categories for order ideals T of $B(E(S, n)),\left(A_{1}, A_{2}, X\right)$ where $A_{1}=\left\{P_{i}-m \mid P_{i}+(n-1) m \in T\right\}$, $A_{2}=\left\{F(S)-\left(P_{i}-m\right) \mid F(S)-\left(P_{i}-m\right) \in T\right\}$. Let Tri $\left(A_{1}\right)=\{(a, b) \mid a, b \in$ $\left.B(S), F(S)-a-b \in A_{1}\right\} X=\left\{(a, b) \in \operatorname{Tr} i\left(A_{1}\right) \mid a \in T, F(E(S, n))-b \notin T\right\}$.

Also note that X contains un-ordered pairs, we denote $X_{1}=\{\exists b,(a, b) \in$ $X\}, X_{2}=\{-\exists a,(a, b) \in X\}$
Lemma 9.65. If $\left(P_{i}-m, a_{1}, b_{1}\right)$ and $\left(P_{j}-m, a_{2}, b_{2}\right)$ are red triangles in $B(S)$. Then $F(S)-b_{2} \preccurlyeq a_{1}$ implies $a_{1}=F(S)-b_{2}$ or $a_{2} \preccurlyeq F(S)-b_{1}$

Proof: For this paragraph denote $F(S)$ by F. So $a_{1}-\left(F-b_{2}\right) \in S$, but $a_{1}+b_{2}-F=\left(F-\left(P_{i}-m\right)-b_{1}\right)+\left(F-\left(P_{j}-m\right)-a_{2}\right)-F=F-\left(P_{i}-\right.$ $m)-\left(P_{j}-m\right)-b_{1}-a_{2}$. Now as $P_{i}-m$ and $P_{j}-m$ are Pseudo-Frobenius numbers $F-a_{2}-b_{1} \in S$ (unless $F-\left(P_{i}-m\right)-\left(P_{j}-m\right)-b_{1}-a_{2}=0$ i.e. $\left.a_{1}-\left(F-b_{2}\right)=0\right)$. Now $a_{2} \preccurlyeq F-b_{1}$ in $B(S)$

Lemma 9.66. If $h(S) \geq 1$ and T is an order ideal of $E(S, n)$ then $\forall n^{\prime}$ there is an order ideal T^{\prime} of $E\left(S, n^{\prime}\right)$ s.t. $A_{1}\left(T^{\prime}\right)=A_{1}(T), A_{2}(T) \subseteq A_{2}\left(T^{\prime}\right)$ and $X(T) \subseteq X\left(T^{\prime}\right)$

Proof: For notation we denote $A_{1}=A_{1}(T), A_{2}=A_{2}(T), X=X(T)$, $A_{1}^{\prime}=A_{1}\left(T^{\prime}\right), A_{2}^{\prime}=A_{2}\left(T^{\prime}\right), X^{\prime}=X\left(T^{\prime}\right)$

Let T^{\prime} be the order ideal of $E\left(S, n^{\prime}\right)$ generated by $\left(A_{1}+m n^{\prime}\right) \cup A_{2} \cup X_{1}$.

- Clearly $A_{1} \subseteq A_{1}^{\prime}$. Conversely if $P_{i}-m \in A_{1}^{\prime}$ then $\exists x \in\left(A_{1}+m n^{\prime}\right) \cup A_{2} \cup X_{1}$ s.t. $x \preccurlyeq P_{i}+\left(n^{\prime}-1\right) m$ in $B\left(E\left(S, n^{\prime}\right)\right)$
- If $x \in\left(A_{1}+m n^{\prime}\right)$ then $P_{i}-m \in A_{1}$
- If $x \in A_{2} \cup X_{1}$ then $x \in B(S) \cap T$. Now $x \preccurlyeq P_{i}+\left(n^{\prime}-1\right) m$ in $B\left(E\left(S, n^{\prime}\right)\right)$ means that $P_{i}-m-x+n^{\prime} m \in E\left(S, n^{\prime}\right)$
* If $m \nmid P_{i}-m-x+n^{\prime} m$ then $P_{i}-m-x+n^{\prime} m \in E\left(S, n^{\prime}\right)$ implies $P_{i}-m-x \in S$ which implies $P_{i}-m-x+n m \in E(S, n)$ i.e. $x \preccurlyeq P_{i}+(n-1) m$ in $B(E(S, n))$ which implies $P_{i}+(n-1) m \in T$ i.e. $P_{i}-m \in A_{1}$
* If $m \mid P_{i}-m-x+n^{\prime} m$, then in $B(S)$ either $P_{i}-m \prec x$ or $x \preccurlyeq P_{i}-m$ according to $P_{i}-m<x$ or $x \leq P_{i}-m$. But $P_{i}-m \prec x$ is impossible and hence $x \leq P_{i}-m$. Therefore $x \leq P_{i}+(n-1) m$ and $x \preccurlyeq P_{i}+(n-1) m$ in $B(E(S, n))$ which implies $P_{i}+(n-1) m \in T$ i.e. $P_{i}-m \in A_{1}$
- Clearly $A_{2} \subseteq A_{2}^{\prime}$
- If $(a, b) \in X$, say $P_{i}-m+a+b=F(S)$ and $P_{i}-m \in A_{1}$. Then $a \in X_{1} \in T^{\prime}$. If possible assume $F\left(E\left(S, n^{\prime}\right)\right)-b \in T^{\prime}$. Therefore $\exists x \in$ $\left(A_{1}+m n^{\prime}\right) \cup A_{2} \cup X_{1}$ s.t. $x \preccurlyeq F\left(E\left(S, n^{\prime}\right)\right)-b$ in $B\left(E\left(S, n^{\prime}\right)\right)$
- If $x \in\left(A_{1}+m n^{\prime}\right)$, say $x=P_{i}+\left(n^{\prime}-1\right) m$; then $x \preccurlyeq F\left(E\left(S, n^{\prime}\right)\right)-b$ means $P_{i}+\left(n^{\prime}-1\right) m=F\left(E\left(S, n^{\prime}\right)\right)-b \Longrightarrow P_{i}-m=F(S)-b \Longrightarrow$ $P_{i}+(n-1) m=F(E(S, n))-b$. Now $P_{i}-m \in A_{1}$ means that $P_{i}+(n-1) m \in T$ which contradicts the fact that $F(E(S, n))-b \notin T$
- If $x \in A_{2} \cup X_{1}$ then $x \in B(S) \cap T$. Now $x \preccurlyeq F\left(E\left(S, n^{\prime}\right)\right)-b$ in $B\left(E\left(S, n^{\prime}\right)\right)$ means that $F(S)-b-x+n^{\prime} m \in E\left(S, n^{\prime}\right)$
* If $m \nmid F(S)-b-x-n^{\prime} m$; then $F(S)-b-x+n^{\prime} m \in E\left(S, n^{\prime}\right)$ implies $F(S)-b-x \in S$ which implies $F(S)-b-x+n m \in$ $E(S, n)$ i.e. $\quad x \preccurlyeq F(E(S, n))-b$ in $B(E(S, n))$. This implies $F(E(S, n))-b \in T$ which is a contradiction.
* If $m \mid F(S)-b-x-n^{\prime} m$
- If $x \leq F(S)-b$ then $x \leq F(S)-b+n m=F(E(S, n))-$ b which implies $F(E(S, n))-b-x \in E(S, n)$ i.e. $x \preccurlyeq$ $F(E(S, n))-b$ in $B(E(S, n))$. This implies $F(E(S, n))-b \in T$ which is a contradiction.
- If $F(S)-b<x$ then $F(S)-b \prec x$ in $B(S)$ and hence $x \notin A_{2}, x \in X_{1}$. So say $P_{j}-m \in A_{1}, x+y+P_{j}-m=F(S)$, $x \in T$ and $F(E(S, n))-y \notin T$. Now by lemma 9.65 we know that $a \preccurlyeq F(S)-y$ in $B(S)$ i.e. $F(S)-y-a \in S$ which implies $F(E(S, n))-y-a \in E(S, n)$ i.e. $a \preccurlyeq F(E(S, n))-$ y in $B(E(S, n)$ and hence $F(E(S, n))-y \in T$ which is a contradiction.

It follows that $X \subseteq X^{\prime}$
Corollary 9.66.1. If $P_{i}-m \in A_{2}^{\prime} \backslash A_{2}$ in the above construction then $h(S)=1$, $n^{\prime}=0$ and $\exists P_{j}-m \in A_{1}$ s.t. $P_{i}+P_{j}=F(S)+2 m$

Proof: If $F(S)-\left(P_{i}-m\right) \in T^{\prime}$ then $\exists x \in\left(A_{1}+m n^{\prime}\right) \cup A_{2} \cup X_{1}$ s.t. $x \preccurlyeq$ $F(S)-\left(P_{i}-m\right)$ in $B\left(E\left(S, n^{\prime}\right)\right)$. Then of course $x=F(S)-\left(P_{i}-m\right)$

- If $x \in A_{2} \cup X_{1}$ then $x \in A_{2}$
- If $x \in\left(A_{1}+m n^{\prime}\right)$, say $F(S)-\left(P_{i}-m\right)=P_{j}+\left(n^{\prime}-1\right) m, P_{j}-m \in A_{1}$. This means $\left(P_{j}+n^{\prime} m\right)+\left(P_{i}+n^{\prime} m\right)=F(S)+2 m+n^{\prime} m=\left(F\left(E\left(S, n^{\prime}\right)\right)+m\right)+m$ which implies $h\left(E\left(S, n^{\prime}\right)\right) \leq 1$. But $h(S) \geq 1 \Longrightarrow h(S)=1, n^{\prime}=0$ and hence $P_{i}+P_{j}=F(S)+2 m$

Theorem 9.67. If $h(S) \geq 1, m(S) \geq 5$ and $P\left(E\left(S, n_{1}\right)\right)=4$ for some $n_{1} \geq 0$. Then $P(E(S, n))=4$ for all $n \geq 0$

Proof: Firstly by theorem $9.59 P(E(S, n)) \geq 4$. Now by corollary 9.59.1

- Case 1: $\operatorname{GPF}\left(E\left(S, n_{1}\right)\right)$ has two connected components and the only good numerical sets of $E\left(S, n_{1}\right)$ are the self-dual ones. Moreover in this case $\left(P_{i}+n_{1} m\right)+\left(P_{j}+n_{1} m\right)=F\left(E\left(S, n_{1}\right)\right)+m+h\left(E\left(S, n_{1}\right)\right) m \Longrightarrow\left(P_{i}-m\right)+$ $\left(P_{j}-m\right)=F(S)+(h(S)-1) m$, Let T_{1} be the order ideal of $B\left(E\left(S, n_{1}\right)\right)$
generated by $P_{i}-h(S) m, P_{j}-h(S) m$. then the good numerical sets of $E\left(S, n_{1}\right)$ are $\emptyset, B\left(E\left(S, n_{1}\right)\right), T_{1}, T_{1}^{*}=T_{1}^{c}$.
Now if T is a good numerical set of $E(S, n)$. Then consider the corresponding order ideal T^{\prime} of $E\left(S, n_{1}\right)$ given by lemma 9.66.
If $h(S)>1$ or $n_{1}>0$ then $A_{2}^{\prime}=A_{2}$ by corollary 9.66 .1 and hence T is self dual and $P(S)=4$. Therefore now assume $h(S)=1$ and $n_{1}=0$
$-T^{\prime}=\emptyset \Longrightarrow T=\emptyset$
- $T^{\prime}=T_{1}$ then $A_{1}=\left\{P_{i}-m, P_{j}-m\right\}$. As $h(S)=1 T \cap B(S) \subseteq\left\{P_{i}-\right.$ $\left.m, P_{j}-m\right\}$ therefore the only possible red triangle (of $B(E(S, n)$)) that $P_{i}+(n-1) m$ can satisfy is $\left(P_{i}+(n-1) m, P_{i}-m, b\right)$ which means $2 P_{i}-2 m+b=F(S)$. We know that $i+j \equiv F(\bmod m)$ which implies $i \equiv b(\bmod m)$ which implies $b=P_{i}-m, F(E(S, n))-b=$ $P_{j}+(n-1) m$. Therefore the triangle cannot be satisfied. Similarly $P_{j}+(n-1) m$ cannot satisfy a triangle and hence T is self dual.
- $T^{\prime}=B(S)$ This means $X^{\prime}=\emptyset$ which implies $X=\emptyset$ and hence $T=B(E(S, n))$
- $T^{\prime}=T_{1}^{*}=T_{1}^{c}$; So $A_{1}=P F(S) \backslash\left\{F, P_{i}-m, P_{j}-m\right\}$. Conjugates of $P_{i}+(n-1) m$ and $P_{j}+(n-1) m$ are not in T. If possible assume T is not self dual, therefore at least one Pseudo-Frobenius number does not have its conjugate. It follows that T^{*} has $P_{i}+(n-1) m, P_{j}+(n-1) m$ and at least one more Pseudo-Frobenius number. Therefore $\left(T^{*}\right)^{\prime}=$ $B(S)$ and as seen earlier $T^{*}=B(E(S, n))$ which is impossible.

Therefore in Case 1 we see that $P(E(S, n))=4$

- Case 2: $\operatorname{GPF}\left(E\left(S, n_{1}\right)\right)$ is connected (which means $\operatorname{GPF}\left(E\left(S, n_{2}\right)\right)$ is connected for each n_{2}), there is exactly one (un-ordered)triple (i, j, r) s.t. $P_{i}+P_{j}=P_{r}+h m$ (here $h=h(S)$), $P_{r}-m \neq F$, let T_{1} be the order ideal of $B\left(E\left(S, n_{1}\right)\right)$ generated by $P_{i}-h m, P_{j}-h m$ and the only good numerical sets of $E\left(S, n_{1}\right)$ are $\emptyset, B, T_{1}, T_{1}^{*}$
By corollary 9.15.2 there is a S^{\prime} s.t. $E\left(S^{\prime}, h(S)-1\right)=S, h\left(S^{\prime}\right)=1$
Let T be a good order ideal of $E(S, n)$, consider the corresponding T^{\prime} of $E\left(S, n_{1}\right)$ given by lemma 9.66
- $T^{\prime}=\emptyset$ implies $T=\emptyset$
- $T^{\prime}=T_{1}$; So $A_{1}=\left\{P_{i}-m, P_{j}-m\right\}, A_{2}^{\prime}=\emptyset \Longrightarrow A_{2}=\emptyset .\left\{P_{i}-\right.$ $\left.h m, P_{j}-h m\right\} \subseteq X^{\prime} \subseteq T_{1} \cap B\left(S^{\prime}\right)=\left\{P_{i}-h m, P_{j}-h m\right\}$ hence $X^{\prime}=\left\{P_{i}-h m, P_{j}-h m\right\}$. If $\exists x \in T$ s.t. $P_{i}-h m \npreceq x$ and $P_{j}-h m \npreceq x$ in $B(E(S, n))$. We must have $x \equiv P_{i}$ or $P_{j}(\bmod m)$, Say $x=P_{i}-(h+$ $s) m$. Then $x \in B(S)$, The order ideal of $B(S)$ generated by $x, P_{j}-h m$ in $B\left(E\left(S, n_{1}\right)\right)$ is not a good numerical set so it must have a PseudoFrobenius number other that $P_{i}-m, P_{j}-m$ i.e. $x \preccurlyeq P_{u}+\left(n_{1}-1\right) m$ for some u in $B\left(E\left(S, n_{1}\right)\right)$. Therefore $x \preccurlyeq P_{u}+(n-1) m$ in $B(E(S, n))$ which is a contradiction.
- $T^{\prime}=T_{1}^{*}$; Say $i+\alpha \equiv F(\bmod m)$ and $j+\beta \equiv F(\bmod m)$ So $A_{1}^{\prime}=$ $\left\{P_{s}-m \mid P_{s}-m \neq F\right\}$ and $A_{2}^{\prime}=\left\{F(S)-\left(P_{s}-m\right) \mid P_{s}-m \neq F, s \neq i, j\right\}$. Therefore by corollary 9.66.1 $A_{2}=A_{2}^{\prime}$ and hence $\left(T^{*}\right)^{\prime}=T_{1}$ and by the previous part T^{*} is generated by $P_{i}-h m, P_{j}-h m$
$-T^{\prime}=B(S) . A_{1}=\left\{P_{s}-m \mid P_{s}-m \neq F(S)\right\}, A_{2}^{\prime}=\left\{P_{s}-m \mid P_{s}-m \neq\right.$ $F(S)\}$ and by corollary 9.66.1 $\left\{F(S)-\left(P_{s}-m\right) \mid P_{s}-m \neq F, s \neq\right.$ $i, j\} \subseteq A_{2}$. Therefore $\left(T^{*}\right)^{\prime} \emptyset$ or T_{1}. If $\left(T^{*}\right)^{\prime}=\emptyset$ then $T^{*}=\emptyset$ and $T=B(E(S, n))$. And if $\left(T^{*}\right)^{\prime}=T_{1}$ then T^{*} is generated by $P_{i}-h m, P_{j}-h m$ which is a contradiction.

9.4 Red Triangles and bad hyperplanes in Max Embedding Dimension

Remark 9.68. From this section on P_{i} will be used to denote Pseudo-Frobenius numbers and A_{i} used to denote Apery set elements

Remark 9.69. The P values in the polyhedron suggests that certain hyperplanes divide the polyhedron into regions of distinct P values.

Definition 9.70 (Bad Hyper-planes). Hyper-planes of the form of the form $A_{i}+A_{j}=A_{k}+A_{l}$ where $A_{i}, A_{j}, A_{k}, A_{l}$ are in the apery set (or equivalently in $P F(S))$ (and $i+j \equiv k+l(\bmod m)$) are called bad hyper-planes.

A Numerical Semigroup is called bad if $\exists P, Q, R \in P F(S)$ s.t. $F+Q=$ $P+R$. Note that all bad semigroups lie on a bad hyper-plane.

Lemma 9.71. S has max embedding dimension. Say $P_{i}, P_{j} \in P F(S)$ and $i-j \equiv k(\bmod m), k+l \equiv F(\bmod m)$ then $P_{i}-P_{j} \in B(S)$ iff $F-P_{l} \leq P_{i}-P_{j}$

Proof: Firstly $P_{i}-P_{j} \in B(S) \Longleftrightarrow F-P_{l} \preccurlyeq P_{i}-P_{j} \preccurlyeq P_{k}$. But $P_{i}-P_{j} \preccurlyeq P_{k}$ follows from the fact that S has max embedding dimension.

Moreover $P_{i}-P_{j} \equiv F-P_{l}(\bmod m)$ implies $F-P_{l} \preccurlyeq P_{i}-P_{j} \Longleftrightarrow F-P_{l} \leq$ $P_{i}-P_{j}$

Theorem 9.72. If S is of max embedding dimension then S is ignoble iff $\exists P_{i}, P_{j}, P_{l} \in P F(S) \backslash\{F\}$ s.t. $i-j \equiv F-l(\bmod m)$ s.t. $F-P_{l} \leq P_{i}-P_{j}$

Proof: Follows from lemma 9.71
Remark 9.73. It follows that noble semigroups of max E.D. are geometrically living in certain smaller polyhedrons of the kunz polyhedron

Moreover they have positive density, which can be calculated by computing volumes.

Lemma 9.74. S has max embedding dimension. Suppose $P_{i}, P_{l} \in P F(S) \backslash\{F\}$, and $i+l \not \equiv F(\bmod m), i+l \not \equiv 2 F(\bmod m)$.

Pick j s.t. $i-j \equiv F-l(\bmod m)$. Then:

- $F-P_{l}>P_{i}-P_{j}$ implies $F-P_{l} \npreceq P_{i}$ i.e. P_{l} and P_{i} are not connected in $\operatorname{GPF}(S)$. In this case $P_{i}-P_{j}$ not in B
- If $F-P_{l}=P_{i}-P_{j}$ then $F-P_{l} \npreceq P_{i}$ i.e. P_{l} and P_{i} are not connected in $G P F(S)$. In this case $P_{i}-P_{j}$ is in B
- If $F-P_{l}<P_{i}-P_{j}$ then $F-P_{l} \preccurlyeq P_{i}$ i.e. P_{i} and P_{j} are not connected in $G P F(S)$. In this case $P_{i}-P_{j}$ is in B

Proof: The conditions ensure $P_{j} \in P F(S) \backslash\{F\}$
$P_{i}-\left(F-P_{l}\right) \equiv j(\bmod m)$ so $F-P_{l} \preccurlyeq P_{i}$ iff $P_{i}-\left(F-P_{l}\right) \geq A_{j}=P_{j}+m$
iff $P_{i}-\left(F-P_{l}\right)>P_{j}$ iff $P_{i}-P_{j}>F-P_{l}$
Corollary 9.74.1. If S has max E.D. and S is not bad then given $P_{i}, P_{l} \in$ $P F(S) \backslash\{F\}, P_{i}+P_{l} \not \equiv F, 2 F(\bmod m)$. Then $j \equiv i+l-F(\bmod m)$
P_{i}, P_{l} are connected in $G P F(S)$ iff $P_{i}-P_{j} \in B$ iff $P_{l}-P_{j} \in B$
Corollary 9.74.2. We can restate the result as follows: If S has max E.D. and S is not bad then given $P_{i}, P_{j} \in P F(S) \backslash\{F\}$ s.t. $i \neq j, i-j \not \equiv F(\bmod m)$ then $l \equiv F-(i-j)(\bmod m)$ implies
$P_{i}-P_{j} \in B$ iff P_{i}, P_{l} are connected in $G P F(S)$ iff $P_{l}-P_{j} \in B$
Theorem 9.75. If S is a noble semigroup of max embedding dimension then

- The B poset has the simple structure: $x \preccurlyeq y$ iff $m \mid y-x$ and $x \leq y$
- If m is odd then $P(S)=2^{\frac{m-1}{2}}$
- If m is even and F is odd then $P(S)=2^{\frac{m-2}{2}}$
- If m and F are both even then $P(S)=2^{\frac{m}{2}}$

Proof: If possible assume there are $x \preccurlyeq y$ in B-Poset s.t. $m \nmid y-x$. Say $F-P_{l} \equiv x(\bmod m)$ and $P_{i} \equiv x(\bmod m)$. Then P_{i}, P_{l} are connected in $G P F(S)$ and $P_{i}+P_{l} \not \equiv F(\bmod m)$

Note that Noble Semigroups are not bad. Next if $P_{i}+P_{l} \equiv 2 F(\bmod m)$ then $P_{i}+P_{l}-F \equiv F(\bmod m)$ and $P_{i}, P_{j}<F \Longrightarrow P_{i}+P_{j}-F<F$ which contradicts $P_{i}+P_{j}-F \in S$.

Therefore by previous lemma $P_{i}-P_{j} \in B$ and we have a contradiction.
It follows that the only edges on the Pseudo-Frobenius graph are when $P_{i}+P_{l} \equiv F(\bmod m)$ (which are indeed edges)

This means that the graph mostly consists of components of size to except when $2 P_{i} \equiv F(\bmod m)$ in which case P_{i} is an isolated point.

Now if m is odd then the graph has $m-2$ vertices, there is exactly one i for which $2 P_{i} \equiv F(\bmod m)$. Hence the number of connected components is $1+\frac{m-3}{2}$

Next if m is even and F is odd then there is no i for which $2 P_{i} \equiv F(\bmod m)$ hence there are $\frac{m-2}{2}$ connected components.

Finally if m and F are both even then there are two i for which $2 P_{i} \equiv$ $F(\bmod m)$ hence there are $2+\frac{m-4}{2}$ connected components.

Remark 9.76. This is not necessarily true in noble semigroups that are not of max embedding dimension. For e.g. if $S=<6,7,8,11>$ then $B(S)=\{1,5,9\}$, it is noble and $1 \preccurlyeq 9$

Another e.g. $S=<6,8,11,13,15>$ is noble, $B(S)=\{1,3,5,7,9\}$, cover relations are $1 \preccurlyeq 7,1 \preccurlyeq 9,3 \preccurlyeq 9$

Corollary 9.76.1. If we look at numerical semigroups with a fixed multiplicity m on the kunz polyhedron then:

- If m is odd then numerical semigroups with $P(S)=2^{\frac{m-1}{2}}$ have a positive density.
- If m is even then numerical semigroups with $P(S)=2^{\frac{m-2}{2}}$ and those with $P(S)=2^{\frac{m}{2}}$ both have positive densities

Conjecture 9.77. If S is of max embedding dimension and not bad then $P(S)$ is even

The natural path towards proving this is to prove $T \neq T^{*}$ for each good numerical set of S

9.5 Multiplicity 5

Remark 9.78. These are the observations we will prove in this section. We assume $m(S)=5$ and S has max embedding dimension for each

- $P(S)$ is even.
- $P(E(S, 1))=P(S) \Longrightarrow P(S) \in\{4,6,8\}$
- $P(E(S, 1)) \neq P(S) \Longrightarrow P(E(S, 1))=P(S)+2$
- $P(S)=4,8$ have positive density, all other values of P have zero density.

Remark 9.79. We have a Numerical Semigroup of max embedding dimension and multiplicity 5 (this assumption is maintained throughout this section even if I forget to mention it in some lemma/theorem)

Say $F \equiv 2 k(\bmod 5)$, the Pseudo-Frobenius numbers of S are $P_{k}, F, P_{3 k}, P_{4 k}$ (so the Apery set of S is $\left(P_{k}+5, F+5, P_{3 k}+5, P_{4 k}+5\right)$)

In $\operatorname{GPF}(S) P_{3 k}$ and $P_{4 k}$ are connected, so the graph has at most 2 connected components.
$F-P_{k} \equiv P_{k}(\bmod 5)$ therefore $F-P_{k} \preccurlyeq P_{k}$ and P_{k} is connected to itself in $G P F(S)$

Also $P_{3 k}+P_{k}-F \equiv F(\bmod 5)$ and $P_{3 k}+P_{k}-F>F$ so P_{k} and $P_{3 k}$ cannot be connected.
$T_{1}=\emptyset, T_{1}^{*}=B(S)$ are good numerical sets
Theorem 9.80. Let S be a numerical semigroup of maximum embedding dimension such that $m(S)=5$. Then $A(T \cup S)=S \Longrightarrow T \neq T^{*}$ and hence $P(S)$ must be even.

Proof: Suppose that $F \equiv 2 k \bmod 5$, and let P_{S} be the Psuedo-Frobenius number such that $P_{S} \equiv k \bmod 5$. Similarly, let $P_{P} \equiv 4 k \bmod 5, P_{P^{\prime}} \equiv 3 k \bmod 5$.

Now, let $T \subset B$ such that $A(T \cup S)=S, T^{*}=T$. Then T must include exactly one and exclude exactly one of each pair $\{b, F-b\} \subset B$. Since $P_{S}-(F-$ $\left.P_{S}\right) \equiv 0 \bmod 5$, and $A_{S}-\left(A_{F}-A_{S}\right)=P_{S}-\left(F-P_{S}\right)+5>0, P_{S}-\left(F-P_{S}\right) \in S$, and so $F-P_{S} \preccurlyeq P_{S}$, implying $P_{S} \in T, F-P_{S} \notin T$. Thus, there must exist a red triangle $\left(P_{S}, a, b\right)$, and so either $P_{P}-P_{S} \in B$ or $P_{P^{\prime}}-P_{S} \in B$. However, $F-P_{P^{\prime}}+P_{S} \equiv 0 \bmod 5$, and so $P_{P^{\prime}}-P_{S} \notin B$.

Thus, if $\left(P_{S}, a, b\right)$, then $a \preccurlyeq P_{P}-P_{S}$. Note $a \in T \rightarrow F-a \notin T$ and similarly $F-b \notin T \rightarrow b \in T$; we must then have $P_{P}-P_{S} \in T$, and since $P_{P}-P_{S} \equiv P_{P^{\prime}} \bmod 5, P_{P^{\prime}} \in T, F-P_{P^{\prime}} \notin T$. By the red antichain condition, if $F-P_{P} \preccurlyeq a$, then $P_{P} \in T, F-P_{P} \notin T$ As above, this would require $P_{S}-P_{P^{\prime}} \in B$ or $P_{P}-P_{P^{\prime}} \in B$, and $P_{S}-P_{P} \in B$ or $P_{P^{\prime}}-P_{P} \in B$; however, since $P_{P}-P_{S}>0$, we must have $P_{P^{\prime}}-P_{P}, P_{S}-P_{P^{\prime}} \in B$ to allow for red triangles; however, this implies $P_{S}-P_{P}>0$, which is impossible. This, together with the fact that $F-P_{S} \npreceq P_{P}-P_{S}$, implies $F-P_{P}^{\prime} \preccurlyeq a, b$, and this is the unique minimal element below them; it must be true, then that $a \equiv F-P_{P^{\prime}} \equiv P_{P} \bmod 5$, which would require $P_{P} \in T$, but this has already been shown to be impossible.

Lemma 9.81. If $m(S)=5, h(S) \geq 1, A(T \cup S)=S$ and $|T \cap P F(S)|=1$, then T can only be one of the following:

- T_{2} generated by $F-P_{k}$, it exists iff $G P F(S)$ has two connected components, it is self dual
- T_{3} generated by $P_{k}-P_{3 k}$, it exists iff $P_{k}-P_{3 k} \in B(S)$ and $P_{4 k}+P_{3 k} \leq 2 P_{k}$
- T_{4} generated by $P_{3 k}-P_{4 k}$, it exists iff $P_{3 k}-P_{4 k} \in B(S)$ and P_{k} is not connected to $P_{4 k}$ in $\operatorname{GPF}(S)$

Proof:

- $P_{k} \in T$;
- If $F-P_{k} \in T$ then T must be the order ideal generated by $F-P_{k}$, denote it by T_{2}. In this case the graph has 2 connected components, T_{2} is one of the self dual order ideals. $T_{2}^{*}=B(S) \backslash T_{2}$ is another.
- If $F-P_{k} \notin T$ then P_{k} must satisfy a triangle, but $P_{3 k}-P_{k} \not \equiv k(\bmod 5)$ and $P_{4 k}-P_{k} \not \equiv k(\bmod 5)$ so no such T is possible.
- $P_{3 k} \in T$; So $P_{3 k}$ must satisfy a triangle. $P_{4 k}-P_{3 k} \not \equiv 3 k(\bmod 5)$, but $P_{k}-P_{3 k} \equiv 3 k(\bmod 5)$. So if $\left(P_{3 k}, a, b\right)$ is satisfied then $a \preccurlyeq P_{k}-P_{3 k}$. If $a \prec P_{k}-P_{3 k}$ then by corollary $3.14 .1 a \preccurlyeq P_{k}$ which is impossible (in Case 1). So $a=P_{k}-P_{3 k}$ and T is the order ideal generated by $P_{k}-P_{3 k}$. Denote this order ideal by T_{3}, note that in this case $P_{k}-P_{3 k} \in B(S)$
Also $P_{k}-P_{3 k} \npreceq P_{4 k}$ iff $P_{4 k}-\left(P_{k}-P_{3 k}\right) \leq P_{k}$
- $P_{4 k} \in T$; it is similar to case when $P_{3 k} \in T, T$ must be the order ideal generated by $P_{3 k}-P_{4 k}$, we denote it by T_{4}, in this case $P_{3 k}-P_{4 k} \in B(S)$ $P_{3 k}-P_{4 k} \nprec P_{k}$ iff $P_{k}-\left(P_{3 k}-P_{4 k}\right) \leq F$ iff $P_{k}+P_{4 k}-F \leq P_{3 k}$ iff $P_{k}+P_{4 k}-F \notin S$

We are done.
Lemma 9.82. If $m(S)=5, h(S) \geq 1, A(T \cup S)=S$ and $|T \cap P F(S)|=2$, then T can only be one of the following:

- T_{5}, generated by $P_{4 k}-P_{3 k}$ and $P_{4 k}-P_{k}$
- If $P_{4 k}-P_{3 k}=F-P_{k}$ then there is a family of good numerical sets, the number of sets in the family increases by 1 when we go from S to $E(S, 1)$
- T_{6}, generated by $F-P_{k}, P_{3 k}-P_{4 k}$
- T_{2}^{*}, it exists iff $G P F(S)$ has two connected components, it is self dual
- The adjoin of one of the order ideal described above.

Proof:

- $P_{k}, P_{3 k} \in T ; P_{3 k}$ must satisfy a red triangle, say it satisfies $\left(P_{3 k}, a, b\right)$
- If $a \equiv 3 k(\bmod m)$ then $P_{k}-P_{3 k} \in B(S)$ and $a \preccurlyeq P_{k}-P_{3 k}$. And $F-b=P_{3 k}+a \equiv k(\bmod m) . \quad F-b \notin T \Longrightarrow F-P_{k} \notin T$. Therefore P_{k} satisfies a triangle. $P_{3 k}-P_{k}<0$ so its not in $B(S)$, so $P_{4 k}-P_{k} \in B(S)$. Say $\left(P_{k}, a_{1}, b_{1}\right)$ is satisfied then $a_{1} \equiv 3(\bmod 5)$ and $a_{1} \preccurlyeq P_{4 k}-P_{k}$. Now if $a_{1} \neq P_{4 k}-P_{k}$ then by corollary 3.14.1 $a_{1} \preccurlyeq P_{4 k}$ which is a contradiction. Therefore $a_{1}=P_{4 k}-P_{k}$ Also by corollary 3.19.1 $a_{1}=a$, so $F-b=P_{3 k}+a=P_{3 k}+P_{4 k}-P_{k}=$ $A_{3 k}+A_{4 k}-A_{k}-m$. Max embedding dimension implies $F-b+m \in S$, $F-b \notin S$ shows $F-b=P_{k} \in T$ and we have a contradiction.
- If $a \equiv k(\bmod m)$ then $P_{4 k}-P_{3 k} \in B(S)$ and $a \preccurlyeq P_{4 k}-P_{3 k}$. Now if $a \neq P_{4 k}-P_{3 k}$ then by corollary 3.14.1 $a \preccurlyeq P_{4 k}$ which is a contradiction. Therefore $a=P_{4 k}-P_{3 k}$
Now if $P_{4 k}-P_{3 k} \neq F-P_{k}$ then by corollary ?? $F-P_{k} \notin T$ and hence P_{k} satisfies a triangle. $P_{3 k}-P_{k} \equiv F(\bmod 5)$ so $P_{3 k}-P_{k} \notin B(S)$. Therefore $P_{4 k}-P_{k} \in B(S)$ and $a_{1} \preccurlyeq P_{4 k}-P_{k}$. (here $\left(P_{k}, a_{1}, b_{1}\right)$ is the triangle that is satisfied). Next if $a_{1} \neq P_{4 k}-P_{k}$ then $a_{1} \preccurlyeq P_{4 k}$ which is impossible. So $a_{1}=P_{4 k}-P_{k}$. It follows that T is generated by $P_{4 k}-P_{3 k}$ and $P_{4 k}-P_{k}$. We denote this order ideal as T_{5}
On the other hand if $P_{4 k}-P_{3 k}=F-P_{k}$ then $P_{4 k}-\left(F-P_{k}\right)=P_{3 k} \notin$ S, in this case all order ideals not containing $P_{4 k}$, and containing $F-P_{k}, P_{3 k}$ work. Note that the number of such order ideals increases by one from S to $E(S, 1)$
- $P_{k}, P_{4 k} \in T$; then $P_{4 k}$ does not have its conjugate in T, and hence must satisfy a red triangle $\left(P_{4 k}, a, b\right) . P_{k}-P_{4 k} \equiv F(\bmod 5)$ so we must have $P_{3 k}-P_{4 k} \in B(S), a \preccurlyeq P_{3 k}-P_{4 k}$. If $a \neq P_{3 k}-P_{4 k}$ then by corollary 3.14.1 $a \preccurlyeq P_{3 k}$ which is a contradiction. Therefore $a=P_{3 k}-P_{4 k}$.
$P_{3 k}-P_{k} \equiv F(\bmod 5)$ and $P_{4 k}-P_{k} \equiv P_{3 k}(\bmod 5)$ so neither can be in T and hence P_{k} cannot satisfy a red triangle. So $F-P_{k} \in T$ and T is generated by $F-P_{k}, P_{3 k}-P_{4 k}$. Denote this order ideal by T_{6}
- $P_{3 k}, P_{4 k} \in T$;
- If both $F-P_{3 k}, F-P_{4 k}$ are in T then T is self dual and $\operatorname{GPF}(S)$ has two connected components.
- If only $F-P_{3 k}$ is in T then $T^{*} \cap P F(S)=\left\{P_{k}, P_{4 k}\right\}$ and hence $T=T_{6}^{*}$
- If only $F-P_{4 k}$ is in T then $T^{*} \cap P F(S)=\left\{P_{k}, P_{3 k}\right\}$ so either $T=T_{5}^{*}$ or T is the adjoin of a good numerical set of the family described in that case.
- If neither of $F-P_{3 k}, F-P_{4 k}$ is in T then they both must satisfy a triangle. $P_{k}-P_{4 k} \equiv F(\bmod 5)$ and $P_{3 k}-P_{4 k} \equiv 4 k(\bmod 5)$, so $P_{3 k}-P_{4 k} \in B(S)$. Also $P_{k}-P_{3 k} \equiv 3 k(\bmod 5), P_{4 k}-P_{3 k} \equiv k(\bmod 5)$, so $P_{k}-P_{3 k} \in B(S)$. Say the triangles being satisfied are ($P_{3 k}, a_{1}, b_{1}$) and $\left(P_{4 k}, a_{2}, b_{2}\right) . a_{1} \preccurlyeq P_{k}-P_{3 k}$, in fact $a_{1}=P_{k}-P_{3 k}$ (because $\left.P_{k} \notin T\right) . F-P_{3 k} \preccurlyeq a_{2} \preccurlyeq P_{3 k}-P_{4 k}, F-b_{2}=P_{4 k}+a_{2} \equiv 3 k(\bmod 5)$ which contradicts corollary 3.19.1

We are done
Lemma 9.83. If $m(S)=5, h(S) \geq 1, A(T \cup S)=S$ and $|T \cap P F(S)|=3$, then T can only be one of the following:

- $T_{1}^{*}=B(S)$
- T_{3}^{*}
- T_{4}^{*}

Proof: If T has at least one minimal element then T^{*} has ≤ 2 PseudoFrobenius numbers and is covered by previous lemmas.

Otherwise $P_{k}, P_{3 k}, P_{4 k}$ must all satisfy red triangles. But the largest one among them cannot, so no such T exists.

Theorem 9.84. If $m(S)=5, h(S) \geq 1$ then either $P(E(S, 1))=P(S)$ or $P(E(S, 1))=P(S)+2$

Proof: Follows from last three lemmas.
Theorem 9.85. If $m(S)=5, h(S) \geq 1$ then $P(E(S, 1))=P(S)$ implies $P(S) \leq 8$

Corollary 9.85.1. $P \geq 10$ implies $\#\{S \mid m(S)=5, P(S)=P, F(S) \leq F\}=$ $\#\{S \mid m(S)=5, P(S)=P+2, F(S) \leq F+5\}$

Lemma 9.86. If $m(S)=5, h(S) \geq 1$ and S is not bad then

- $P_{3 k}-P_{k} \notin B$
- $P_{k}-P_{4 k} \notin B$
- P_{k} is connected to $P_{4 k}$ in $\operatorname{GPF}(S)$ iff $P_{k}-P_{3 k} \in B$ iff $P_{4 k}-P_{3 k} \in B$
- $P_{3 k}$ is connected to itself iff $P_{3 k}-P_{4 k} \in B$
- $P_{4 k}$ is connected to itself in $B(S)$ iff $P_{4 k}-P_{k} \in B$

Corollary 9.86.1. Under the assumptions of the lemma an edge from P_{k} to $P_{4 k}$ and a loop on $P_{3 k}$ cannot simultaneously exist

Corollary 9.86.2. Under assumptions of the lemma

- T_{1}, T_{1}^{*} exist
- T_{2}, T_{2}^{*} exist iff P_{k} is not connected to $P_{4 k}$ in $G P F(S)$
- T_{3}, T_{3}^{*} exist iff P_{k} is connected to $P_{4 k}$ in $G P F(S)$ and $P_{4 k}+P_{3 k} \leq 2 P_{k}$
- T_{4}, T_{4}^{*} exist iff $P_{3 k}$ is connected to itself in $G P F(S)$
- T_{5}, T_{5}^{*} exist iff P_{k} is connected to $P_{4 k}$ and there is a loop around $P_{4 k}$ in $G P F(S)$
- T_{6}, T_{6}^{*} exist iff there is a loop around $P_{3 k}$ in $G P F(S)$

Theorem 9.87. If $m(S)=5, h(S) \geq 1$ and $F+P \neq Q+R$ for $\forall P, Q, R \in$ $P F(S) \backslash\{F\}$. Then:

Note the trivial edges of $G P F(S)$ are the edge between $P_{3 k}, P_{4 k}$ and loop on P_{k}

- If $G P F(S)$ only has the trivial edges then $P(S)=4$
- If the only non trivial edge on $G P F(S)$ is a loop on $P_{3 k}$ then $P(S)=8$
- If the only non trivial edge on $\operatorname{GPF}(S)$ is a loop on $P_{4 k}$ then $P(S)=4$
- If the only non trivial edges on $\operatorname{GPF}(S)$ are loops on $P_{3 k}$ and $P_{4 k}$ then $P(S)=8$
- If the only non trivial edge is P_{k} connected to $P_{4 k}$ then $P(S)=4$
- If the only non trivial edges are the edge between $P_{k}, P_{4 k}$ and a loop around $P_{4 k}$ then $P(S)=4$ or 6 according to $P_{4 k}+P_{3 k}>2 P_{k}$ or $P_{4 k}+P_{3 k} \leq 2 P_{k}$

Proof:
Claim1: If P_{k} is connected to $P_{4 k}$ but there is no loop around $P_{4 k}$ then $P_{4 k}+P_{3 k} \leq 2 P_{k}$

This is because P_{k} connected to $P_{4 k}$ means $P_{k}-P_{4 k}-F \in S$ which is iff $P_{k}+P_{4 k}-F>P_{3 k}$ And there is no loop around $P_{4 k}$ so $2 P_{4 k}-F \notin S$ i.e. $2 P_{4 k}-F \leq P_{k}$. Adding the two $\left(P_{k}+P_{4 k}-F\right)+P_{k}>P_{3 k}+\left(2 P_{4 k}-F\right)$ i.e. $2 P_{k}>P_{3 k}+P_{4 k}$

Lemma 9.88. $P_{4 k}+P_{3 k} \geq 2 P_{k}$ (it follows in some manner from kunz inequalities)

Corollary 9.88.1. S is of max $E D, m(S)=5, S$ is not bad, $P(S)=6$ imply $P_{4 k}+P_{3 k}=2 P_{k}$.

In particular they lie on a hyperplane and have density 0
Theorem 9.89. For multiplicity $5, P(S)=4,8$ have positive densities, all other values of P combined have density 0 .

Moreover density of $P(S)=4$ is approximately 0.29 :
And density of $P(S)=8$ is approximately 0.71 : (exact values can calculated by computing volumes)

Remark 9.90. We observe that finitely many hyperplanes divide the polyhedron into a number of regions, in each region the semigroups have the same $G P F(S)$ and it determines $P(S)$

Here is the distribution of various values of P for semigroups with $F \leq 133$

The following graphs show the density different values of P plotted against Frobenius number.

$$
m=5 \text {, density of } P(S)=8
$$

If we restrict ourselves to numerical semigroups that are of max embedding, not on bad hyperplanes and not on the hyperplane $P_{4 k}+P_{3 k}=2 P_{k}$ (we know that such semigroups have density 1). Then we get the following graphs (remember that $P(S)$ can only be 4 or 8) which show the density of $P(S)=4$
converging to around 71% and of $P(S)=8$ to around 29%
$m=5, P(S)=4$, Max ED, not on singular hyperplanes

\qquad

9.6 Multiplicity 6

Conjecture 9.91. If $m(S)=6$ (and no further restrictions) then $P(S)$ can take all values other than 5

Conjecture 9.92. Say S is of Multiplicity 6 and of max E.D. and not bad. Say the generators of S are $\left\langle 6, a_{1}, a_{2}, a_{3}, a_{4}, F\right\rangle$ s.t. $a_{1}<a_{2}<a_{3}<a_{4}$ then:

- $P(S)$ is even as conjectured earlier
- If $P(E(E(S, 1)))=P(S)$ then $P(S)$ is one of $4,6,8,12,16$
- If $P(S) \equiv 2(\bmod 4)$ and $P(S) \neq 6$ then $P(E(S, 1))=P(S)+2$
- If $P(E(S, 1)) \neq P(S)$ then $a_{1}+a_{4}=a_{2}+a_{3}$
- $a_{1}+a_{4} \neq a_{2}+a_{3}$ implies $P(S)=4,6,8,12,16$
- If whenever $\left\{i_{1}, i_{2}\right\} \neq\left\{j_{1}, j_{2}\right\}$ implies $A_{i_{1}}+A_{i_{2}} \neq A_{j_{1}}+A_{j_{2}}$ then $P(S)=$ $4,8,16$ and thus these are the only values that can have positive density
- $P(S)=4,8,16$ are the only ones that have positive density

Definition 9.93 (Singular Hyperplanes). A hyperplane of the form $A_{i_{1}}+A_{i_{2}}=$ $A_{j_{1}}+A_{j_{2}},\left\{i_{1}, i_{2}\right\} \neq\left\{j_{1}, j_{2}\right\}$ is called a singular hyperplane.

The following graph plots densities of of P for semigroups of $F \leq 79$ with max embedding dimension, not lying on a singular hyper plane (we know that singular hyperplanes behave differently and have density 0). The graph shows the only P values are 4, 8, 16 and 4 appears around 80% times.

The next graphs show how densities of different values of P evolve with the frobenius number. We again restrict to semigroups of max embedding dimension not lying on singular planes. It appears that all 3 will converge to positive values.

9.7 Conjectures Regarding densities of $P(S)$ in kunz Polyhedron of fixed multiplicity

Conjecture 9.94. S is of max embedding dimension

- If S is not bad then $P(S)$ is even
- If S is not bad and whenever $i_{1}, i_{2}, j_{1}, j_{2}$ are pairwise distinct $A_{i_{1}}+A_{i_{2}} \neq$ $A_{j_{1}}+A_{j_{2}}$ then $P(S)=P(E(S, 1))$
- If whenever $\left\{i_{1}, i_{2}\right\} \neq\left\{j_{1}, j_{2}\right\}$ implies $A_{i_{1}}+A_{i_{2}} \neq A_{j_{1}}+A_{j_{2}}$ then $P(S)$ takes the values (and only these values): $2^{2}, 2^{3}, \ldots 2^{m-2}$ and thus these are the only values that can have positive density
- $2^{2}, 2^{3}, \ldots 2^{m-2}$ all have positive densities
- density of $2^{\left\lceil\frac{m}{2}\right\rceil-1}$ is the largest among them (probably >0.5)
- density of $2^{\left\lceil\frac{m}{2}\right\rceil}$ is the second highest

Conjecture 9.95. The hyperplanes $A_{i_{1}}+A_{i_{2}}=A_{j_{1}}+A_{j_{2}}$ divide the kunz polyhedron into a number of regions. All points in the same region take the same value of $P(S)$

Remark 9.96. Things to investigate further:
Can the degree of the polynomial of $P(E(S, n))$ be bounded in terms of the number of hyperplanes that S is on.

For $k<m-2$ if $2^{k} \backslash P(S)$ can we say which hyperplanes S must be on depending on k

Remark 9.97. Possible approach:
Prove that If S is of max embedding dimension and not on any of the hyperplanes described above then the only red triangles that can be satisfied are of the form $(Q, P-Q, F-P)$.

If this is true then all good numerical sets are generated by subsets of $\operatorname{DPF}(S)$ and the DPF-Poset determines which subsets of $\operatorname{DPF}(S)$ generate good numerical sets.

Numerical semigroups in the same region determined by those hyperplanes have the same DPF-Posets

Some kind of combinatorial argument to show that $P(S)$ must be a power of 2

This graph shows the density of values of P for $m=7$ when restricted to semigroups of max embedding dimension that are not on a singular hyperplane

The next 4 graphs show that the densities of $P(S)=4,8,16,32$ actually seem to converge to positive values.

For higher multiplicities generating this data is a bit harder as even though semigroups outside of non-singular hyperplanes have density 1 , they are quite sparse for smaller frobenius numbers

We therefore plot the densities of P values among Max ED, non bad semigroups, we see clear spikes at certain powers of 2

Note that for $m=10,11$ the total number of semigroups being considered is 171 and 176 respectively which is much smaller than previuos once. Nonetheless we still see spikes at certain powers of 2

10 Algorithmically Determining P(S)

We consider empty voids, noble semigroups, and ignoble semigroups separately.

```
if empty void then
        \(\mathrm{P}(\mathrm{S})=1\)
end if
if noble semigroup then
    check Pseudo-Frobenius Graph for \(\mathrm{P}(\mathrm{S})\)
end if
for all subsets of maximal void elements do
    put complement into "bad set", put subset into "good set"
    for all elts of subset do
            construct list of inclusion conditions
    end for
    construct all combinations of conditions
    for all combinations constructed do
            add described numbers to "good set", "bad set"
            take order ideal of "bad set", order filter of "good set"
            check that "good set" and "bad set" do not overlap
            for all antichains of remaining elts of void do
                add one to \(\mathrm{P}(\mathrm{S})\)
            end for
    end for
end for
return \(\mathrm{P}(\mathrm{S})\)
```

