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ABSTRACT. In this article, we provide full characterizations of the associated semi-
groups of a numerical set and its complement when either one is a numerical semigroup.
We also further develop a tool that arose during our investigation, eventually showing
that they allow us to define a partial order on the set of all numerical semigroups that
has thus far been unexplored.
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1 Introduction

We call a subset of the nonnegative integers a numerical set provided it contains 0 and only has
finitely many positive integers missing from the set. A numerical semigroup is a numerical set with
additive closure. There are many numerical sets which are not numerical semigroups, but one can
always find a natural numerical semigroup within the set which we will call the atomic monoid of
the set or the associated semigroup of the set. We denote the associated semigroup of a numerical
set S as A(S), and it is given by

A(S) = {s ∈ S | s+ S ⊆ S}.

It is straightforward to show that A(S) is in fact a numerical semigroup. Also note that if S was a
numerical semigroup, then the associated semigroup of S is itself since S is closed under addition.

Kaplan et al. [1] has shown that numerical sets have a bijective correspondence to Young Diagrams.
A Young Diagram or sometimes tableau is an array given by stacking rows of squares of varying
length, but with the property that the rows are decreasing in length as they progress down. An
example is given below. If one wishes to understand the bijection between Young diagrams and
numerical sets, please refer to [1].

Figure 1: An example of a Young Diagram

Every box on the Young Diagram is associated to a hook. The hook is the set of boxes below and
to the right of the particular box we are interested in. The number of boxes in the hook is called
the hook length of that position or box of interest. This is seen in the following figure, where the
number in each square is the hook length of that square, and a particular hook with hook length 5
is emphasized in green.
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11 9 7 4 3 1

9 7 5 2 1

6 4 2

5 3 1

3 1

1

Figure 2: Since there are 2 squares to the right and 2 below, the hook length at this
position is 5.

Kaplan et al. [1] have also shown that the hook lengths of a numerical set’s Young diagram
correspond precisely to the gaps of its associated semigroup. Herman and Chung [3] found that a
given hook multi-set is not unique to a particular tableau, meaning there are often many numerical
sets that correspond to a particular associated semigroup. They did however, find that a numerical
set is fully characterized by its hook multi-set accompanied by the hook multi-set of the complement
of the Young Diagram. The complement of a Young Diagram is found by completing the rectangular
grid with length and width of the first row and first column respectively. A picture is shown below.
A more precise definition of the complementary tableau can be found in [3].

Figure 3: The complement of the Young diagram is in pink. Notice it is also a Young
diagram when rotated by 180 degrees

Note that if you rotated the complement by 180 degrees, it is then also a tableau, and thus also
corresponds to a unique numerical set. Therefore every numerical set has a unique complement
numerical set. The converse, however, is not true: a numerical set can be the complementary
numerical set of many numerical sets. If S is a numerical set, we will refer to this set as the
complementary numerical set of S or S’s complement for short, and denote it S̃. Combining
the results of Herman and Chung with Kaplan’s, we interpreted there to be underlying structure
relating the associated semigroups of complementary numerical sets. In the succeeding sections, we
characterize this correspondence for when either of the numerical sets are numerical semigroups.
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2 Notation and Terminology

In this text, we will adopt the following notation for the objects of interest. We will typically
use λ to denote the Young Diagram, with λ∗ being λ’s conjugate, and λ̃ being its complement.
Similarly, S (and other capital, English letters) will primarily represent numerical sets, with S∗ its
conjugate, and S̃ its complement (note this is not the typical set complement that would be defined
as N0\S). Since these objects are so fundamentally related, we may occasionally use λ(S) to mean
“the diagram associated with the numerical set S” when we wish to emphasize the difference, but
otherwise S will refer to both the numerical set and its Young Diagram. We will call a numerical
semigroup “nontrivial” if it is not all of the nonnegative integers (hereafter N0).

We will also commonly refer to the following quantities. Most of these are common terminology to
anyone who has previously studied numerical semigroups, but we amend some of their definitions
to extend to numerical sets. For the following, let S be a numerical set. Then

• The Frobenius number F (S) of a numerical set S is the largest positive integer not in the set
i.e. F (S) = max{N0\S}

• C(S) = F (S) + 1 is the conductor of S. This is the first integer such that everything after it
is in the set. To denote this, we will typically use a right arrow → after the conductor.

• Small elements of S are elements in S that are less that F (S). Large elements are elements
larger than F (S).

• The genus of a numerical set is the number of positive integers not in S (these are frequently
called the gaps of S). The genus of S is denoted g(S). i.e. g(S) = |N0\S|. We will call N0\S
the gap set of S.

• The multiplicity of S is denoted m(S) and is the first nonzero element that is larger than the
first gap of S. That is, m(S) = min{x ∈ S : x > n} where n = min(N0\S).

• If S is a numerical semigroup, then the atoms of S are the elements that cannot be written
as a sum of smaller elements. These are also often called the generators of S because every
element of S can be expressed as a linear combination of them.

• The embedding dimension of S is the number of atoms, and it is denoted e(S).

• The Hook set of S is the set of hooks in the Young Diagram of S. The Hook multi-set of S is
the set of hooks in the Young Diagram of S counting repeats.

Example 2.0.1. For the numerical semigroup S = {0, 2, 4, 6→}
C(S) = 6,
H(S) = {1, 3, 5},
F (S) = 5,
g(S) = 3,
m(S) = 2.
The generators are < 2, 7 >, and thus e(S) = 2.

We will later introduce more terms as we need them.
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3 The Complementary Numerical Set

We begin our investigation by finding a better description of the complementary numerical set. We
then describe some of the structural consequences the original set and the complement set impose
on each other.

Definition 3.0.1. Let S be a numerical set. We denote its Base B(S) as its biggest small element,
namely, B(S) = max{s ∈ S | s < F (S)}

Theorem 3.0.2. Let S be a numerical set with Base B. If n ≤ B, then n ∈ S if and only if
B − n ∈ S̃

Proof. Consider the following Young tableau:

B

l . . . B −B
... B − l

p

n B − p
... B − n

Since B is the largest element that remains in the set S, then we have that the horizontal line that
corresponds to B in S is the same as the one that corresponds to 0 in S̃. From there, one can move
to the adjacent line in S (the one that corresponds to B − 1 in S). Since we progressed by 1, it
corresponds to 1 in S̃. This continues iteratively, and one can form couplets that sum to B (e.g.
(1, B − 1), (2, B − 2), ...(i, B − i)). Since a horizontal line in S is a horizontal line in S̃, and the
same is true for vertical lines, these pairs must both be in their respective sets or not at all.

Lemma 3.0.3. Let S be a numerical set with S̃ its complement. Then {B(S)→} ⊆ S̃.

Proof. Since S is a numerical set, 0 ∈ S and due to Theorem 3.0.2, then B(S) ∈ S̃. In the Young
diagram for S̃, since B(S) ∈ S̃ corresponded to 0 ∈ S, then it is the last line of the Young Diagram,
and therefore everything greater than B(S) is also in S̃.

To emphasize, Lemma 3.0.3 only gives us C(S̃) ≤ B(S). We get equality only when 1 /∈ S.

Theorem 3.0.2 and Lemma 3.0.3 combine together to give a full characterization of S̃.
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Theorem 3.0.4. Let S be a numerical set with complement S̃. Then,

S̃ = {B(S)− s | s ∈ S and s ≤ B(S)} ∪ {B(S)→}.

Proof. Let t ∈ N0. Then there are two cases.
Case 1: If t ≤ B(S), then by Theorem 3.0.2, t ∈ S̃ if and only if t ∈ {B(S) − s | s ∈ S and s ≤
B(S)}.
Case 2: If t > B(S), then t ∈ {B(S)→} and from our Lemma t ∈ S̃. Together these cases give us
the desired equality.

We now shift our attention to when at least one of the two sets is a numerical semigroup.

Theorem 3.0.5. Consider a numerical semigroup S with Base B and multiplicity m. If n ∈ S̃ and
m ≤ n ≤ B, then n−m ∈ S̃.

Proof. Since n ∈ S̃ and m ≤ n ≤ B, then by Theorem 3.0.2 then B−n ∈ S. Since S is a semigroup,
B−n+m = B− (n−m) ∈ S. Since m ≤ n, 0 ≤ n−m, then B− (n−m) ≤ B and again by 3.0.2,
n−m ∈ S̃ as required.

Corollary 3.0.6. If S is a numerical semigroup with Base B and multiplicity m, then km + r ∈
S̃ =⇒ jm+ r ∈ S̃ for 0 ≤ j ≤ k.

Since we will use it later, we emphasize the contrapositive of Theorem 3.0.5:
“If s /∈ S̃ and 0 < s < B(S)−m(S), then s+m(S) /∈ S̃ ”.

There is an analogue theorem to the previous for when S̃ is a semigroup.

Theorem 3.0.7. Consider a numerical set S with Base B, and suppose S̃ is now a numerical
semigroup. If t ∈ S with m(S̃) ≤ t ≤ B(S), then t−m(S̃) ∈ S.

Proof. The proof is similar. From Theorem 3.0.2, we have that if t ∈ S, then B − t ∈ S̃. Since S̃
is a semigroup, then we must have B − t + m(S̃) = B − (t −m(S̃) ∈ S̃. Therefore we can again
conlude we can conclude that t−m(S̃) ∈ S.

Corollary 3.0.8. If S̃ is a numerical semigroup, then km(S̃) + r ∈ S =⇒ jm(S̃) + r ∈ S for
0 ≤ j ≤ k.

Again the contrapositive of 3.0.7 will be be useful:
“y /∈ S and 0 < y < B(S)−m(S̃)⇒ y +m(S̃) /∈ S.”

Fundamental to both of the previous theorems was the need for one of the sets to have additive
closure. If neither of them do, you can still establish a similar statement with instead using the
additive closure of the associated semigroup.
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Theorem 3.0.9. Consider a numerical set S and its complement S̃. If n ∈ S̃ and m(A(S)) ≤ n ≤
B, then n−m(A(S)) ∈ S̃. Similarly, if n ∈ S and m(A(S̃)) ≤ n ≤ B, then n−m(A(S̃)) ∈ S

The proofs are identical to those of the previous two.

Note all the theorems after 3.0.5 to this point don’t actually require the subtraction to be by the
multiplicity, merely just an element in the semigroup. For our purposes however, we will only need
the statements as they are written.

To conclude this section, we will put a series of properties that we can determine of S̃ from knowing
S. All but 2 use the step height and step width sequences of S N(S) and M(S) respectively. These
will not be introduced until Section 8, so it is advisable to visit there first if needed.

Theorem 3.0.10. Let S be a numerical set with M(S) = (M0, . . . ,Mk) and N(S) = (N0, . . . , Nk).
The following are properties of its complement S̃:

1. N(S̃) = (Nk−1, Nk−2, . . . , N2, N1) and M(S̃) = (Mk,Mk−1, . . . ,M3,M2)

2. F (S̃) = F (S)− (M0 +Nk) = B(S)−M0

3. B(S̃) = B(S)− (M0 +N0) = B(S)−m(S)

4. m(S̃) = B(S)−B2(S)

5. N0\S̃ = B(S)− N0\S

6. g(S̃) = g(S)−Nk

7. H(S̃) = {a− b : a ∈ b, b /∈ S, & b < a ≤ B(S)}

8. λ(S̃) =
∑k

i=0Mi − λ(S)

Proof. 1. This will be shown in section 8

2. F (S̃) = B(S)−min{N0\S} = B(S)−M0 = (F (S)−Nk)−M0 = F (S)− (M0 +Nk)

3. B(S̃), by definition, is the last element in S̃ before the conductor. So by 3.0.2, it corresponds
to the first element in S after the first set of gaps. This element is M0 +N0 in S. So, by 3.0.2,
M0 +N0 ∈ S =⇒ B(S)− (M0 +N0) = B(S̃) ∈ S̃.

4. Since elements s ∈ S map to B − s ∈ S̃, then its clear that to find the smallest element
after the first gap of S̃, we should find the largest element in {Mk−1}. This is precisely the
definition of B2(S), so B2(S) maps to mS̃ and m(S̃) = B(S)−B2(S).

5. In light of Theorem 3.0.2, an integer s is a gap of S if and only if B − s is a gap of S̃. Thus,
N0\S̃ = B(S)− N0\S.

6. Since the N-sequence represents all strings of gaps,
∑
Ni is the genus of S. From property 1,

it is clear that g(S̃) = g(S)−Nk.
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7. Using the definition of the Hook set and part 5 of this theorem,

H(S̃) = {b̃− ã|b̃ ∈ N0\S̃, ã ∈ S̃, ã < b̃

= {(B(S)− b)− (B(S)− a)|b ∈ N0\S, b < B(S), a ∈ S,B(S)− b > B(S)− a ≥ 0}
= {a− b|b ∈ N0\S, a ∈ S, b < a ≤ B(S)}

8. Consider an arbitrary r in the tuple λ(S). There exists a corresponding r̃ =
∑k

i=0Mi − r in

λ(S̃). This map is bijective with itself as an inverse, so in fact λ(S̃) =
∑k

i=0Mi − λ(S).

4 Arithmetic Sequences

Here we begin to answer this paper’s first essential question, “When are a numerical set and its
complement both numerical semigroups?” This section will provide the answer for a particular
family of semigroups, the family of generalized arithmetic semigroups. We will see that most of
these semigroups have complements that are not numerical semigroups and discuss the few cases in
which the complement is a numerical semigroup.

Definition 4.0.1. We call a numerical semigroup S a Generalized Arithmetic Semigroup if it
is generated by generators that are from a sequence of arithmetic progression. That is, for some
a, h, d, k ∈ N with 1 ≤ k ≤ a− 1 and gcd(a, d) = 1,

S = 〈a, ha+ d, ha+ 2d, . . . , ha+ kd〉 .

4.1 h=1

We will begin our investigation in the case of a standard arithmetic progression, in particular, when
h=1.

Theorem 4.1.1. If we have an arithmetic semigroup with maximum embedding dimension, S =
〈a, a+d, . . . , a+(a−1)d〉 with a ≥ 3 and d ≥ 2 and we do not have a = 3 and d = 2 simultaneously,
then we always have (a− 1)d− 1 ∈ S and at least one of (a− 1)d− 2 or (a− 1)d− 3 is in S.

Proof. It is well known that it is possible to compute the Frobenius Number of a semigroup S from
its Apery Set Ap(S) and multiplicity m(S), given by F (S) = max(Ap(S)) −m(S). Additionally
it is known that the Apery Set of an arithmetic semigroup with maximal generators is Ap(S) =
{0, a+d, a+2d, . . . , a+(a−1)d}. From this, it is clear that for our arithmetic progression semigroup
F (S) = (a− 1)d. Now consider b = (a− 1)d− 1 + a. Since a > 1 by our hypothesis, then b > F (S),
so b ∈ S. Assume to the contrary that B = (a − 1)d − 1 /∈ S. Then b = (a − 1)d − 1 + a ∈
Ap(S) by definition. However, we know that elements of Ap(S) have the form a + kd for some
k = 1, 2, . . . , a−1. Hence, b = (a−1)d−1+a = a+kd for some k ∈ N therefore −1 = (k+1−a)d,
so d | −1, but this is contradiction since d > 0 and d 6= 1. So we must have B = (a− 1)d− 1 ∈ S.
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Suppose d 6= 2 and suppose towards contradiction that (a− 1)d− 2 /∈ S. Then

(a− 1)d− 2 + a > (a− 1)d− 2 + 2 = (a− 1)d = F (S)

, so (a− 1)d− 2 + a ∈ S and (a− 1)d− 2 + a ∈ Ap(S). Since

(a− 1)d− 2 + a = (a− 1)(d+ 1)− 1 > (2− 1)(1 + 1)− 1 = 1

we must have (a−1)d−2+a = a+kd for some k = 1, . . . , a−1. Rearranging we see −2 = (k−a+1)d
so d| − 2 and we must have d = 1 or d = 2. By assumptions we have d 6= 1 and d 6= 2, so this is a
contradiction. Thus we have (a− 1)d− 2 ∈ S.

Now consider d = 2 and a > 3. Suppose towards contradiction that (a− 1)d− 3 /∈ S. Then

(a− 1)d− 3 + a > (a− 1)d = F (S)

so (a− 1)d− 3 + a ∈ S and (a− 1)d− 3 + a ∈ Ap(S). Since

(a− 1)d− 3 + a = (a− 1)(d+ 1)− 2 > (3− 1)(2 + 1)− 2 = 2 > 0

we must have (a− 1)d− 3 + a = a+ kd for some k = 1, . . . , a− 1, so −3 = (k− a+ 1)d and d| − 3.
However, 2 6 | − 3, so this is a contradiction and we must have (a− 1)d− 3 ∈ S.

Theorem 4.1.2. For an arithmetic semigroup S with h = 1, k = 1, and a ≥ 3, S is symmetric
and S̃ is not a semigroup.

Proof. Let h = 1, k = 1, and a ≥ 3. So all of the semigroups are generated by 2 elements. From
[5], we know any semigroup generated by 2 elements will be symmetric. Note, a ≥ 3 so at least
1, 2 /∈ S, so by symmetry at least F (S)− 1, F (S)− 2 /∈ S. If F (S)− 1, F (S)− 2 /∈ S then 0, 1 ∈ S̃.
Since 1 ∈ S̃, then every element has to be in the complement for it to be a numerical semigroup.
However, at least 0, 1 ∈ S so in our complement, there are at least 2 elements not S̃. Therefore S̃
is not a numerical semigroup.

Theorem 4.1.3. An arithmetic semigroup S with h = 1, k = a−2, and a ≥ 3, S̃ is not a numerical
semigroup.

Proof. By Corollary 2.4 of [2] since a ≡ 2 mod k, S is symmetric, so for the same reason as in the
proof to Theorem 4.1.2, S̃ is not a numerical semigroup.

4.2 General h ≥ 1

We will now extend our investigation by generalizing to h ≥ 1.

In spirit of this text’s first essential question on when S and S̃ are both semigroups, we will proceed
by establishing a necessary conditions on S.

Lemma 4.2.1. Let S be a numerical set with Base B and n = max{s ∈ S : {0, 1, . . . , s} ⊆ S} and
m = min{s ∈ S : s > n}. If S ∩ {n− 1, . . . , n−m+ 1} 6= ∅, then S̃ is not a numerical semigroup.

11



Proof. Consider B ∈ S and l ∈ S with l ∈ {B− 1, . . . B−m+ 1}. Then the young tableau will be:

. . . . . . . . . B

. . . . .
.

...
...

...
... l

...
...

...
... . .

.

m− 1

m− 2

...

0 1 . . . n n+ 1

So, 0 ∈ S̃ since B ∈ S and B − l ∈ S̃ since l ∈ S. Since B − m + 1 ≤ l ≤ B − 1 we have
1 ≤ B − l ≤ m − 1. Since n + 1, . . . ,m − 1 /∈ S we have B − n − 1, . . . , B −m + 1 /∈ S̃ however
|{B − n − 1, . . . , B −m + 1}| = m − n − 1 and 1 ≤ B − n − 1 ≤ m − n − 1 so some multiple of
B−n− l is in the set {B−n− 1, . . . , B−m+ 1} meaning S̃ is not closed under addition and thus
is not a numerical semigroup.

Lemma 4.2.2. The arithmentic semigroup S = 〈a, ha+ d, . . . , ha+ kd〉 with h ≥ 1, 1 ≤ k ≤ a−1,
and a and d are relatively prime, has B(S) = F (S)− 1.

Proof. By [2] F (S) = da−1
k
eha + (a − 1)d − a, so F (S) − 1 = da−1

k
eha + (a − 1)d − a − 1. Since

gcd(a, d) = 1 there exist x, y ∈ Z with |x| < d and |y| < a so that xa + yd = 1. If y > 0,
1 = xa+ yd > xa so x < 1

a
and since a is an integer a ≤ 0. If a = 0, then yd = 1 so d|1 which is a

contradiction so in fact we have a < 0. Then we can set y′ = y − a and x′ = x+ d so we still have
x′a + y′d = (x + d)a + (y − a)d = xa + yd = 1 and now −a ≤ y′ ≤ −1 and 0 < x′ < d. Then we
can rewrite

F (S)− 1 = da− 1

k
eha+ (a− 1)d− a− xa− yd = a

(
da− 1

k
eh+ d− x− 1

)
+ d(−1− y) = aq+ di

where q = da−1
k
eh+d−x−1 ≥ 0 since x < d and k ≤ a−1 so da−1

k
eh ≥ 1. Also, 0 ≤ i = −1−y < a−1

since −1 ≥ y > −a. Note, since −1 − y < a − 1 then −1−y
k

< a−1
k

so d−1−y
k
e ≤ da−1

k
e and

d−1−y
k
eh ≤ da−1

k
eh. Also, since x < d, d − x > 0 so da−1

k
eh ≤ da−1

k
eh + d − x − 1. Thus

d i
k
eh = d−1−y

k
eh ≤ da−1

k
eh + d − x − 1 = q, so by Proposition 2.1 in [2] F (S) − 1 = aq + di ∈ S.

Then B(S) = max{n ∈ S : n < F (S)} = F (S)− 1.

Theorem 4.2.3. Let S = 〈a, ha + d, . . . , ha + kd〉 be an arbitrary arithmetic semigroup with 1 ≤
k ≤ a − 1, and gcd(a, d) = 1, a ≥ 3, and d ≥ 2 but not simultaneously a = 3, d = 2, and k = 2.
Then B(S)− 1 ∈ S or B(S)− 2 ∈ S.
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Proof. Suppose d > 2. Suppose towards contradiction that B(S) − 1 /∈ S, then B(S) − 1 + a >
B(S) + 1 = F (S) so B(S) − 1 + a ∈ S and thus B(S) − 1 + a ∈ Ap(S). Notice Ap(S) =
{d i

k
eha+ id : 0 ≤ i ≤ a− 1} is increasing in i since if i > j, then i

k
> j

k
so d i

k
e ≥ d j

k
e and id > jd so

d i
k
eha+ id > d j

k
eha+ jd. Since F (S) + a = B(S) + 1 + a is the largest element of the Apery Set of

S, B(S)+1+a = da−1
k
eha+(a−1)d. Then since B(S) ∈ S, B(S)−1 is the second largest gap of S,

so B(S)− 1 + a is the second largest element of the Apery Set: B(S)− 1 + a = da−2
k
eha+ (a− 2)d.

Note (B(S) + 1 + a)− (B(S)− 1 + a) = 2 and also

(B(S) + 1 + a)− (B(S)− 1 + a) = da− 1

k
eha+ (a− 1)d−

(
da− 2

k
eha+ (a− 2)d

)
= ha

(
da− 1

k
e − da− 2

k
e
)

+ d ≥ d > 2

which is a contradiction. Thus, B(S)− 1 ∈ S.

Now suppose d = 2 and a > 3. If B(S) − 1 ∈ S we are done, so say B(S) − 1 /∈ S and we will
show that B(S)− 2 ∈ S. Suppose towards contradiction that B(S)− 2 /∈ S. Then B(S)− 2 + a >
B(S) + 1 = F (S) so B(S)− 2 + a ∈ S and moreover B(S)− 2 + a ∈ ApS. As before B(S) + 1 + a
is the largest element of the Apery Set, B(S) − 1 + a will be the second largest, so B(S) − 2 + a
must be the third largest element of the Apery Set. Thus, B(S)− 2 + a = da−3

k
eha+ (a− 3)2. We

also have

B(S)− 2 + a = da− 1

k
eha+ 2a− a− 2− 1 + a = da− 1

k
eha+ 2a− 5.

Then

0 = (B(S)− 2 + a)− (B(S)− 2 + a) = da− 1

k
eha+ 2a− 5−

(
da− 3

k
eha+ (a− 3)2

)
= ha

(
da− 1

k
e − da− 3

k
e
)

+ 1 > 0

which is a contradiction, so B(S)− 2 ∈ S.

For the case a = 3, d = 2, and k = 1, S has two generators so S is symmetric, but 1, 2 /∈ S, so
B(S)− 1, B(S)− 2 /∈ S.

Corollary 4.2.4. The arithmetic semigroup S = 〈a, ha+ d, . . . , ha+ kd〉 with a ≥ 3 and d ≥ 2 but
not simultaneously a = 3, d = 2, and k = 2 has S̃ is not a semigroup.

Proof. This is an immediate result of Theorem 4.2.3 and Lemma 4.2.1.

We look briefly at the examples that do not fall under these characterizations (i.e. those that still
could have a complementary semigroup).

Example 4.2.5. S = 〈2, x〉 with x relatively prime to 2

We can rewrite x = 2q + 1 where q ∈ N0. If q = 0, then x = 1, so S = N0. If q > 0 then
S = {0, 2, . . . , 2q →}, so S is a 2-staircase (defined in next section) with q steps.
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Example 4.2.6. a = 3, d = 2, and k = 2

Let S = 〈3, 3h + 2, 3h + 4〉. Then 0, 3, . . . , 3h ∈ S, 3h + 1 is not a multiple of 3 so 3h + 1 /∈ S,
3h+2, 3h+3, 3h+4 ∈ S so every integer greater than 3h+4 will be in S and S = {0, 3, . . . , 3h, 3h+
2→}. Notice that S fits the definition of a truncated 3-staircase (next section) with h+ 1 steps.

Definition 4.2.7. We call a numerical semigroup pseudo-arithmetic if S = 〈a, ha+ d, ha+ 2d, . . . , ha+ kd〉
for some a ∈ N0, h ∈ N, 1 ≤ k ≤ a− 1, and d ∈ Z\{0}. [special thanks to the Geogroup Union for
showing us this]

Proposition 4.2.8. Let S be a pseudo-arithmetic semigroup, i.e. S 〈a, ha+ d, ha+ 2d, . . . , ha+ kd〉
for some a ∈ N, h ∈ N, 1 ≤ k ≤ a − 1, and d ∈ Z\{0}. Then S̃ is a semigroup if and only if
k = a− 1 and d = 1 or a = 3, d = 2, and k = a− 1.

Proof. Suppose S is a pseudo-arithmetic semigroup and S̃ is a semigroup. Then by 6.0.11 (this
theorem is proven and discussed in a later section, but we wanted to put this proposition here to
provide a full characterization of when an arithmetic or pseudo-arithmetic semigroup has comple-
ment also a semigroup), S is a truncated n-staircase with l steps for some n, l ∈ N. So either
S = 〈n, ln+ 1, ln+ 2, . . . , ln+ a− 1〉 in which case a = n, d = 1, and k = a− 1. Or

S = 〈n, ln− j, ln− j + 1, . . . , ln− 1, ln+ 1, ln+ 2, . . . , (l + 1)n− j − 1〉

for j ∈ N, j 6= 0. We would still have a = n and k = n− 1, but now the difference between ln− 1
and ln + 1 is d = 2 but the difference between ln − j and ln − j + 1 is d = 1 so this only works
when n = a = 3, d = 2, k = n − 1. Thus, if S is an arithmetic semigroup with S̃ a semigroup if
and only if k = a− 1 and d = 1 or a = 3, d = 2, and k = a− 1.

5 n-staircases

This section will define a special family of numerical sets and, unlike the family in the last section,
we will later prove that for every S in this family, both S and S̃ are numerical semigroups.

Definition 5.0.1. Let S be a numerical set. We call S an n-staircase with k-steps if S =
{0, n, 2n, . . . , kn→} for n ∈ N\{0, 1}.

Definition 5.0.2. If S is a numerical set. We call S a truncated n-staircase with k steps if and
only if n ∈ N− {1}, j ∈ Z with 0 ≤ j ≤ n− 2, and S = {0, n, 2n, . . . , (k − 1)n, kn− j →}.

In both cases above, we call k the step number of S, or alternatively, S is a staircase with k steps.

We could have easily instead defined a truncated staircase as a numerical semigroup S such that
x ∈ S and x < F (S) implies x is a multiple of m(S), or equivalently, all non-multiplicity generators
are greater than the the Frobenius number. All these above defintions are equivalent.

Note under these definitions an n-staircase is a special case of a truncated n-staircase.
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Theorem 5.0.3. For all n ∈ N and for all k ∈ N, then S a truncated n-staircase with k steps is a
numerical semigroup.

Proof. Let S be a truncated n staircase with k steps. Then S = {0, n, 2n, . . . , (k− 1)n, kn− j →}.
Clearly S is cofinite and contains 0, all that remains is to show additive closure. Let a, b ∈ S. If
a ≥ kn − j or b ≥ kn − j, then a + b ≥ kn − j so a + b ∈ S. If both a < kn − j and b < kn − j,
then a, b ∈ {0, n, 2n, . . . , (k− 1)n} so a = in and b = jn for some i, j ∈ {0, 1, . . . , k− 1}. Therefore,
a + b = (i + j)n with i + j ∈ N, so a + b ∈ S since n ∈ S. Thus, S is closed under addition.
Therefore, S is a numerical semigroup.

Theorem 5.0.4. For a semigroup S, S is an n-staircase (j = 0) if and only if both B(S) ≡ 0
mod m(S) and F (S) + 1 ≡ 0 mod m(S).

Proof. ⇒
This is clear by Definition 5.0.1.
⇐
Let m = m(S). Suppose S is a numerical semigroup and B(S) = km(S) for k ∈ N0. Naturally,
this gives us F (S) + 1 = (k + 1)m. Then suppose towards contradiction that ∃y ∈ S such that
y < F (S) and y 6≡ 0 mod m(S). By the division algorithm, y = jm + r for r ∈ {1, 2, . . . ,m− 1}.
Since B(S) is the largest small element by definition, then we must have y < B(S), so j < k. Since
S is a semigroup, we must have additive closure, so {(j + 1)m+ r, (j + 2)m+ r, . . . , km+ r} ⊂ S.
In particular, km + r <∈ S is contradiction. Since r ∈ {1, 2, . . . ,m − 1}, then B(S) < km + r <
F (S) + 1, contradiction to the fact B(S) was the largest small element. Since the assumption led
to contradiction, clearly no such y can exist and S is an n-staircase.

One of the reasons we look at this particular family of semigroups is that its complement is within
the same family.

Theorem 5.0.5. For all n ∈ N and for all k ∈ N, a truncated n-staircase with k-steps will have a
complement that is an n-staircase with (k − 1)-steps.

Proof. Since S has k steps, B(S) = (k − 1)n. By Theorem 3.0.4, then

S̃ = {B(S)− s | s ∈ S and s ≤ B(S)} ∪ {B(S)→},

and since S is a truncated n-staircase, then

{B(S)− s | s ∈ S and s ≤ B(S)} = {0, n, 2n, . . . , (k − 1)n}.

Thus,
S̃ = {B(S)− s | s ∈ S and s ≤ B(S)} ∪ {B(S)→}

= {0, n, 2n, . . . , (k − 1)n} ∪ {B(S)→} = {0, n, 2n, . . . , (k − 1)n} ∪ {(k − 1)n→}.

Corollary 5.0.6. If S is an n-staircase with k steps, then both S and S̃ are numerical semigroups.

Proof. The result is an immediate consequence of Theorem 5.0.5 and Theorem 5.0.3.
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6 Characterizing When Both S and S̃ are Semigroups

This section will begin by giving an alternative characterization of a numerical set S. We will
use this characterization as a tool to completely classify which numerical semigroups have their
complement a semigroup.

Definition 6.0.1. Let S be a numerical set and let

Gi = {gi, gi+1, gi+2, . . . , gi+ngi : gi−1 ∈ S and gi+ngi+1 ∈ S but gi+l ∈ N0\S for all l ∈ {0, 1, . . . , ngi}}

so that gi < gj if i < j and define the sequence of step heights as N(S) = {Ni = |Gi| = ngi + 1}.

This N sequence counts the lengths of strings of consecutive gaps of a numerical set S. In terms of
a young diagram it is the step heights, as previously mentioned.

Definition 6.0.2. Let S be a numerical set and let

Ji = {ji, ji+1, ji+2, . . . , ji+nji : ji−1 /∈ S and ji+nji+1 /∈ S but ji+l ∈ S for all l ∈ {0, 1, . . . , nji}}

with again ji < jk if i < k and define the sequence of step widths to be M(S) = {Mi = |Ji| = nji+1}.

The M sequence counts the lengths of strings of consecutive small elements of a numerical set S.
This would be the widths of the steps in the Young diagram.

Much more will be developed on M(S) and N(S) in Section 8. For now we prove only what we need
to for the concluding theorem at the end of this section.

Theorem 6.0.3. If S 6= N0 is a numerical semigroup with M(S) = (M0,M1, . . . ,Mk). Then
M0 = 1.

Proof. The first string of elements must begin at 0 since it is the smallest integer in the set. Since
S 6= N0, then 1 /∈ S. Hence this particular string of small elements only contains 0 and thus
M0 = 1.

Theorem 6.0.4. Let S 6= N0 be a numerical semigroup with N(S) = (N0, N1, . . . , Nk). Then
N0 = max{N}.

Proof. Let S 6= N0 be a numerical semigroup with multiplicity m. Then 1, 2, . . . ,m− 1 ∈ H(S), so
N0 = |{1, 2, . . . ,m− 1}| = m− 1 = ng0 + 1. Suppose towards contradiction that there exists some
Ni > N0, i.e. |Gi| > m−1 so |Gi| ≥ m. Then we have at least m consecutive numbers missing from
our semigroup S, so at least one of these gaps must be a multiple of m. However, this contradicts
that S is closed under addition (every positive multiple of m must be in S), so for all i, Ni ≤ N0

and thus N0 = max{Ni}.

Corollary 6.0.5. If a nontrivial semigroup S has that N(S) = (N0, N1, . . . , Nk), then N0 + 1 =
m(S).
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Proof. This is given in the second line of the proof of 6.0.4.

Observation 6.0.6. It is noteworthy to see how the M and N sequences correspond for
the complementary numerical sets. Due to 3.0.2, we have that for any (x,B(S) − x),
x ∈ S ⇐⇒ B(S) − x ∈ S̃. Hence, while the order of the sequences changes, the ele-
ments of N do not. Even better, the order changes in a predictable way since if N(S) =
(N0, N1, . . . , Nk), then N(S̃) = (Nk−1, Nk−2, . . . , N1), and if M(S) = (M0,M1,M2, . . . ,Mk),
then M(S̃) = (Mk,Mk−1, . . . ,M2). These properties have some useful consequences.

Theorem 6.0.7. Let S be a numerical set. If S and S̃ are both numerical semigroups, then N(S) =
(N0, . . . , Nk) has N0 = Nk−1.

Proof. In light of the last observation, note that N(S̃) = (Nk−1, Nk−2, . . . , N0). If S is a numerical
semigroup then N0 ≥ Nk−1 by Theorem 6.0.4. Also, by Theorem 6.0.4, if S̃ is a numerical semigroup
then Nk−1 ≥ N1, so Nk−1 = N0.

Theorem 6.0.8. Suppose S is a numerical semigroup, with N(S) = (N0, N1, . . . , Nk) having that
N0 = Nk−1. Then ∀i with 0 < i < k − 1, Ni = N0.

Proof. Let S be a numerical semigroup with N(S) = {N0 . . . , Nk} and N0 = Nk. Then m =
m(S) = N0 + 1, and every multiple of m must be in S. Now consider our second to last string
of Nk−1 gaps {nm + l + 1, nm + l + 2, . . . , nm + l + m − 1} where nm + l ∈ S and n ∈ N and
0 ≤ l ≤ m − 1. Suppose towards contradiction that l > 0. Then nm + l is not a multiple of
m. The set {nm + l, nm + l + 1, . . . , nm + l + m − 1} has size m, so some element in this set
must be a multiple of m. We said nm + l is not a multiple of m, so some element in the set
{nm+ l+1, . . . , nm+ l+m−1} ⊆ N0\S must be a multiple of m. This contradicts that S contains
every multiple of m, so we must have that l = 0 and our set of Nk−1 gaps is {nm+1, . . . , nm+m−1}
for some n ∈ N.

Suppose towards a contradiction that there exists an 0 < i < n such that im ∈ S and im + j ∈ S
for some 1 < j < m− 1. We will show that nm+ j /∈ S. Every multiple of m has to be in the set,
by closure under addition. If im + j ∈ S then nm + j has to also be in S because you can add m
to im+ j until you reach nm+ j.

Theorem 6.0.9. Let S be a numerical semigroup with multiplicity m and N(S) = {N0, . . . , Nk},
with N0 = Nk−1. Then the step widths of S are Mi = 1 for i ∈ {0, 1, 2, . . . , k − 1} and Mk ∈
{1, 2, . . . ,m− 1}.

Proof. For every n ∈ N we have nm ∈ S. Suppose there exists an n so that nm+ 1 ∈ S and nm+ 1
occurs before the Nk−1 gaps, then (n+ 1)m is also in S so there can at most be

(n+ 1)m− (nm+ 1)− 2 = m− 2 = N1 − 1

gaps between nm + 1 and (n + 1)m so for some i ∈ {2, . . . , k − 1}, Ni < N1. This contradicts
Theorem 6.0.8 so for all n, nm+ 1 /∈ S if nm+ 1 occurs before the second to last set of gaps. Now
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suppose nm − 1 ∈ S for some n ∈ N. If n = 1, then we have m − 1 ∈ S is strictly less than the
multiplicity which is a contradiction. If n > 1, the (n− 1)m ∈ S so for some i ∈ {2, . . . , k − 1} so
that Ni ≤ m− 2 < N1 which again contradicts Theorem 6.0.8. Thus, for all j ∈ {1, . . . , k− 1}, the
jth step width Mj = 1.

Note that Mk ≤ m− 1 since otherwise we would have m consecutive numbers in S, so we would be
able to get all larger numbers and there would not even be a kth step.

Theorem 6.0.10. Let S be a numerical set and S̃ its complement. If S and S̃ are numerical
semigroups, then Mi = 1 for 0 ≤ i ≤ k.

Proof. 6.0.9 has given us that Mi = 1 for 0 ≤ i ≤ k − 1. We show in this case Mk = 1 Recall that
Mk(S) = M0(S̃). Assume to the contrary that M0(S̃) > 1. Then S̃ must contain 1, so S̃ = N. But
this cannot be the case then that S̃ is the complement of S.

Theorem 6.0.11. Let S be a nontrivial numerical set and S̃ its complement. Then S and S̃ are
numerical semigroups if and only if S is a truncated n-staircase.

Proof. ⇐ has already been proven in 5.0.6.

⇒ Recall the definition of a truncated n-staircase as a numerical set of the form {0, n, 2n, . . . , (k−
1)n, kn− j →} for n ∈ N\{0, 1} and j ∈ Z with 0 ≤ j ≤ k−1. From 6.0.10 and 6.0.8, then we have
that S contains strings of N0 gaps up until the kth string, and between each gap, there is exactly
one number in S. These gaps begin at 1 since S is nontrivial, so the included numbers are exactly
the multiples of n = N0 + 1. Hence all that remains is to find j in {0, n, 2n, . . . , kn − j →}. But
since Nk describes the number of gaps in the last sequence, then j = N0 −Nk suffices.

This gives a necessary and sufficient condition for determining when S and S̃ are numerical semi-
groups.

7 A(S̃) and A(S)

This section will concentrate on generalizing 6.0.11 to describe the relationship between A(S) and
A(S̃) when S or S̃ is not a semigroup. This section may rely on some results in Section 8 of this
paper which focuses on modifying the M and N sequences.

7.1 S or S̃ is a Semigroup

Theorem 7.1.1. If S is a nontrivial numerical semigroup, then no two integers that sum to F (S̃) =
B − 1 are in S̃. That is, no two of the following pairs are in S̃.

(0, B − 1), (1, B − 2), . . . , (k,B − (k + 1))
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Proof. By definition we know B + 1 /∈ S. Since S is a semigroup, no two of

(B, 1), (B − 1, 2), (B − 2, 3), . . . , (B − (k − 1), k)

are in S. Since all of these are less than or equal to B, by Theorem 3.0.2 then no two of

(0, B − 1), (1, B − 2), . . . , (k,B − (k + 1))

are in S̃.

The previous result gives an indication that even when S̃ is not a numerical semigroup, it will not
fail its closure property at its Frobenius number if it came from a semigroup.

Corollary 7.1.2. Let S be a semigroup. If y ∈ S, then either y > B(S) or y − 1 /∈ S̃.

Proof. Suppose y ∈ S and y ≤ B(S). Then by Theorem 3.0.2 then B − y ∈ S̃. By Theorem 7.1.1,
then since (B − y) + (y − 1) = B − 1, then y − 1 /∈ S̃.

Definition 7.1.3. We call a numerical set S a column if it has the form S = {0, g(S) + 1→}.

It is well known that a column is a numerical semigroup. Also note it is a staircase of one step.

Theorem 7.1.4. Let S be a numerical semigroup. If S is not a truncated staircase, then A(S̃) is
a column.

Proof. Recall from Theorem 3.0.10, that F (A(S̃)) = F (S̃) = B(S)− 1, and B(S) = B(S̃) +m(S).
It suffices to show no small elements (elements less than B(S) − 1) are in A(S̃). We do this by
finding corresponding elements that sum to gaps, in particular, the gaps between B(S̃) and C(S̃).

First we will show B(S̃) /∈ A(S̃). It suffices to show ∃r ∈ S̃ 3 0 < r < m. Since S is not a truncated
staircase gives us that ∃y ∈ S 3 y ≤ B(S) and y 6≡ 0 mod m(S). If y ≡ B(S) mod m(S) then
B(S)−m(S) ∈ S̃ and B(S)−m(S) 6≡ 0 mod m(S). If not y 6≡ B(S) mod m(S) then B(S)−y ∈ S̃
and B(S)− y 6≡ 0 mod m(S). Regardless, ∃x ∈ S̃ 3 x = jm + r with 0 < r ≤ m− 1. By Lemma
3.0.5 then r ∈ S̃ as required. Then B(S̃) < B(S̃) + r < B(S̃) +m(S) = B(S), so B(S̃) + r is a gap
of S̃ since everything between B(S̃) and the conductor of S̃ must be a gap.

Now consider the following small elements of S̃, namely {p ∈ S̃ | 1 ≤ p < B(S̃)}. From Theorem
3.0.5, we know that B(S̃) − qm(S) ∈ S̃ for all q so that qm(S) ≤ B(S̃) since B(S̃) ∈ S̃. Fix
p ∈ {p ∈ S̃ | 1 ≤ p < B(S̃)} and write p = qm(S) + r with q ≥ 0 and 0 ≤ r < m(S). If r 6= 0, then

(B(S̃)−qm(S))+p = B(S̃)−qm(S)+qm(S)+r = B(S̃)+r ∈ {B(S̃)+1, . . . , B(S̃)+m(S)−1 = F (S̃)}

so p /∈ A(S̃) for the same reason as before.

Last we handle elements of the form p = km(S) for some k, p < F (S̃). There are two cases. Let
nm(S) be the maximal multiple of m(S) in S̃ such that nm(S) < F (S̃)
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Case 1: Suppose (n+ 1)m(S) /∈ S̃. Then by Theorem 3.0.5, all of

m(S), 2m(S), . . . , nm(S) ∈ S̃.

Then pair them so that they sum to (n+ 1)m(S), so clearly none can be in A(S̃).

Case 2: Now suppose (n + 1)m(S) ∈ S. Since we chose nm(S) to be the largest multiple of m(S)
less than F (S̃), this can only occur if (n+ 1)m(S) > F (S̃). Additionally, this means that we have
all multiples of m(S) in S̃ by 3.0.5 we have all multiples less than or equal to nm(S) and since
(n+ 1)m(S) > F (S̃) we have all multiples larger than or equal to (n+ 1)m(S). Note that we then
have B(S)− 1 /∈ S̃, so

1) B(S)− 1 < (n+ 1)m(S).

Also, nm(S) ≤ B(S̃) = B(S)−m(S) so

2) (n+ 1)m(S) ≤ B(S).

So from 2 we have (n + 1)m(S) ≤ B(S) and from 1 we have B(S) < (n + 1)m(S) + 1, so in fact
B(S) = (n+ 1)m(S) and B(S̃) = B(S)−m(S) = nm(S).

Since S is not a truncated staircase, as before, there exists an x ∈ S̃ such that x 6≡ 0 mod m(S).
Choose x to be the maximum such x that is less than B(S̃) and write x = jm(S) + r with
0 < r < m(S). Note x + m(S) = (j + 1)m(S) + r is not in S̃ since x < B(S̃) = nm(S) and either
x + m(S) < B(S̃) in which case x + m(S) cannot be in S̃ since we said that x was the largest. If
x+m(S) > B(S̃), then we have

B(S̃) < x+m(S) < B(S̃) +m(S) = B(S)

so x+m(S) must be a gap. Additionally, for all l > j with lm(S) + r < B(S), then lm(S) + r /∈ S̃.
Also, by 3.0.5 im(S) + r ∈ S̃ for all i ∈ {0, . . . , j}. For k ∈ {1, . . . , n− j},

x < km(S) + x = (k + j)m(S) + r ≤ nm(S) + r < (n+ 1)m(S) + r

so km(S) /∈ A(S̃). For k ∈ {n− j, . . . , n}, n− k ∈ {0, . . . , j} so (n− k)m(S) + r ∈ S̃ and

km(S) + (n− k)m(S) + r = nm(S) + r /∈ S̃,

so km(S) /∈ A(S̃). Together, this gives us km(S) /∈ A(S̃) ∀ k ∈ {1, 2, . . . , n} as required.

Corollary 7.1.5. Let S be a numerical semigroup. Then either A(S̃) = S̃ so S and S̃ are staircases
or S is not a staircase and A(S̃) is a column.

Observation 7.1.6. Note, if A(S̃) is a column, S is not necessarily a numerical semi-
group.

Consider S = {0, 3, 5, 6, 7, 8, 9, 11→}, S̃ = {0, 1, 2, 3, 4, 6, 9→} and A(S̃) = {0, 9→}.
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Definition 7.1.7. Let S be a numerical set with N(S) = (N0, N1, . . . , Nk) and M(S) = (M0,M1, . . . ,Mk).
Then denote the second base of S as B2(S) with B2(S) = −1 +

∑k−2
i=0 Ni +

∑k−1
i=0 Mi

Note under the previous definition, B2(S) is just the largest small element of S that is less than the
gaps that are in Nk and Nk−1. This is analogous to B(S), which is the largest small element of S
that is less than the gaps of Nk.

Theorem 7.1.8. Let S be a numerical set with N(S) = (N0, . . . , Nk) and M(S) = (M0, . . . ,Mk)
and complement S̃. If S̃ is a numerical semigroup, then either A(S) = S and is a truncated
staircase, or one of 1, . . . , Nk ∈ S which implies A(S) = {0, B(S) + Nk + 1 →}, or 1, . . . , Nk /∈ S
which gives us A(S) = {0, B(S), B(S) +Nk + 1→}.

Proof. Suppose S is not a truncated staircase. We show small elements of S are not in A(S) by
showing they sum to gaps.

First consider elements of {s ∈ S | 1 ≤ s ≤M0−1} (these are the elements in {M0}). By definition,
M0 /∈ S, so pairing them as (1,M0− 1), (2,M0− 2),. . . , (k,M0− k) gives a partner in S that sums
to a gap. Hence none of {s ∈ S | 1 ≤ s ≤M0 − 1} are in A(S).

Now consider elements of {p ∈ S |M0 +N0 ≤ p ≤ B2(S)}(these are the elements in {M1} through
{Mk−1}). First note carefully that since Nk−1 = m(S̃)−1, none of {B2(S)+1, B2(S)+2, . . . , B2(S)+
m(S̃)−1} are in S. For p ∈ {M1} through {Mk−1}, we can write p = qm(S̃)+r where 0 ≤ r < m(S̃).
By 3.0.7, B2(S)−qm(S̃) ∈ S and B2(S)−qm(S̃)+p = B2(S)+r ∈ {B2(S)+1, . . . , B2(S)+m(S̃)−1}
provided r 6= 0. So B2(S)− qm(S̃) + p /∈ S since Nk = m(S̃)− 1 and p /∈ A(S).

If r = 0, then p = qm(S̃) for some q. Let nm(S̃) be the maximal multiple of m(S̃) in S such that
nm(S̃) ≤ B2(S). By 3.0.7, we know that m(S̃), 2m(S̃), . . . , nm(S̃) ∈ S

If (n+ 1)m(S̃) /∈ S, then we can pair up m(S̃), 2m(S̃), . . . , nm(S̃) ∈ S so that the pairs sum up to
(n+ 1)m(S̃) and so p = qm(S̃) /∈ A(S).

If instead (n + 1)m(S̃) ∈ S, then either (n + 1)m(S̃) = B(S) or (n + 1)m(S̃) > F (S). However,
(n + 1)m(S̃) > F (S) cannot be the case. To see why, recall that Nk−1 = m(S̃) − 1. So then
nm(S̃) ≤ B2(S) gives us (n+ 1)m(S̃) ≤ B2(S) +m(S̃) = B(S). Hence (n+ 1)m(S̃) = B(S). From
3.0.7, we have all multiples of m(S̃) less than or equal to B(S) are also in S.

Since S is not a truncated staircase, ∃y ∈ S such that y is not a multiple of m(S̃) or Nk ≥ m(S).

If ∃y ∈ S such that y is not a multiple of m(S̃). Choose the maximal one so that from the division
algorithm, y = jm(S̃) + r with 0 < r < m(S̃) − 1, and (j + 1)m(S̃) + r /∈ S. This maximal y
can always be found since y is not a multiple of m(S̃), we must have y < B2(S). Since all integers
between B2(S) and B(S) are gaps, then at least one is congruent to y mod m(S̃).

Hence, for k ∈ {1, 2, . . . , n − j}, then km(S̃) + y = km(S̃) + jm(S̃) + r = (j + k)m(S̃) + r. Since
j < j + k < n + 1 and since we chose y to be maximal, then (j + k)m(S̃) + r is a gap, and
km(S̃) /∈ A(S). For k ∈ {n − j, n − j + 1, . . . , n} then note that 0 ≤ n − k ≤ j. So by 3.0.7,
(n− k)m(S̃) + r ∈ S, and km(S̃) + (n− k)m+ r = nm(S̃) + r /∈ S. Hence again, km(S̃) /∈ A(S).
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If instead Nk ≥ m(S̃), then B(S) + m(S̃) must be a gap. For each k, B(S)− (k − 1)m(S̃) ∈ S by
3.0.7, so km(S̃) + (B(S)− (k − 1)m(S̃)) = B(S) +m(S̃) /∈ S and km(S̃) /∈ A(S).

Thus none of the multiples of m(S̃) in A(S) with the exception of possibly B(S).

Lastly, consider the elements of {Mk}. Since S̃ is a nontrivial semigroup, then we must have
Mk = 1. Hence the only element of {Mk} is B(S). If 1, . . . , Nk /∈ S (this is if and only if M0 = 1
and N0 ≥ Nk) then 0 +B(S) = B(S) ∈ S and x+B(S) > B(S) +Nk for all nonzero x ∈ S and so
B(S) ∈ A(S) in which case A(S) = {0, B(S), B(S) + Nk + 1 →}. Otherwise, B(S) /∈ A(S) since
we have some y ∈ S so that B(S) + 1 ≤ B(S) + y ≤ B(S) + Nk and thus B(S) + y /∈ S, in which
case A(S) = {0, B(S) +Nk + 1→}. Both cases have been observed to be possible.

7.2 Neither S nor S̃ are Semigroups

With full characterizations of A(S̃) when S is a semigroup and A(S) when S̃ is a semigroup, we
now attempt to generalize to when both S and S̃ are numerical sets.

We start by offering a sufficient, but not necessary condition that might be useful to determine that
S and S̃ are not numerical semigroups. It is related to Theorem 7.1.1.

Theorem 7.2.1. If S̃ fails its additive closure property at F (S̃), then neither S or S̃ are numerical
semigroups.

Proof. Clearly S̃ is not a numerical semigroup since it doesn’t have additive closure.
Suppose ∃a, b ∈ S̃ such that a+ b = F (S̃) = B(S)−M0. Then we have B(S)− a and B(S)− b ∈ S
and (B(S)− a) + (B(S)− b) = 2B(S)− (a+ b) = 2B(S)− (B(S)−M0) = B(S) +M0. If M0 = 1,
then we if we had additive closure, then B(S) + 1 ∈ S, which is contradiction. If M0 > 1, then
we cannot have S a semigroup since 1 ∈ S and S is nontrivial (we know its nontrivial since S̃
has at least one gap, namely F (S̃). Therefore if two elements in S̃ sum to F (S̃), then S is not a
semigroup.

Lemma 7.2.2. Let S be a numerical set with N(S) = (N0, . . . , Nk) and M(S) = (M0, . . . ,Mk) and
complement S̃ and Base B(S). Then

S = {0, . . . ,M0 − 1} ∪ (( ˜̃S +M0 +N0)\{B(S)→}) ∪ {M0 +N0 + · · ·+Mk +Nk →}.

Proof. Note, M( ˜̃S) = (M1, . . . ,Mk−1) and N( ˜̃S) = (N1, . . . , Nk−1). So

˜̃S = {0, . . . ,M1 − 1} ∪ {M1 +N1, . . . ,M1 +N1 +M2 − 1} ∪ · · · ∪
{M1 +N1 + · · ·+Mk−2 +Nk−2, . . . ,M1 +N1 + · · ·+Mk−2 +Nk−2 +Mk−1 − 1}∪
{M1 +N1 + · · ·+Mk−1 +Nk−1 →}
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Then

˜̃S+M0 +N0 = {M0 +N0, . . . ,M0 +N0 +M1 − 1}∪
{M0 +N0 +M1 +N1, . . . ,M0 +N0 +M1 +N1 +M2 − 1} ∪ · · · ∪
{M0 +N0 +M1 +N1 + · · ·+Mk−2 +Nk−2, . . . ,M0 +N0 +M1 +N1 + · · ·+Mk−2 +Nk−2 +Mk−1 − 1}∪
{M0 +N0 +M1 +N1 + · · ·+Mk−1 +Nk−1 →}

We also have

S = {0, 1, . . . ,M0 − 1} ∪ {M0 +N0, . . . ,M0 +N0 +M1 − 1} ∪ . . .∪
{M0 +N0 + . . .+Mk−1 +Nk−1, . . . ,M0 +N0 + . . .+Mk−1 +Nk−1 +Mk − 1}∪
{M0 +N0 + . . .+Mk +Nk →}

= {0, 1, . . . ,M0 − 1} ∪ (( ˜̃S +M0 +N0)\{B(S)→}) ∪ {M0 +N0 + · · ·+Mk +Nk →}

FAKE!!!

Conjecture 7.2.3. Let S be a numerical set. If A(S) is not a truncated staircase, then
A(S̃) is a column.

Conjecture 7.2.4. Let S be a numerical set with complement S̃. If A(S̃) is not a
truncated staircase, then A(S) = {0, B(S)−Mk−1, B(S)−Mk−1+1, . . . , B(S)−j, F (S)+
1→} for some 0 ≤ j ≤Mk−1 or A(S) = {0, F (S) + 1→}.

Conjecture 7.2.5. If A(S) is a truncated staircase, then A(S̃) is a staircase

This still appears to still be true. No it does not: S = {0, 3, 11, 14, 22, 25→}

Conjecture 7.2.6. If A(S̃) is a staircase, then A(S) is a staircase.

This conjecture is false, but is usually true (it has to do with how large Nk is). Consider,
S = {0, 6, 7, 13, 14, 20, 21, 23→} as a counterexample.

Theorem 7.2.7. If S is a numerical set with N(S) = (N0, . . . , Nk) and M(S) = (M0, . . . ,Mk)
such that Ni = N1 for all 1 ≤ i < k and N0 ≤ N1 and Mi = M1 for all 0 < i ≤ k and A(S) is a
column, then A(S̃) is a truncated staircase.

Proof. Note, N(S̃) = (Nk−1, . . . , N0) = (N1, . . . , N1, N0) andM(S̃) = (Mk, . . . ,M1) = (M1, . . . ,M1).
So,

S̃ ={0, . . . ,M1 − 1} ∪ {M1 +N1, . . . , 2M1 +N1 − 1} ∪ · · · ∪
{(k − 1)M1 + (k − 1)N1, . . . , kM1 + (k − 1)N1 − 1} ∪ {kM1 + (k − 1)N1 +N0 →}

Note, every small element in S̃ is either of the form lM1+lN1+r or lM1+lN1 for some 0 < r ≤M1−1
and 0 ≤ l ≤ k. Also note, the gaps are of the form (l+ 1)M1 + lN1 +g for 0 ≤ g ≤ N1−1. Consider
lM1 + lN1 + r + (M1 − r ∈ S̃) = (l + 1)M1 + lN1 /∈ S̃. So lM1 + lN1 + r /∈ A(S̃). Now consider
lM1+lN1. Note, (lM1+lN1)+(nM1+nN1+r) = (l+n)M1+(l+n)N1+r ∈ S for all 0 ≤ r ≤M1−1,
so lM1 + lN1 ∈ A(S̃). Thus, A(S̃) = {0,M1 + N1, 2M1 + 2N1, . . . , (k − 1)M1 + (k − 1)N1, kM1 +
(k − 1)N1 +N0 →} is a staircase.
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Example 7.2.8. Even when you know what type of semigroup A(S) is, it is hard to predict what
A(S̃) will be (column, normal staircase, pseudo-staircase, truncated staircase, none of the above).

Consider, A(S) = {0, 17→} (a column).

S = {0, 2, 5, 9, 11, 17→} S = {0, 5, 9, 11, 17→} S = {0, 1, 5, 9, 17→}
S̃ = {0, 2, 6, 9, 11→} S̃ = {0, 2, 6, 11→} S̃ = {0, 4, 8, 9→}
A(S̃) = {0, 9, 11→} A(S̃) = {0, 11→} A(S̃) = {0, 4, 8,→}
truncated staircase column regular staircase

S = {0, 3, 6, 12, 17→} S = {0, 2, 5, 7, 10, 17→}
S̃ = {0, 6, 9, 12→} S̃ = {0, 3, 5, 8, 10→}

A(S̃) = {0, 6, 9, 12→} A(S̃) = {0, 5, 8, 10→}
pseudo-staircase none

Now consider when A(S) = {0, 11, 22, 33, 37→} (a truncated staircase).

S = {0, 2, 11, 13, 22, 24, 33, 35, 37→} S = {0, 1, 11, 12, 22, 23, 28, 33, 34, 37→} S = {0, 1, 6, 11, 12, 17, 22, 23, 28, 33, 34, 37→}
S̃ = {0, 2, 11, 13, 22, 24, 33, 35→} S̃ = {0, 1, 6, 11, 12, 22, 23, 33, 34→} S̃ = {0, 1, 6, 11, 12, 17, 22, 23, 28, 33, 34→}
A(S̃) = {0, 11, 22, 33, 35→} A(S̃) = {0, 33→} A(S̃) = {0, 11, 22, 33→}

truncated staircase column regular staircase

S = {0, 4, 11, 15, 22, 26, 33, 37→}
S̃ = {0, 7, 11, 18, 22, 29, 33→}
A(S̃) = {0, 11, 22, 29, 33→}

none

But even when A(S) = {0, 5, 10, 15, 20, 25→} (a “regular” staircase).

S = {0, 2, 5, 7, 10, 12, 15, 17, 20, 22, 25→} S = {0, 2, 5, 6, 7, 10, 11, 12, 15, 16, 17, 20, 21, 22, 25→} S = {0, 1, 5, 6, 10, 11, 15, 16, 20, 21, 25→}

S̃ = {0, 2, 5, 7, 10, 12, 15, 17, 20, 22→} S̃ = {0, 1, 2, 5, 6, 7, 10, 11, 12, 15, 16, 17, 20, 22→} S̃ = {0, 1, 5, 6, 10, 11, 15, 16, 20, 21→}

A(S̃) = {0, 5, 10, 15, 20, 22→} A(S̃) = {0, 22→} A(S̃) = {0, 5, 10, 15, 20→}

truncated staircase column regular staircase

When A(S) = {0, 22, 33, 44, 55, 59→} (pseudo-staircase):

S = {0, 4, 22, 26, 33, 37, 44, 48, 55, 59→} S = {0, 1, 22, 23, 33, 34, 44, 45, 55, 56, 59→} S = {0, 4, 11, 22, 26, 33, 37, 44, 48, 55, 59→}

S̃ = {0, 7, 11, 18, 22, 29, 33, 51, 55→} S̃ = {0, 1, 11, 12, 22, 23, 33, 34, 55, 56→} S̃ = {0, 7, 11, 18, 22, 29, 33, 44, 51, 55→}

A(S̃) = {0, 51, 55→} A(S̃) = {0, 55→} A(S̃) = {0, 44, 51, 55→}

truncated staircase column none
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The previous example and other data suggests

Conjecture 7.2.9. When A(S) is not any kind of truncated staircase or pseudo-truncated
staircase (when A(S) falls into the none category in the example), then A(S̃) is a column.

Conjecture 7.2.10. When A(S) is a column we are sad.

Conjecture 7.2.11. When A(S) is a truncated staircase, A(S̃) can be anything except
a pseudo-staircase.

Conjecture 7.2.12. When A(S) is a regular staircase, then A(S̃) is some type of trun-
cated staircase.

Conjecture 7.2.13. When A(S) is a pseudo-truncated staircase, A(S̃) is a truncated
staircase, a column, or none.

I think the previous example can be explained in terms of column/row extension. Neither column
extending or row extending S will change S̃, and therefore A(S̃) is invariant under column and row
extension. Clearly A(S) is not invariant, so my hypothesis is row extending or column extending
too far will yield columns, “regular” staircases and truncated staircases.

Theorem 7.2.14. Let S be a numerical set with Base B. Then F (A(S̃)) = F (S̃) = B − s where
s = min(N0\S).

Proof. Since s ∈ N0\S, by 3.0.2 B − s ∈ N0\S̃. Also, for all 0 ≤ x < s, x ∈ S so again by 3.0.2
B − x ∈ S̃. Thus for all y > B − s, y ∈ S̃, so B − s = F (S̃).

For all y > B − s, y + x ∈ S̃ for all x ∈ S̃ since y + x > B − s = F (S̃), so y ∈ A(S̃). Also,
B − s /∈ A(S̃) since B − s+ 0 = B − s /∈ S̃. Thus, F (A(S̃)) = B − s.

Theorem 7.2.15. Let S be a numerical set with Base B. Then

H(A(S̃)) ⊇ N0\(S̃) = {B − g : g ∈ N0\S, g < B}.

Proof. By 3.0.2, N0\(S̃) = {B − g : g ∈ N0\S, g < B}. Let x ∈ N0\(S̃). Then x /∈ A(S̃) since
x+ 0 = x /∈ S̃, so x ∈ H(A(S̃)).

Corollary 7.2.16. Let S be a numerical set with N(S) = (N0, . . . , Nk). Then g(A(S̃)) ≥ g(S̃) =
g(S)−Nk.

Lemma 7.2.17. Let T be a numerical set. Then (T̃ )∗ = ˜(T ∗).

Proof. Let M(T ) = (M0, . . . ,Mk) and N(T ) = (N0, . . . , Nk). Then M(T̃ ) = (M1, . . . ,Mk) and
N(T̃ ) = (N0, . . . , Nk−1). So M((T̃ )∗) = (Nk−1, . . . , N0) and M((T̃ )∗) = (Mk, . . . ,M1). Also,

M(T ∗) = (Nk, . . . , N0) and N(T ∗) = (Mk, . . . ,M0). So M( ˜(T ∗)) = (Nk−1, . . . , N0) = M((T̃ )∗)

and N( ˜(T ∗)) = (Mk, . . . ,M1) = N((T̃ )∗).

Theorem 7.2.18. Let S be a numerical semigroup. The number of numerical sets T such that
A(T ) = S is P (S). If P (S) = 2, then either A(T̃ ) is a staircase or A(T̃ ) is a column.
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Proof. Since P (S) = 2 and A(S∗) = A(S) = S, either T = S or T = S∗.

If S is a truncated staircase, then T = S =⇒ T̃ is a regular staircase by 6.0.11, so A(T̃ ) = T̃ is a

regular staircase. Also, T = S∗ =⇒ T̃ = ˜(S∗) = (S̃)∗ by 7.2.17, so A(T̃ ) = A((S̃)∗) = A(S̃) is a
regular staircase.

If S is not a truncated staircase, then T = S =⇒ A(T̃ ) is a column by 7.1.4. Also, T = S∗ =⇒
T̃ = ˜(S∗) = (S̃)∗ by 7.2.17, so A(T̃ ) = A((S̃)∗) = A(S̃) is a column.

8 Properties of M(S) and N(S)

The focus of this section is to further explore M(S) and N(S) and their relationships to other
invariants of S. This section will also construct other sequences from the M and N sequences that
are sometimes more useful and intuitive to use than the M and N sequences themselves.

Observation 8.0.1. Let S be a numerical set, then |M(S)| = |N(S)| (that is, the
sequences are of the same length).

To see this observation more clearly start building the set by including 0 so we first
count M0, then at the end of M0 we encounter the first element of N0 not in S so next
we count N0 and we keep repeating this process until we get that everything after the
last gap of S is in S.

Observation 8.0.2. Let S be a numerical set with N(S) = (N0, . . . , Nk), then the genus
of S is g(S) =

∑k
i=0Ni.

By referencing definition 6.0.1 one can see that N(S) partitions N0\S based on the
lengths of consecutive gaps of the set. So the sum of the Ni’s is the same size as N0\S.
The size of N0\S is the genus of the set. Therefore g(s) =

∑k
i=0Ni.

Observation 8.0.3. Let S be a numerical set with M(S) = (M0, . . . ,Mk), then the
number of small elements of S is

∑k
i=0Mi.

This observation comes from the fact that the number of small elements form a sequence
of finite length. This construction partitions this sequence into smaller strings (these
strings are the Ji described in definition 6.0.2), where Mi the length of the ith string,
but of course these would sum up to the length of the original sequence.

Theorem 8.0.4. Let S be a numerical set with N(S) = (N0, . . . , Nk) and M(S) = (M0, . . . ,Mk),
then F (S) = −1 +

∑k
i=0(Mi +Ni).
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Proof. Consider the set {n ∈ N0 | n ≤ F (S)}. From this definition it is clear it contains F(S)+1
elements. We can partition these elements into two sets, those that are in S and those that are
not. However, our observations tell us these quantities are given exactly by

∑k
i=0Mi and

∑k
i=0Ni

respectively. This gives us the desired equality.

Observation 8.0.5. If N(S) = (N0, N1, . . . , Nk−1, Nk), then N(S̃) = (Nk−1, . . . , N1, N0)

Observation 8.0.6. If M(S) = (M0,M1, . . . ,Mk−1,Mk), then M(S̃) = (Mk,Mk−1, . . . ,M1)

As aforementioned, the step height and widths transform nicely under complementation. They also
do so under conjugation.

Theorem 8.0.7. Let S be numerical set. Then N(S) = (N0, N1, . . . , Nk−1, Nk) and M(S) =
(M0,M1, . . . ,Mk−1,Mk) if and only if M(S∗) = (Nk, Nk−1, . . . , N0) and N(S∗) = (Mk,Mk−1, . . . ,M0).

Proof. Below is a proof by picture.

Nk

... Mk

. . .

N1

M1

N0

M0

(a) λ(S)

M0

N0

M1

... N1

. . .

Mk

Nk

(b) λ(S∗)

When we conjugate the partition, all of our rows become columns and vice versa, so our M’s and
N’s will switch places, and then become reversed.

Corollary 8.0.8. Let S be a numerical semigroup with N(S) = (N0, N1, . . . , Nk), and M(S) =
(M0,M1, . . . ,Mk). Then Mi = Nk−i for 0 ≤ i ≤ k if and only if S is symmetric.

Proof. It is well known that a semigroup is symmetric if and only if it is self-conjugate. By Theorem
8.0.7, S is self-conjugate if and only ifM(S∗) = (Nk, Nk−1, . . . , N0) = M(S), so (Nk, Nk−1, . . . , N0) =
(M0,M1, . . . ,Mk) and thus Mi = Nk−i for all i ∈ {0, 1, . . . , k}.

27



Theorem 8.0.9. Let S be a numerical set with N(S) = (N1, . . . , Nk) and M(S) = (M1, . . . ,Mk).
Then the hook length in the ith row and jth column of λ(S) is

hi,j = M1 +M2 + · · ·+Mm−1 +Nn+1 +Nn+2 + · · ·+Nk + 1− i− j

where m and n are retrieved by Nk + · · · + Nm < j where m ∈ {1, 2, . . . , k + 1} is the minimum
such number that satisfies the condition and M1 +M2 + · · ·+Mn < i where n ∈ {0, 1, . . . , k} is the
maximum such number that satisfies the condition. By convention say M0 = Nk+1 = 0.

Proof. From [3], we have that hi,j = ri−i+cj−j+1. Under our notation, ri =
∑m−1

q=1 Mq where m is

defined as above. Similarly, cj =
∑n+1

q=k Nq. Thus we have hi,j =
∑m−1

q=1 Mq+
∑k

q=n+1Nq−i−j+1

Proposition 8.0.10. Suppose T is a numerical set with Frobenius number F . Then T ∗ is given by

{F − u : u ∈ Z\T} = {F − u : u ∈ N0\T}
⋃
{F + 1→}.

Proposition 8.0.11. Suppose T is a numerical set with λ(T ) = λ, and the numerical set associated
with λ∗ is T ∗. Then A(T ) = A(T ∗).

Proof. By Proposition 8.0.10, T ∗ = {F − u : u ∈ Z\T} = {F − u : u ∈ N0\T}
⋃
{F + 1 →},

where F = maxN0\T . Note that since λ and λ∗ are partitions of the same size, then maxN0\T =
maxN0\T ∗. This can also be seen by observing that 0 ∈ T , so F − 0 /∈ {F − u : u ∈ Z\T}, and
F < F + 1, so F /∈ T ∗, and clearly it is the largest such integer. We first show that A(T ) ⊆ A(T ∗),
then since the conjugate of the conjugate of T is T , then it immediately follows that A(T ∗) ⊆ A(T ),
hence A(T ) = A(T ∗). Let n ∈ A(T ). Suppose towards a contradiction that F − n ∈ T . Then
n+(F −n) = F ∈ T , a contradiction. Thus F −n /∈ T , and so F −(F −n) = n ∈ T ∗. We now show
that ∀m ∈ T ∗, n+m ∈ T ∗. Suppose towards a contradiction that ∃m ∈ T ∗ such that n+m /∈ T ∗.
Certainly m 6= F , and if m > F , then n+m ≥ F + 1, so n+m ∈ {F + 1→} ⊂ T ∗, a contradiction.
Thus m < F , and so 0 < F −m < F + 1. Now since n + m /∈ T ∗, then F − (n + m) ∈ T . Since
n ∈ A(T ), then n+F−(n+m) = F−m ∈ T = {F−u : u ∈ N0\T ∗}

⋃
{F+1→}. But F−m < F+1,

so F −m ∈ {F − u : u ∈ N0\T ′}. Hence ∃u ∈ N0\T ∗ such that F −m = F − u⇐⇒ m = u. Thus
m ∈ N0\T ∗, i.e. m /∈ T ∗, a contradiction. Hence ∀m ∈ T ∗, n + m ∈ T ∗, i.e. n ∈ A(T ∗). Thus
A(T ) ⊆ A(T ∗), and similarly A(T ∗) ⊆ A(T ). Hence A(T ) = A(T ∗).

Proposition 8.0.12. Let T be a numerical set with N(T ) = (N0, . . . , Nk) and M(T ) = (M0, . . . ,Mk).
Then N(A(T )) = (Mk, . . . ,M0) and M(A(T )) = (Nk, . . . , N0) if and only if T ∗ is a semigroup.

Proof. If T ∗ is a semigroup, the result follows immediately from 8.0.11 and 8.0.7.

If instead we have N(A(T )) = (Mk, . . . ,M0) and M(A(T )) = (Nk, . . . , N0), then by 8.0.7 we have
N(T ∗) = N(A(T )) and M(T ∗) = M(A(T )), so A(T ) = T ∗. By 8.0.11, T ∗ = A(T ) = A(T ∗) so T ∗

is a numerical semigroup.

Theorem 8.0.13. If T is a nontrivial numerical set with N(T ) = (N0, . . . , Nk) and M(T ) =
(M0, . . . ,Mk) and N(A(T )) = (Mk, . . . ,M0) and M(A(T )) = (Nk, . . . , N0). Then Nk = 1.

Proof. By the previous proposition, then we know T ∗ is a semigroup. Again, by proposition 8.0.11,
then A(T ) = T ∗. Since M(A(T )) = (Nk, . . . , N0) is of a semigroup, then Nk must be 1.
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Conjecture 8.0.14. Ni(T ) ≤ N0(A(T ))

Proof. Not sure how to do this yet

Theorem 8.0.15. Let S be a numerical set with N(S) = (m−1,m−1, . . . ,m−1, 1, 1, . . . , 1) where
there are l ones and k m−1’s in the N(S) sequence and M(S) = (1, . . . , 1). Then S is a semigroup
if and only if m 6= 1, 3, 5, . . . , 2l − 1.

Proof. We can write

S = {0, 1, . . . ,M1 − 1} ∪ {M1 +N1, . . . ,M1 +N1 +M2 − 1} ∪ . . .∪
{M1 +N1 + . . .+Mk−1 +Nk−1, . . . ,M1 +N1 + . . .+Mk−1 +Nk−1 +Mk − 1}∪
{M1 +N1 + . . .+Mk +Nk →}

= {0,m, 2m, . . . , km, km+ 2, km+ 4, . . . , km+ 2(l − 1), km+ 2l→}

If S is a semigroup, then S must contain all the multiples of m, so km+ 1, km+ 3, . . . , km+ 2l− 1
cannot be multiples of m and thus, m 6= 1, 3, . . . , 2l − 1.

If m 6= 1, 3, . . . , 2l − 1, then either m = 2n for some n ∈ {1, . . . , l − 1} or m ≥ 2l.

Suppose m = 2n for some appropriate m, then S = {2n, 4n, 6n, . . . , 2kn, 2kn+2, 2kn+4, . . . , 2kn+
2l→}. Let x, y ∈ S if at least one of x or y is greater than or equal to 2kn+2l then x+y ≥ 2kn+2l
so x+ y ∈ S. If both x and y are strictly less than 2kn+ 2l, then both x and y are even. If at least
one of x or y is greater than or equal to 2kn, then x + y ≥ 2kn and x + y is even so x + y ∈ S. If
both x and y are strictly less than 2kn, then x = c1m and y = c2m for some c1, c2 ∈ {0, . . . , k − 1}
so x+ y = (c1 + c2)m is a multiple of m and thus x+ y ∈ S. Therefore S is closed under addition
and thus is a numerical semigroup.

Suppose m ≥ 2l and let x, y ∈ S. If x ≥ km + 2l then x + y ≥ km + 2l so x + y ∈ S. If
x, y < km + 2l, then x, y ∈ {0,m, 2m, . . . , km, km + 2, km + 4, . . . , km + 2(l − 1)}. If x, y > km,
then x+y > km+km ≥ km+2l since m ≥ 2l and k ∈ N so km ≥ 2l thus x+y ∈ S. If x > km and
0 < y ≤ km then y = cm for some c ∈ {1, 2, . . . , k} and x = km + 2q for some q ∈ {1, . . . , l − 1},
so x+ y = km+ 2q + cm ≥ km+ 2q + 2cl = km+ 2(q + cl) ≥ km+ 2l since q + cl ≥ l since c > 0
and thus x + y ∈ S. If x, y ≤ km, then x = c1m and y = c2m for some c1, c2 ∈ {0, 1, . . . , k} so
x + y = (c1 + c2)m ∈ S. If y = 0, then x + y = x ∈ S. So in all cases, S is closed under addition
and thus S is a numerical semigroup.

Theorem 8.0.16. Let S be a numerical semigroup. Then N = (k, k − 1, k − 2, . . . , 1) and M =
(1, 1, 2, 3, 4, . . . , k−2, k−1) if and only if S = 〈k+1, k+1+k, k+1+2k, . . . , k+1+(k−1)k, k+1+(k)k〉.
This is an arithmetic semigroup where a = k+1 and d = k and has maximum embedding dimension.

Proof. Let S ′ = 〈k+ 1, k+ 1 + k, k+ 1 + 2k, . . . , k+ 1 + (k− 1)k, k+ 1 + (k)k〉 = 〈k+ 1, 2k+ 1, 3k+
1, . . . , (k)k + 1, (k + 1)k + 1〉 and suppose S is a numerical semigroup with N(S) = (k, k − 1, k −
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2, . . . , 1) and M(S) = (1, 1, 2, 3, 4, . . . , k − 2, k − 1). We have

S = {0, 1, . . . ,M0 − 1} ∪ {M0 +N0, . . . ,M0 +N0 +M1 − 1} ∪ . . .∪
{M0 +N0 + . . .+Mk−1 +Nk−1, . . . ,M0 +N0 + . . .+Mk−1 +Nk−1 +Mk − 1}∪
{M0 +N0 + . . .+Mk +Nk →}

= {0} ∪ {k + 1} ∪ {1 + k + 1 + k − 1, 1 + k + 1 + k − 1 + 1}∪
{1 + k + 1 + k − 1 + 2 + k − 2, 1 + k + 1 + k − 1 + 2 + k − 2 + 1, 1 + k + 1 + k − 1 + 2 + k − 2 + 2}
∪ · · · ∪ {1 + k + 1 + k − 1 + · · ·+ (i− 1) + (k − i+ 1), . . . ,

1 + k + 1 + k − 1 + · · ·+ (i− 1) + (k − i+ 1) + i− 1}
∪ · · · ∪ {1 + k + 1 + k − 1 + · · ·+ k − 2 + 2, . . . , 1 + k + 1 + k − 1 + · · ·+ k − 2 + 2 + k − 1− 1}∪
{1 + k + 1 + k − 1 + 2 + k − 2 + · · ·+ k − 2 + 2 + k − 1 + 1→}

= {0} ∪ {k + 1} ∪ {1 + k + 1 + k − 1, 1 + k + 1 + k − 1 + 1}∪
{1 + k + 1 + k − 1 + 2 + k − 2, 1 + k + 1 + k − 1 + 2 + k − 2 + 1, 1 + k + 1 + k − 1 + 2 + k − 2 + 2}
∪ · · · ∪ {1 + k + (i− 1)k, . . . , 1 + k + (i− 1)k + i− 1} ∪ · · · ∪
{1 + k + (k − 2)k, . . . , 1 + k + (k − 2)k + k − 1− 1} ∪ {1 + k + (k − 1)k →}

Let x ∈ S\{0}. If x < 1+k+(k−1)k = 1+k2, then x ∈ {1+k+(i−1)k, . . . , 1+k+(i−1)k+i−1}
for some i ∈ {1, . . . , k − 1}. So x = (k + 1) + k(i− 1) + j for some j ∈ {0, . . . , i− 1}. Then

x = (i)(k) + (j + 1)(1) = (j)(k + 1) + ((i− j)k + 1) ∈ S ′

since 1 ≤ i − j ≤ k − 1 because 0 ≤ j ≤ i − 1 and 1 ≤ i ≤ k − 1. If instead, x ≥ 1 + k2, then it
suffices to show that 1 + k2, 1 + k2 + 1, . . . , 1 + k2 + k ∈ S ′. Note,

1 + k2 = (k)k + 1 ∈ S ′

1 + k2 + 1 = (k)k + (2)1 = (k + 1) + ((k − 1)k + 1) ∈ S ′

...

1 + k2 + k = (k)k + (k)1 = (k − 1)(k + 1) + ((k − (k − 1))k + 1) = (k − 1)(k + 1) + (k + 1) ∈ S ′

so for all x ≥ 1 + k2, x ∈ S ′. Thus, S ⊆ S ′.

We can prove that S is in fact a numerical semigroup. Let x, y ∈ S. If one of x or y is larger
than or equal to k2 + 1, then x + y ≥ k2 + 1 so x + y ∈ S. If instead x, y < k2 + 1, then
x ∈ {1+k+(i−1)k, . . . , 1+k+(i−1)k+i−1} and y ∈ {1+k+(j−1)k, . . . , 1+k+(j−1)k+j−1}
for some i, j ∈ {1, . . . , k − 1}, so x = 1 + ik + a and y = 1 + jk + b for some a ∈ {0, . . . , i − 1}
and b ∈ {0, . . . , j − 1}. Then x + y = 1 + ik + a + 1 + jk + b = 1 + (i + j)k + (a + b + 1) where
a+ b+ 1 ∈ {1, . . . , i+ j − 1} so x+ y ∈ {1 + (i+ j)k, . . . , 1 + (i+ j)k + (i+ j − 1)} ⊆ S. Thus S
is closed under addition and is a numerical semigroup.

Now let x be an arbitrary element of S ′. Then x =
∑k+1

i=1 ci(ik + 1) for some ci ∈ N0. Then since
ik+ 1 ∈ S for all i ∈ {1, . . . , k+ 1} as can be seen above, x ∈ S since S is a semigroup and is closed
under addition. Thus S = S ′.

Lemma 8.0.17. For S = 〈k, k + 1〉, consecutive small elements, can be generated by finding all
p, q ∈ N that satisfy p + q = n and x = p(k) + q(k + 1) for all x ∈ S and n ∈ N. The amount of
solutions can be counted with the formula

(
n+2−1

n

)
.
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Proof. Proven by induction on n. Consider the base case, such as n = 0 and n = 1. For the
case where n = 0, we have to find how many solutions there are to the equation p + q = 0, and
there is only one solution, when p = 0 and q = 0. This solution corresponds to the element
x = 0(k) + 0(k + 1) = 0 ∈ S. Note, the number of solutions could also have been found with the
formula

(
n+2−1

n

)
=
(
(0)+2−1

(0)

)
=
(
1
0

)
= 1. Now consider the case where n = 1. In this case we need

to find how many solutions there are to p + q = 1. In this case we only have 2 options, p = 1
and q = 0 or p = 0 and q = 1. The first one corresponds to the elements 1(k) + 0(k + 1) = k
and 0(k) + 1(k + 1) = k + 1, which are clearly consecutive small elements of S. Note, there are 2
solutions, which can also be obtained from the formula:

(
n+2−1

n

)
=
(
(1)+2−1

(1)

)
=
(
2
1

)
= 2.

Now suppose this pattern holds for all n up to n = h − 1. Consider the n = h case. We want
to find the solutions to the equation p + q = h. For this case we have the following solutions:
p = h & q = 0, p = h − 1 & q = 1, p = h − 2 & q = 2, . . . , p = 2 & q = h − 2, p = 1 & q =
h− 1, p = 0 & q = h. These correspond to the elements

h(k) + 0(k + 1) = hk

h− 1(k) + 1(k + 1) = hk − k + k + 1 = hk + 1

h− 2(k) + 2(k + 1) = hk − 2k + 2k + 2 = hk + 2

...

2(k) + (h− 2)(k + 1) = 2k + hk + h− 2k − 2 = hk + (h− 2)

1(k) + (h− 1)(k + 1) = k + hk − k + h− 1 = hk + (h− 1)

0(k) + h(k + 1) = hk + h.

These are the distinct consecutive elements in S beginning with hk and going to hk + h, so there
are h consecutive elements. We know these elements are distinct because suppose there were a p
and q and p′ and q′ such that p 6= p′, q 6= q′, p + q = p′ + q′, and pk + q(k + 1) = p′k + q′(k + 1).
Then (p + q)k + q = (p′ + q′)k + q′ = (p + q)k + q′, so q = q′ which is a contradiction. With the
formula we get

(
h+2−1

h

)
=
(
h+1
h

)
= h.

Hence, for all n ∈ N, all small elements in the semigroup S of the form S = 〈k, k + 1〉 will be
generated by finding solutions to p + q = n and all of the possible solutions are counted by the
formula

(
n+2−1

n

)
.

Theorem 8.0.18. N(S) = (k, k − 1, . . . , 2, 1) and M(S) = (1, 2, . . . , k − 1, k) for some k ∈ N\{0}
if and only if S is symmetric and S = 〈k + 1, k + 2〉.

Proof. Suppose S is a numerical semigroup such that N(S) = (k, k − 1, . . . , 2, 1) and M(S) =
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(1, 2, . . . , k − 1, k). By 8.0.8, we know that S has to be a symmetric semigroup. We have

S = {0, 1, . . . ,M0 − 1} ∪ {M0 +N0, . . . ,M0 +N0 +M1 − 1} ∪ . . .∪
{M0 +N0 + . . .+Mk−1 +Nk−1, . . . ,M0 +N0 + . . .+Mk−1 +Nk−1 +Mk − 1}∪
{M0 +N0 + . . .+Mk +Nk →}

= {0} ∪ {(1 + k), (2 + k)} ∪ {[(1 + k) + (k − 1 + 2)], [(1 + k) + (k − 1 + 2) + 1)],

[(1 + k) + (k − 1 + 2) + 2)]} ∪ · · · ∪ {[(1 + k) + (2 + k − 1) + (3 + k − 2) + . . .

+ (k − 1 + 2)] + · · ·+ [(1 + k) + (2 + k − 1) + (3 + k − 2) + · · ·+ (k − 1 + 2)+

(k − 2)]} ∪ {[(1 + k) + (2 + k − 1) + (3 + k − 2) + · · ·+ (k − 1 + 2), (k + 1)],→}
= {0} ∪ {(k + 1), (k + 2)} ∪ {(2k + 2), (2k + 3), (2k + 4)} ∪ {(3k + 3), (3k + 4),

(3k + 5), (3k + 6)} ∪ · · · ∪ {[(k − 1)(k + 1)], [(k − 1)(k + 1) + 1], . . . ,

[(k − 1)(k + 1) + (k − 1)]} ∪ {(k)(k + 1),→}
= {0} ∪ {(k + 1), (k + 2)} ∪ {2(k + 1), (k + 1) + (k + 2), 2(k + 2)} ∪ {3(k + 1),

2(k + 1) + (k + 2), (k + 1) + 2(k + 2), 3(k + 2)} ∪ · · · ∪ {(k − 1)(k + 1), (k − 2)(k + 1)

+ (k + 2), (k − 3)(k + 1) + 2(k + 2), . . . , 2(k + 1) + (k − 3)(k + 2), (k + 1)+

(k − 2)(k + 2), (k − 1)(k + 2)} ∪ {(k)(k + 1),→}

Observe, the only unique elements of the set are k + 1 and k + 2, the generators, and every
other element in the set is clearly a linear combination of k + 1 and k + 2. Therefore we know
S ⊆ 〈k + 1, k + 2〉.

Now suppose that S is a symmetric numerical semigroup such that S = 〈k + 1, k + 2〉. By 8.0.17,
we know that all of the consecutive small elements are generated by finding all p, q ∈ N that satisfy
p+ q = n and x = p(k)+ q(k+1) for all x ∈ S and n ∈ N. This lemma also tells us that these small
elements are counted by the formula

(
n+2−1

n

)
. M(S) is a sequence that keeps track of the consecutive

small elements of S, which means, in this case, we have a formula for what any given Mn is. M(S) =
(
(
0+2−1

0

)
,
(
1+2−1

1

)
,
(
2+2−1

2

)
, . . . ,

(
(k−3)+2−1

k−3

)
,
(
(k−2)+2−1

k−2

)
,
(
(k−1)+2−1

k−1

)
,
(
(k)+2−1)

k

)
) = (1, 2, . . . , k − 2, k −

1, k). So now that we have our M(S), by 8.0.8, we know that N(S) = (k, k − 1, k − 2, . . . , 2, 1)
because S is a symmetric semigroup.
Hence N(S) = (k, k− 1, . . . , 2, 1) and M(S) = (1, 2, . . . , k− 1, k) for some k ∈ N\{0} if and only if
S is symmetric and S = 〈k + 1, k + 2〉.

Theorem 8.0.19. ∀ M sequences beginning with M0 = 1, ∃ an N sequence such that M and N
correspond to a semigroup.

Proof. Suppose M(S) = (1,M1, . . . ,Mk). Then construct N(S) with N0 = (k − 2) +
∑k

i=0Mi, and

let Ni = 1 identically afterward. Since Mi ≥ 1∀i, then N0 = (k− 2) +
∑k

i=0Mi ≥ k− 2 + (k+ 1) =
2k − 1 ≥ 0 since k ≥ 1. We show that the numerical set S with these M and N sequences is a
semigroup.

From Theorem 8.0.4, we know

F (S) + 1 =
k∑

i=0

(Mi +Ni) =
k∑

i=0

(Ni) +N0 + 2− k = 2N0 + 2 + k − k = 2(N0 + 1)
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. In other words, the conductor is twice the multiplicity. M0 = 1 shows that 0 ∈ S and defining a
numerical set with finite M and N sequences always gives cofiniteness. All that remains is additive
closure. Let x, y ∈ S. Since x, y ≥ m(S), then x+ y ≥ 2m(S) = F (S) + 1. This gives us x+ y ∈ S
and thus S is a semigroup.

The previous theorem has no analogue for gap sequences since it is possible find N sequences with
no corresponding M sequences to make it a semigroup. In a sense, the M sequences determine
possible N sequences for semigroups, and not vice-versa.

8.1 Ideal M ’s

Definition 8.1.1. We call M(S) ideal if it has that Mk +Mj−1 = Mj+k for j,k not simultaneously
0.

This definition is useful because it pertains to some of the semigroups we have previously worked
with.

Theorem 8.1.2. If S is a truncated n-staircase, them M(S) is ideal.

Proof. Recall from Theorem 6.0.10 that if S and S̃ are numerical semigroups, then M(S) =
(1, 1, . . . , 1). It is easy to see that M(S) is ideal. We also proved in 6.0.11 that S must be a
truncated n-staircase, and therefore the statement follows.

This was simple in the case of n-staircases, but to generalize, we will need more tools, as seen in
the following proposition.

Proposition 8.1.3. The following statements are equivalent.
1. If M0 = 1 and M1 = l, then Mj+1 = Mj +M1 − 1 (recursive definition of ideal)
2. Mn = n(l − 1) + 1 (closed form)
3. M0 = 1, M1 = l, and Mj+k = Mj +Mk − 1. (generalized)

Proof. The proof will be split into three parts.
1⇒ 2
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Given M0 = 1 and M1 = l, then note the following equivalences:

Mn = Mn−1 +M1 − 1

= Mn−1 + l − 1

= Mn−2 + 2(l − 1)

= Mn−3 + 3(l − 1)

...

= Mn−(n−1) + (n− 1)(l − 1)

= l + nl + 1− l − n
= n(l − 1) + 1

Thus statement 1 implies statement 2 of the proposition.

2⇒ 3
Given Mn = n(l − 1) + 1, note that M0 = 1 and M1 = l. Also,

Mj+k = (j + k)(l − 1) + 1

= j(l − 1) + 1 + k(l − 1)

= j(l − 1) + 1 + k(l − 1) + 1− 1

= Mj +Mk − 1

Thus statement 2 implies statement 3 of the proposition.

3⇒ 1 Given statement 3, it is simply let k=1, and statement 1 is obtained.

Thus all three statements are equivalent.

The power of Proposition 8.1.3 is that to prove a numerical set is ideal we only need prove either
the recursive definition or the closed form.

Theorem 8.1.4. If S is a Arithmetic semigroup 〈a, ha+ d, ha+ 2d, . . . , ha+ kd〉 with d = h = 1,
then M(S) is ideal.

Proof. To prove this result, we first prove the following Lemma.

Lemma 8.1.5. If S is an Arithmetic semigroup with d=h=1, then let {g0, g1, . . . , gk−1}
be the set of generators. Then ∀n ∈ N, {m ∈ N | ng0 ≤ m ≤ ngk−1} ⊂ S.

Proof. Proven with induction on n. Clearly the case when n=1 is true, but to under-
stand the mechanism of the proof, we look at when n=2.
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From {g0, g1, . . . , gk−1}, we have all multiples of gi, but in particular, we have the smallest
and largest multiples 2g0 and 2gk−1. To see how we can obtain every number in between,
let the ordered pair (gi, gj) where gi, gj ∈ {g0, g1, . . . , gk−1} correspond to gi+gj. Perform
the following progression

2g0 = (g0, g0)→ (g1, g0)→ (g2, g0)→ . . .→ (gk−1, g0)→ (gk−1, g1)→ (gk−1, g2)→
. . .→ (gk−1, gk−1) = 2gk−1

Note that since the generators are in an arithmetic progression with common difference
of 1, then so are these ordered pairs, and thus {2g0, 2g0 + 1, . . . , 2gk−1} ⊂ S.

Now for an inductive step. Suppose for n ∈ N that {m ∈ N | ng0 ≤ m ≤ ngk−1} ⊂ S.
In particular, note that ngi and ngi+1 ∈ S for 0 ≤ i < k − 1, as well as every number
in between. Hence, all but the last step of the following progression are justified by our
inductive hypothesis.

(n+ 1)gi = (ngi, gi)→ (ngi + 1, gi)→ (ngi + 2, gi)→ . . .→ (ngi+1, gi)→
(ngi+1, gi+1) = (n+ 1)gi+1

This proves that when (n+ 1)gi and (n+ 1)gi+1 are in S, so is every number in between.
Applying this for 0 ≤ i < k− 1 completes the argument that {m ∈ N | (n+ 1)g0 ≤ m ≤
(n+ 1)gk−1} ⊂ S, and mathematical induction proves the Lemma.

Note that in our Lemma, since gk−1 = g0 + (k − 1), then there are n(k − 1) + 1 integers in the
string ng0, ng0 + 1,. . . , ngk−1. This is statement 2 of Proposition 8.1.3, so all that remains to show
is these strings correspond to Mn.

If m ∈ S, ng0 ≤ m ≤ ngk−1 for some n ∈ N. If m is an atom, then clearly it holds for n = 1.
If m is not an atom, we have m = c0g0 + c1g1 + . . . + ck−1gk−1 for some coefficients, all positive.
Then note that since gj = g0 + j, then m = (c0 + c1 + . . .+ ck−1)g0 + (c1 + 2c2 + . . .+ (k − 1)ck−1)

Since
∑k−1

i=1 kck is positive by construction, then m ≥ (c0 + c1 + . . .+ ck−1)g0. In a similar manner,
gj = gk−1 − j − k + 1, so m = (c0 + c1 + . . . + ck−1)gk−1 − (c0(k − 1) + c1(k − 2) + . . . + ck−2).

Again, since
∑k−1

i=0 ci(k − 1 − i) is positive, then m ≤ (c0 + c1 + . . . + ck−1)gk−1. This is the same
coefficient as the previous, so ng0 ≤ m ≤ ngk−1. This means that counting the integers in these
intervals also counts the number of consecutive elements in S. Thus giving M(S), and we conclude
M(S) is ideal.

Unfortunately, while idealism is a nice property, it in itself is not enough to justify a numerical set
being a semigroup. Without some sort of corresponding restriction on N, then N can be made to
break the set’s additive closure.

While an N sequence can seemingly always be chosen to break a set’s additive closure, it also can
guarantee it.
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8.2 M l and N l

Observation 8.2.1. Every numerical semigroup has a maximal truncated n-staircase
with k steps contained within it.

Let S be a semigroup, let m(S) = m, and define k = min{j ∈ N0 : jn > F (S)}.
Then since S is a semigroup, S must contain every multiple of m, so {0,m, 2m, . . . , (k−
1)m,F + 1→} ⊆ S. Therefore, every numerical semigroups contains a unique maximal
truncated staircase.

Notation: From now on let {Ni} denote the set of Ni consecutive gaps in S (or what was previously
referred to as Gi). Similarly, let {Mi} refer to the set of Mi consecutive elements of S.

Definition 8.2.2. Let S be a numerical semigroup with N(S) = (N0, . . . , Nk−1) and multiplicity
m. Define N l =

∑
Ni where for all x ∈ {Ni}, lm < x < (l + 1)m. Let {N l} =

⋃
i{Ni}.

Definition 8.2.3. Let S be a numerical semigroup with M(S) = (M0, . . . ,Mk−1) and multiplicity
m. Define M l =

∑
Mi where for all x ∈ {Mi}, lm ≤ x ≤ (l + 1)m. Let {M l} =

⋃
i{Mi}.

Theorem 8.2.4. Let S be a numerical semigroup. Then M l ≤M l+1.

Proof. Let k ∈ {M l}. Then lm ≤ k ≤ (l + 1)m. This gives us (l + 1)m ≤ k + m ≤ (l + 2)m gives
us that k+m ∈M l+1. This is a one to one mapping, so we must have M l ≤M l+1 as required.

Corollary 8.2.5. Let S be a numerical semigroup. Then N l ≥ N l+1.

Theorem 8.2.6. Let S be a numerical semigroup with multiplicity m and N(S) = (m−1, N1, . . . , Nk−1)
and M(S) = (1,M1, . . . ,Mk−1). Then for all i ∈ {1, . . . , k − 1}, Ni +Mi ≤ m.

Proof. Fix i ∈ {1, . . . , k − 1} and let {l, l + 1, . . . , l + Mi − 1} be the set of the Mi consecutive
elements in S. Notice that Mi ≤ N0 = m − 1 since other wise would would have everything
after l is in S, so there will not even be an Mi. Then l + m ∈ S, so there can be at most
(l + m)− (l + Mi − 1)− 1 = m−Mi gaps in the Ni string of consecutive gaps, i.e. Ni ≤ m−Mi,
so Ni +Mi ≤ m.

Observation 8.2.7. Note that while the previous statement gives us a necessary con-
dition on M(S) and N(S) for S to be a semigroup, it is not sufficient. For an example,
let M(S)=(1,1,1) and N(S)=(5,3,3).
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Conjecture 8.2.8. If S is a semigroup with at least one of it’s generators being greater
than the frobenius number and it’s M(S) = (M0,M1, . . . ,Mi, . . . ,Mk−1) and
N(S) = (N0, N1, . . . , Ni, . . . , Nk−1) with i being the maximal number so that
Mk−1 = Ni, Mk−2 = Ni+1, . . . , Mi+1 = Mk−2, and Mi ≥ Nk−1. Then Ssym, with
M(Ssym) = (M0,M1, . . . ,Mk−1, Ni−1, . . . , N0) and N(Ssym) = (N0, N1, . . . , Nk−2,Mi,Mi−1, . . . ,M0),
is a symmetric semigroup. If S has no generators larger than the frobenius number then
there is no way to complete the N sequence of S to make a symmetric semigroup.

Definition 8.2.9. Let the sequence of gap lengths for a numerical set S be MN = (MN1, . . . ,MNk, 0, 0, 0, . . .)
where MNi counts the number of gaps between the ith and (i−1)th elements of S and k the smallest
nonegative integer so that MNk 6= 0. By convention let MN0 = 0.

Equivalently, we can construct MN(S) from M(S) = (M0, . . . ,Mk) and N(S),

MN(S) = (0(M0−1), N0, 0
(M1−1), N1, . . . , 0

(Mk−1), Nk, 0, 0, 0, . . .)

where 0(l) means that there are l zeroes in a row.

Theorem 8.2.10. Let S be a numerical set with MN(S) = (MN1, . . . ,MNk, 0, 0, 0, . . .) then S =
{n+

∑n
i=1MNi : n ∈ N0}.

Proof. We have 0 ∈ S, so we can partition the number line as follows:
0,1,2,. . .,MN1,MN1 + 1,MN1 + 2,MN1 + 2 + 1,. . .,MN1 + 2 +MN2− 1,MN1 +MN2 + 2,. . .,MN1 +
· · ·+MNk + k →

Theorem 8.2.11. Let S be a numerical semigroup with MN(S) = (MN1, . . . ,MNk, 0, 0, 0, . . .).
Then the Hilbert Series of S has

H(S)(1− t) = 1− t+
∑

s∈{1,...,k}:MNs 6=0

t(
∑s

i=1 MNi)+s −
∑

s∈{2,...,k}:MNs 6=0

t(
∑s−1

i=1 MNi)+s.
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Proof. By 8.2.10, S = {n+
∑n

i+1MNi : n ∈ N0}, so H(S) =
∑∞

n=0 t
(
∑n

i=1 MNi)+n. And

H(S)(1− t) = (1− t)
∞∑
n=0

t(
∑n

i=1 MNi)+n

=
∞∑
n=0

t(
∑n

i=1 MNi)+n −
∞∑
n=0

t(
∑n

i=1 MNi)+n+1

= t0 +
∞∑
n=1

t(
∑n

i=1 MNi)+n − t1 −
∞∑
n=1

t(
∑n

i=1 MNi)+n+1

= 1− t+
∞∑
n=1

t(
∑n

i=1 MNi)+n −
∞∑
n=2

t(
∑n−1

i=1 MNi)+n

= 1− t+ tMN1+1 +
∞∑
n=2

(
t(
∑n

i=1 MNi)+n − t(
∑n−1

i=1 MNi)+n
)

= 1− t+ tMN1+1 +
∑

s∈{2,...,k}:MNs 6=0

(
t(
∑n

i=1 MNi)+n − t(
∑n−1

i=1 MNi)+n
)

= 1− t+
∑

s∈{1,...,k}:MNs 6=0

t(
∑s

i=1 MNi)+s −
∑

s∈{2,...,k}:MNs 6=0

t(
∑s−1

i=1 MNi)+s

Corollary 8.2.12. Let S be a numerical semigroup with M(S) = (M0, . . . ,Mk) and N(S) =
(N0, . . . , Nk). Then the Hilbert Series of S has

H(S)(1−t) = (1−tM0)+(tM0+N0−tM0+N0+M1)+· · ·+(t
∑k−1

i=0 (Mi+Ni)−t
∑k−1

i=0 (Mi+Ni)+Mk)+t
∑k

i=0(Mi+Ni)

Proof. We have

MN(S) = (0(M0−1), N0, 0
(M1−1), N1, . . . , 0

(Mk−1), Nk, 0, 0, 0, . . .)

= (N0, 0
(M1−1), N1, . . . , 0

(Mk−1), Nk, 0, 0, 0, . . .)

= (MN1, . . . ,MNz, 0, 0, 0, . . .)

so by 8.2.11 we have

H(S)(1− t) = 1− t+
∑

s∈{1,...,z}:MNs 6=0

t(
∑s

i=1 MNi)+s −
∑

s∈{2,...,z}:MNs 6=0

t(
∑s−1

i=1 MNi)+s

= (1− tM0) +
k∑

s=0

t(
∑s

i=0 Ni)+(s+1)+(
∑s

i=0(Mi−1)) −
k∑

s=1

t(
∑s−1

i=0 Ni)+(s+1)+(
∑s

i=0(Mi−1))

= (1− tM0) +
k∑

s=0

t(
∑s

i=0 Ni)+(
∑s

i=0 Mi) −
k∑

s=1

t(
∑s−1

i=0 Ni)+(
∑s

i=0 Mi)

= (1− tM0) +
k∑

s=0

t(
∑s

i=0 Ni+Mi) −
k∑

s=1

t(
∑s−1

i=0 Ni+Mi)+Ms

= (1− tM0) + (tM0+N0 − tM0+N0+M1) + · · ·+ (t
∑k−1

i=0 (Mi+Ni) − t
∑k−1

i=0 (Mi+Ni)+Mk) + t
∑k

i=0(Mi+Ni)
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Algorithm 8.2.13. Jackson Autry’s Algorithm for testing whether a numerical set is a numerical
semigroup and finding the generators of the numerical semigroup given the M and N sequences.

Input: M(S) = (M0, . . . ,Mk) and N(S) = (N0, . . . , Nk)

1. Find the potentional Hilbert Series for S using 8.2.12, H(S)

2. Multiply H(S)(1− t) by (1 + t+ t2 + · · ·+ tM0+N0−1)

3. If the coefficient of P = H(S)(1 − t)(1 + t + t2 + · · · + tM0+N0−1) form a valid Apery set
(i.e. the corresponding Kunz coordinates satisfy the Kunz inequalities), then S is a numerical
semigroup generated by the small N0-linearly independent elements of this Apery set

Output: True or False. If True, generators of S are also outputted.

Finding the generators from the M and N sequences can be very useful, particularly for constructing
the Bras-Amoros Tree and right extension.

Theorem 8.2.14. If S is a leaf in the Bras-Amoros Tree, then S does not have maximal embedding
dimension.

Proof. Note, S is a leaf if and only if it has no generators larger than the Frobenius Number. Notice,
F (S) +m(S) ∈ ApS, but since F (S) +m(S) > F (S), F (S) +m(S) is not a generator of S. Recall
that all non-multiplicity generators of S must be in the Apery Set of S and |ApS\{0}| = m(S)−1,
so at most S has m(S) − 2 non-multiplicity generators and thus e(S) ≤ m(S) − 1 and S is not
maximal embedding dimension.

9 Operations on M and N

In this section, we explore how modifying the M and N sequence of a numerical set change the set.

Definition 9.0.1. Let S be a numerical set given by N(S) = (N0, N1, . . . , Nk) and M(S) =
M0,M1, . . . ,Mk), then S∗ is the right truncation of S such that N(S∗) = (N0, N1, . . . , Nk−1) and
M(S∗) = M0,M1, . . . ,Mk−1).

Theorem 9.0.2. Let S be a numerical semigroup with N(S) = (N0, . . . , Nk) and M(S) = (M0, . . . ,Mk).
Let S∗ be the right truncation of S with N(S∗) = (N0, . . . , Nk−1) and M(S∗) = (M0, . . . ,Mk−1).
Then S̃ = {0, . . . ,Mk − 1} ∪ (S̃∗ +Mk +Nk−1).

Proof. We have S = {0, . . . ,M0 − 1} ∪ {M0 +N0, . . . ,M0 +N0 +M1 − 1} ∪ · · · ∪ {M0 +N0 + · · ·+
Mk−1+Nk−1, . . . ,M0+N0+· · ·+Mk−1+Nk−1+Mk−1}∪{M0+N0+· · ·+Mk−1+Nk−1+Mk+Nk →}
and S∗ = {0, . . . ,M0 − 1} ∪ {M0 + N0, . . . ,M0 + N0 + M1 − 1} ∪ · · · ∪ {M0 + N0 + · · · + Mk−1 +
Nk−1, . . . ,M0 + N0 + · · · + Mk−2 + Nk−2 + Mk−1 − 1} ∪ {M0 + N0 + · · · + Mk−1 + Nk−1 →}, so
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S ⊆ S∗ and S has Base B(S) = M0 + N0 + · · · + Mk−1 + Nk−1 + Mk − 1 while S∗ has Base
B(S∗) = M0 +N0 + · · ·+Mk−2 +Nk−2 +Mk−1 − 1.

Also,

S̃ = {B(S)− s : s ∈ S, s ≤ B(S)} ∪ {B(S)→}
= {M0 +N0 + · · ·+Mk−1 +Nk−1 +Mk − 1− s : s ∈ S, s ≤M0 +N0 + · · ·+Mk−1 +Nk−1 +Mk − 1}∪

{M0 +N0 + · · ·+Mk−1 +Nk−1 +Mk − 1→}

and

S̃∗ = {B(S∗)− s : s ∈ S∗, s ≤ B(S∗)} ∪ {B(S∗)→}
= {M0 +N0 + · · ·+Mk−2 +Nk−2 +Mk−1 − 1− s : s ∈ S∗, s ≤M0 +N0 + · · ·+Mk−2 +Nk−2 +Mk−1 − 1}

∪ {M0 +N0 + · · ·+Mk−2 +Nk−2 +Mk−1 − 1→}

so

S̃∗ +Mk +Nk−1

= {M0 +N0 + · · ·+Mk−1 +Nk−1 +Mk − 1− s : s ∈ S∗, s ≤M0 +N0 + · · ·+Mk−2 +Nk−2 +Mk−1 − 1}∪
{M0 +N0 + · · ·+Mk−1 +Nk−1 +Mk − 1→}

= {M0 +N0 + · · ·+Mk−1 +Nk−1 +Mk − 1− s : s ∈ S, s ≤M0 +N0 + · · ·+Mk−2 +Nk−2 +Mk−1 − 1}∪
{M0 +N0 + · · ·+Mk−1 +Nk−1 +Mk − 1→}

Note, B(S)− x ∈ {0, . . . ,Mk − 1} where x ∈ {M0 +N0 + · · ·+Mk−1 +Nk−1, . . . ,M0 +N0 + · · ·+
Mk−1 +Nk−1 +Mk − 1}, so S̃ = {0, . . . ,Mk − 1} ∪ (S̃∗ +Mk +Nk−1).

Theorem 9.0.3. Let S be a numerical set with N(S) = (N0, N1, . . . , Nk). Let T be a numerical set
with N(T ) = (N0, N1, . . . , Nk − j) for some 0 ≤ j ≤ Nk. Then if S is a numerical semigroup, then
T is also a numerical semigroup.

Proof. Note, T = S∪{F (S)+1−j →}. Let x, y ∈ T . If x ≥ F (S)+1−j, then x+y ≥ F (S)+1−j
and x+ y ∈ T . If x, y < F (S) + 1− j then x, y ∈ S so x+ y ∈ S since S is a numerical semigroup
and S ⊆ T so x+ y ∈ T .

Definition 9.0.4. Let S be a numerical set given by N(S) = (N0, N1, . . . , Nk) and M(S) =
(M0,M1, . . . ,Mk). Then call SL the left extension of S, such that SL is determined by adding
an element to the left of the N(S) and M(S) sequences. That is, N(SL) = (N−1, N0, N1, . . . , Nk)
and M(SL) = (M−1,M0,M1, . . . ,Mk).

Theorem 9.0.5. The following are equivalent:

1. SL is a left extension of the numerical set S with M(S) = (M0, . . . ,Mk) and N(S) =
(N0, . . . , Nk), M(SL) = (M−1,M0, . . . ,Mk) and N(SL) = (N−1, N0, . . . , Nk)

2. SL = {0, 1, . . . ,M−1 − 1} ∪ (S +N−1 +M−1)
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Proof. Note,

S ={0, 1, . . . ,M0 − 1} ∪ {M0 +N0, . . . ,M0 +N0 +M1 − 1} ∪ . . .∪
{M0 +N0 + . . .+Mk−1 +Nk−1, . . . ,M0 +N0 + . . .+Mk−1 +Nk−1 +Mk − 1}∪
{M0 +N0 + . . .+Mk +Nk →}

And

S +M−1 +N−1 = {M−1 +N−1,M−1 +N−1 + 1, . . . ,M−1 +N−1 +M0 − 1}∪
{M−1 +N−1 +M0 +N0, . . . ,M−1 +N−1 +M0 +N0 +M1 − 1} ∪ . . .∪
{M−1 +N−1 +N0 + . . .+Mk−1 +Nk−1, . . . ,M−1 +N−1 +M0 +N0 + . . .+Mk−1 +Nk−1 +Mk − 1}∪
{M−1 +N−1 +M0 +N0 + . . .+Mk +Nk →}

So,

{0, . . . ,M−1 − 1} ∪ (S +M−1 +N−1) = {0, . . . ,M−1 − 1}∪
{M−1 +N−1,M−1 +N−1 + 1, . . . ,M−1 +N−1 +M0 − 1}∪
{M−1 +N−1 +M0 +N0, . . . ,M−1 +N−1 +M0 +N0 +M1 − 1} ∪ . . .∪
{M−1 +N−1 +N0 + . . .+Mk−1 +Nk−1, . . . ,M−1 +N−1 +M0 +N0 + . . .+Mk−1 +Nk−1 +Mk − 1}∪
{M−1 +N−1 +M0 +N0 + . . .+Mk +Nk →}
= SL

Corollary 9.0.6. We also can write S in terms of SL: S = (SL −m(SL))\{−m(SL)}.

Theorem 9.0.7. Let S be a numerical set with N(S) = (N0, N1, . . . , Nk) and M(S) = (M0,M1, . . . ,Mk)
and let SL be a numerical set with N(SL) = (N0, N0, N1, . . . , Nk) and M(SL) = (1,M0,M1, . . . ,Mk).
If S is a numerical semigroup then SL is a numerical semigroup.

Proof. Note, SL = {0} ∪ (N0 + 1 + S).

Suppose S is a numerical semigroup and let xL, yL ∈ SL. Without loss of generality, if xL = 0 then
xL + yL = yL ∈ SL, so suppose that xL, yL 6= 0. Then xL = N0 + 1 + x and yL = N0 + 1 + y for
some x, y ∈ S. Since x, y,N0 + 1 = m(S) ∈ S and S is a semigroup, then x + y + N0 + 1 ∈ S so
(x+ y+N0 + 1) +N0 + 1 = xL + yL ∈ SL by construction. So SL is closed under addition and thus
is a numerical semigroup.

Note that N0 + 1 ∈ S, and left-extending N0 was enough to justify SL being a semigroup. It turns
out that this generalizes.

Theorem 9.0.8. Let S be a numerical set with N(S) = (N0, N1, . . . , Nk) and M(S) = (M0,M1, . . . ,Mk)
and let SL be a numerical set with N(SL) = (N−1, N0, N1, . . . , Nk) and M(SL) = (1,M0,M1, . . . ,Mk).
If S is a numerical semigroup and m = N−1 + 1 ∈ S then SL is a numerical semigroup. Also, if SL

is a numerical semigroup then m ∈ S.
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Proof. Note, SL = {0} ∪ (N−1 + 1 + S).

Suppose S is a numerical semigroup and let xL, yL ∈ SL. If xL = 0 then xL + yL = yL ∈ SL, so
suppose that xL, yL 6= 0. Then xL = m + x and yL = m + y for some x, y ∈ S. Since x, y,m ∈ S
and S is a semigroup, then x+ y +m ∈ S so (x+ y +m) +m = xL + yL ∈ SL by construction. So
SL is closed under addition and thus is a numerical semigroup.

If instead we suppose that SL is a numerical semigroup, then notice S = (SL\{0}) − m and as
before since 2m ∈ SL, 2m−m = m ∈ S.

Theorem 9.0.8 is very nearly an if and only if statement, but counterexamples have been found to
show it is not enough for SL to be semigroup to guarantee S is. This is exemplified in the next
example.

Example 9.0.9. Let S be a numerical set with N(S) = (N0, N1, . . . , Nk) and M(S) = (M0,M1, . . . ,Mk)
and let S ′ be a numerical set with N(S ′) = (N1, . . . , Nk) and M(S ′) = (M1, . . . ,Mk). It is not al-
ways true that if S is a numerical semigroup, then S ′ is also a numerical semigroup.

Consider N(S) = (5, 1, 2) with M(S) = (1, 1, 1) and N(S ′′) = (1, 2) with M(S ′′) = (1, 1). Obviously
S ′′ is not a numerical semigroup, but S = {0, 6, 8, 11→} is a numerical semigroup.

Theorem 9.0.10. Let PL be a semigroup that is a left extension of the numerical semigroup P ,
then H(PL) = {1, . . . , N−1} ∪ {H(P ) +N−1 + 1}.

Proof. Let PL be a left extension of the numerical semigroup P with N(PL) = (N−1, N0, . . . , Nk).
Let the hook set of P be H(P ). Recall that by def 9.0.4, when we do a left extension, we are adding
N−1 consecutive gaps into our original numerical semigroup, at the begining of the semigroup. So
H(PL) is composed of the new gaps we just added {1, . . . , N−1}, plus all of our old gaps, H(P ),
except that all of our old gaps have to be shifted up by N−1 + 1. Hence H(PL) = {1, . . . , N−1} ∪
(H(P ) +N−1 + 1).

Theorem 9.0.11. Let S be a numerical set with N(S) = (N0, . . . , Nk) and M(S) = (M0, . . . ,Mk).
Let SL be a left extension of S with N(SL) = (N−1, N0, . . . , Nk) and M(SL) = (1,M0, . . . ,Mk).
Then the hook set of SL can be written in terms of the hook set of S as follows

H(SL) = H(S) ∪ (N0\S +N−1 + 1) ∪ {1, 2, . . . , N−1}.

Proof. Notice, {1, 2, . . . , N−1} ⊆ H(SL) and H(S) ⊆ H(SL) by construction. Let x ∈ (N0\S +
N−1 + 1), then x = b+N−1 + 1 where b is a gap of S. Since SL = {0} ∪ (S +N−1 + 1), notice that
if b is a gap of S then b+N−1 + 1 is a gap of SL. So x = b+N−1 + 1 = (b+N−1 + 1)− 0 ∈ H(SL).
Thus H(SL) ⊇ H(S) ∪ (N0\S +N−1 + 1) ∪ {1, 2, . . . , N−1}.

Now consider x ∈ H(SL), so x = b′ − a′ for some b′ /∈ SL and some a′ ∈ SL with b′ > a′. Either
b′ ∈ {1, . . . , N−1} or N−1 + 1 ≤ b′ /∈ (S + N−1 + 1) so b′ = b + N−1 + 1 for some 0 < b /∈ S.
Additionally, either a′ = 0 or a′ ∈ S + N−1 + 1 so a′ = a + N−1 + 1 for some a ∈ S. If a′ = 0,
then b′ − a′ = b′ so {1, . . . , N−1} ⊆ H(SL) and (N0\S) + N−1 + 1 ⊆ H(SL). If a′ = a + N−1 + 1
we must have b′ = b + N−1 + 1 with b > a. Then b′ − a′ = b − a ∈ H(S). Thus, H(SL) ⊆
H(S) ∪ (N0\S +N−1 + 1) ∪ {1, 2, . . . , N−1}.
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Theorem 9.0.12. Let S be a numerical set with N(S) = (N0, . . . , Nk) and M(S) = (M0, . . . ,Mk)
and let r1(S) = {F (S) − r : r ∈ S & r < F (S)} (these are the hooks of S located in the top
row of the Young diagram). Let SU be an upper extension of S with N(SU) = (N0, . . . , Nk, 1) and
M(SU) = (M0, . . . ,Mk,Mk+1). Then H(SU) = H(S) ∪ (r1(S) +Mk+1 + 1) ∪ {1, 2, . . . ,Mk+1}.

Proof. Let S be a numerical set with N(S) = (N0, . . . , Nk) and M(S) = (M0, . . . ,Mk) and let
r1(S) = {F (S) − r : r ∈ S & r < F (S)}. Consider SU such that N(SU) = (N0, . . . , Nk, 1) and
M(SU) = (M0, . . . ,Mk,Mk+1). We will now show H(S) ∪ (r1(S) +Mk+1 + 1) ∪ {1, 2, . . . ,Mk+1} ⊆
H(SU).

Note, by construction, that H(S) ⊆ H(SU) and {1, 2, . . . ,Mk+1} ⊆ H(SU). Let x ∈ (r1(S) +
Mk+1 + 1). So x = (F (S) − r) + Mk+1 + 1 for some r ∈ S such that r < F (S). Note, that
SU = S\{F (S) +Mk+1 + 1} because, when you upper extend with Nk+1 = 1, you are just creating
one more gap namely a new Frobenius Number for the set. This means F (SU) = F (S) +Mk+1 + 1.
So x = (F (S)−r)+Mk+1+1 = (F (S)+Mk+1+1)−r = F (SU)−r ∈ H(SU). Hence {r1+Mk+1+1} ⊆
H(SU), therefore H(S) ∪ (r1(S) +Mk+1 + 1) ∪ {1, 2, . . . ,Mk+1} ⊆ H(SU).

Now we will show H(SU) ⊆ H(S) ∪ (r1(S) +Mk+1 + 1) ∪ {1, 2, . . . ,Mk+1}.

Note, N0\SU = N0\S ∪ (F (S) + Mk+1 + 1) and H(SU) = {b − a : b ∈ N0\SU , a ∈ SU , & b > a}.
Let y ∈ H(SU).So either b ∈ N0\S and a ∈ SU , b = F (S) +Mk+1 + 1 and a ∈ SU such that a ∈ S,
or b = F (S) + Mk+1 + 1 and a ∈ SU such that a /∈ S. If b ∈ N0\S and a ∈ SU , theny ∈ H(S).
If b = F (S) + Mk+1 + 1 and a ∈ SU such that a ∈ S, then y ∈ (r1(S) + Mk+1 + 1). And
finally, if b = F (S) + Mk+1 + 1 and a ∈ SU such that a /∈ S, then y ∈ {1, . . . ,Mk+1}. Therefore
H(SU) ⊆ H(S)∪ (r1(S) +Mk+1 + 1)∪ {1, 2, . . . ,Mk+1}. Hence, H(SU) = H(S)∪ (r1(S) +Mk+1 +
1) ∪ {1, 2, . . . ,Mk+1}.

Definition 9.0.13. Let S be a numerical set with N(S) = (N0, N1, . . . , Nk) and M(S) = (M0,M1, . . . ,Mk)
then SC is a column extension of S if N(SC) = N(S) and M(SC) = (M0 + 1,M1, . . . ,Mk). Alter-
natively, we say SC = {0} ∪ (S + 1).

Theorem 9.0.14. Let S be a numerical set with N(S) = (N0, . . . , Nk) and M(S) = (M0, . . . ,Mk)
and let SC be the column extension of S numerical set with N(SC) = N(S) and M(SC) = (M0 +
1,M1, . . . ,Mk). Then the hook set of H(SC) is H(SC) = H(S) ∪ (N0\S + 1).

Proof. Note, SC = {0} ∪ (S + 1) so N0\SC = N0\S + 1. If x ∈ H(SC) then x = bC − aC where
bC ∈ N0\SC , ac ∈ SC , and bC > aC . So b ∈ N0\S. Also, either aC = 0 or aC = a + 1 for some
a ∈ S with a < b. If aC = 0, then x = bC − aC = bC = b + 1 ∈ N0\S + 1. If aC = a + 1, then
x = bC − aC = b+ 1− (a+ 1) = b− a ∈ H(S). Thus, H(SC) ⊆ H(S) ∪ (N0\S + 1).

Let x ∈ H(S) ∪ (N0\S + 1). Then either x ∈ H(S) or x ∈ N0\S + 1. If x ∈ H(S), then x = b− a
for some b ∈ N0\S and a ∈ S with a < b. Note, x = (b + 1) − (a + 1) where b + 1 ∈ N0\SC and
a + 1 ∈ SC , so x ∈ H(SC). If x ∈ N0\S + 1, then x = b + 1 = b + 1 − 0 for some b ∈ N0\S so
x ∈ H(SC). Thus, H(SC) ⊇ H(S) ∪ (N0\S + 1).

Definition 9.0.15. Let S be the numerical set with N(S) = (N0, . . . , Nk) and M(S) = (M0, . . . ,Mk),
the row extension of S is the numerical set SR with N(SR) = (N0, . . . , Nk−1, Nk + 1) and M(SR) =
M(S). Equivalently, SR = S\{F (S) + 1}.
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Theorem 9.0.16. Let S be a numerical set with N(S) = (N0, . . . , Nk) and M(S) = (M0, . . . ,Mk)
and let SR be the numerical set with N(SR) = (N0, . . . , Nk−1, Nk + 1) and M(SR) = M(S). Then
the hook set of H(SR) is H(SR) = H(S) ∪ (r1(S) + 1) where r1(S) is defined as in 9.0.12.

Proof. Notice, N0\SR = (N0\S) ∪ {F (S) + 1}. Let x ∈ H(SR). Then x = b− a where b ∈ N0\SR

and a ∈ SR with a < b. Either b = F (S) + 1 or b ∈ N0\S and a ∈ SR ⊆ S. If b = F (S) + 1, then
x = b− a = F (S) + 1− a = (F (S)− a) + 1 ∈ r1(S) + 1. If b ∈ N0\S, then x = b− a ∈ H(S). So
H(SR) ⊆ H(S) ∪ (r1(S) + 1).

If x ∈ H(S) ∪ (r1(S) + 1), then either x ∈ H(S) so x = b − a for some b ∈ N0\S and a ∈ S with
a < b, or x ∈ r1(S) + 1 so x = (F (S) − a) + 1 for some a ∈ S with a < F (S). If x ∈ H(S), then
b ∈ N0\S ⊆ N0\SR and a ∈ SR since a < b so a < F (S). Thus x ∈ H(SR). If x ∈ r1(S) + 1, then
x = (F (S)− a) + 1 = (F (S) + 1)− a ∈ H(SR). So H(SR) ⊇ H(S) ∪ (r1(S) + 1).

Theorem 9.0.17. Let S be a numerical set and let SR be the row extension of S as defined above.
Then A(SR) ⊆ A(S).

Proof. Note, SR = S\{F (S) + 1} ⊂ S. By definition,

A(SR) = {a ∈ SR : a+ x ∈ SR ∀x ∈ SR}
= {a ∈ S : a+ x ∈ S ∀x ∈ S with a, x, a+ x 6= F (S) + 1}
⊆ {a ∈ S : a+ x ∈ S ∀x ∈ S}
= A(S)

Theorem 9.0.18. Let S be a numerical set and let SC be the column extension of S as defined
above. Then A(SC) ⊆ A(S).

Proof. Note, SC = {0} ∪ (S + 1). By definition,

A(SC) = {a ∈ SC : a+ x ∈ SC ∀x ∈ SC}
= {a ∈ SC : a+ s+ 1 ∈ SC ∀s ∈ S}
= {a ∈ SC : a+ s ∈ S ∀s ∈ S}
⊆ {a ∈ N0 : a+ x ∈ S ∀x ∈ S}
= A(S)

Theorem 9.0.19. Let S be a numerical set. Then for t ∈ A(S), t ∈ A(SC) if and only if t ∈ SC.

Proof. ⇒ Since A(SC) ⊆ SC , then clearly this is true.

⇐ Let t ∈ SC such that t ∈ A(S). Then for nonzero x ∈ SC , x − 1 ∈ S. Since t ∈ A(S),
t+ (x− 1) ∈ S. This gives us t+ x ∈ SC . Since x was arbitrary, we can conclude t ∈ A(Sc).
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In particular, the last theorem gives us that if multiples of m(A(S)) are in SC , then they must be
in A(SC).

Definition 9.0.20. Let S be a numerical semigroup. We call S an n-staircase with k steps and l
missing steps or a pseudo-n-staircase if and only if S = {0, (l+ 1)n, (l+ 2)n, . . . , kn→}. Similarly,
S is a truncated n-staircase with k steps and l missing steps or a pseudo-truncated-n-staircase if
and only if S = {0, (l + 1)n, (l + 2)n, . . . , kn− j →} for some 0 ≤ j < n.

Theorem 9.0.21. Let S be a numerical set. If A(S) is a truncated staircase, then A(SC) and
A(SR) are truncated staircases or pseudo-truncated staircases. In particular, if A(S) is a regular
staircase, then A(SC) and A(SR) are columns.

Proof. Suppose A(S) is a regular staircase, i.e. A(S) = {0,m, 2m, . . . , km→}.

By 9.0.17, since A(SR) ⊆ A(S) we only need to check if m, 2m, . . . , (k − 1)m are in A(SR). Note,
SR = S\{F (S) + 1} = S\{km}, so km /∈ A(SR). Since, m, 2m, . . . , (k − 1)m < km and are in S,
they are also in SR, so we can pair them to sum to km like km = m+(k−1)m = 2m+(k−2)m = · · · .
Thus, m, 2m, . . . , (k − 1)m /∈ A(SR). Then A(SR) = {0, km+ 1→}.

By 9.0.18, since A(SC) ⊆ A(S) we again only need to check if m, 2m, . . . , (k− 1)m ∈ A(SC). Note,
SC = {0} ∪ (S + 1) so F (SC) = F (S) + 1 = km. Suppose nm ∈ SC for some n ∈ {1, 2, . . . , k − 1},
then nm−1 ∈ S, so since (k−n)m ∈ A(S), km−1 ∈ S. But then we would have km−1+x ≥ km−1
for all x ∈ S so km − 1 + x ∈ S and km − 1 ∈ A(S) which is a contradiction (Im not sure what
author intended to be contradiction). Thus, m, 2m, . . . , (k− 1)m /∈ SC , so m, 2m, . . . , km /∈ A(SC),
so A(SC) is a column.

Now, suppose A(S) is a strictly truncated staircase, i.e. A(S) = {0,m, 2m, . . . , km, km+ j →} for
some 1 < j < m.

Here we prove if everything in the equivalence class of j modulo m is in S, then A(SR) is a
column. Again we have A(SR) ⊆ A(S) so we only need to check if m, 2m, . . . , km are in A(SR).
Notice, since m, 2m, . . . , (k − 1)m ∈ A(S) then j, j + m, j + 2m, . . . , j + (k − 1)m ∈ S and also
j, j+m, j+2m, . . . , j+(k−1)m ∈ SR. Then j+km = (j+m)+(k−1)m = (j+2m)+(k−2)m =
· · · = (j + (k − 1)m) +m /∈ SR so m, 2m, . . . , km /∈ A(SR) and A(SR) = {0, km+ j + 1→}.

If not everything in the equivalence class of j modulo m is in S, but we have at least the (k −
1)m + j ∈ S (say we have n elements of the equivalence class j modulo m in S) and perhaps
some other equivalence classes in S, then A(SR) is like a truncated staircase with the same step
size as A(S) but missing the first n steps. By (Sir) Deepriliam, the n elements of [j]m in S are
(k − 1)m+ j, (k − 2)m+ j, . . . , (k − n)m+ j. So

m+ (k − 1)m+ j = 2m+ (k − 2)m+ j = · · · = nm+ (k − n)m+ j = km+ j /∈ SR

and m, 2m, . . . , nm /∈ A(SR). We still need to show that (n+ 1)m, (n+ 2)m, . . . , km ∈ A(SR). Let
i ∈ {n + 1, . . . , k}. Since im ∈ A(S), im + x ∈ S for all x ∈ S, so the only way im /∈ A(SR) is if
im+ x = km+ j for some x ∈ SR ⊆ S. So then x = (k− i)m+ j, but we have (k− i)m+ j /∈ S so
no such x exists and im ∈ A(SR). Thus, A(SR) = {0, (n+ 1)m, (n+ 2)m, . . . , km, km+ j + 1→}.
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Now suppose nothing from [j]m is in S. AgainA(SR) ⊆ A(S) so we only need to checkm, 2m, . . . , km.
Since m, 2m, . . . , km ∈ A(S), im + x ∈ S for alll x ∈ S. And since SR ⊆ S, im + x ∈ S for all
x ∈ SR. Then the only way im + x /∈ SR is if im + x = km + j so x = (k − i)m + j. But
we have (k − i)m + j /∈ S so (k − i)m + j /∈ SR and thus, nothing pushes im out of A(SR). So
A(SR) = {0,m, 2m, . . . , km, km+ j + 1→}. Note, if in the above case, j = m− 1, then nothing at
all changes, except that now SR is a regular staircase, not a strictly truncated one. This is because
if j = m− 1, then km+ j + 1 = km+m− 1 + 1 = km+m = (k + 1)m.

If anything from [m− 1]m is in S (say n elements of [m− 1]m are in S), then A(SC) = {0, (k− n+
1)m, (k − n + 2)m, . . . , km, km + j + 1 →}. By (Sir) Deepriliam, the n elements of [m − 1]m that
are in S are the largest n such elements, i.e. km − 1, (k − 1)m − 1, . . . , (k − n + 1)m − 1. Then
SC = {0}∪ (S+ 1) so km, (k−1)m, . . . , (k−n+ 1)m ∈ SC and no other multiples of m (other than
0) are in SC . Since A(SC) ⊆ A(S), we only need to check whether km, (k−1)m, . . . , (k−n+1)m ∈
A(SC). Note, if im ∈ SC , then for every non-zero x ∈ SC , x = c + 1 for some c ∈ S and
im+ x = im+ (c+ 1) = (im+ c) + 1 ∈ SC since im ∈ A(S) so im+ c ∈ S. Thus, im ∈ A(SC) and
A(SC) = {0, (k − n+ 1)m, (k − n+ 2)m, . . . , km, km+ j + 1→}.

Conjecture 9.0.22. Let S be a semigroup with S = 〈p, q〉 such that p, q ∈ N\{0, 1, 2},
then, under left extension, S will generate the arithmetic semigroup P = 〈p, p+q, . . . , p+
(p− 1)q〉 when you left extend with the element N−1 = p− 1 and Q = 〈q, q + p, . . . , q +
(q − 1)p〉 when you left extend with the element N−1 = q − 1. These are the arithmetic
sequences of full embedding dimension for a = p, d = q, & h = 1 and a = q, d = p, &
h = 1. If you left extend these further with the same element they were first extended
with, you get the arithmetic semi groups that correspond to the same a and d values but
you’re h increases by one with each extension.

So every arithmetic semigroup with full embedding dimension is the product of a left
extension of the semigroup generated by it’s a value and d value.

9.1 The Numerical Semigroup Poset

We now use this left-extension operation to establish a partially-ordered set on the set of all semi-
groups. It is first helpful to see some relations between S and one of its left-extensions S ′. We will
also be looking in more detail at Arf numerical semigroups and the poset they make.

Theorem 9.1.1. With S and SL defined as before (SL is a left extension of S), S is Arf if and
only if SL is Arf

Proof. ⇒
Suppose x1, y1, and z1 map to x2, y2, and z2 from S to S ′ respectively with x1 ≥ y1 ≥ z1. Then
since the action under this mapping is adding N0 + 1, then we also have x2 ≥ y2 ≥ z2, and
x2 + y2− z2 = x1 + y1− z1 + 2(N1 + 1)− (N1 + 1) = x1 + y1− z1 + (N1 + 1). Since S is Arf, we know
x1 + y1 − z1 ∈ S, and since adding N1 + 1 is the same mapping, then x1 + y1 − z1 + (N1 + 1) ∈ S ′.
Thus S’ is Arf provided S is.
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⇐
The proof is similar, but with x2, y2, and z2 from S ′ mapping to x1, y1, and z1 in S by subtracting
N0 + 1. We still have x2 ≥ y2 ≥ z2 → x1 ≥ y1 ≥ z1, and

x1 + y1 − z1 = x2 + y2 − z2 − 2(N1 + 1) + (N1 + 1) = x2 + y2 − z2 − (N1 + 1).

S’ is Arf, so x2 + y2 − z2 ∈ S ′, and subtracting N1 + 1 gives an element in S by construction. Thus
S is Arf provided S ′ is.

This statement has a powerful corollary regarding when you can left-truncate from N(S).

Corollary 9.1.2. If S is an Arf semigroup, then left-truncating will result in a numerical semigroup.

Proof. Define T such that T ′ = S. Since S is Arf, from Theorem 9.1.1 then T is Arf. It is well
known that this means T is a semigroup. T is defined so that 0 ∈ T , but it remains to show that T
is co-finite. However, since S had a finite N-sequence, the N-sequence of T is one shorter, and thus
the number of gaps is finite. Hence, T is a semigroup.

To ease notation, and since at this point we will primarily focus on left extension, we will denote
S ′ as a left extension of S unless otherwise stated.

Definition 9.1.3. Let S be a numerical set with N(S) = (N0, N1, . . . , Nk−1) then define S(k) recur-
sively by S(0) = S, S(1) = SL, and S(n+1) = (S(n))L.

Theorem 9.1.4. Let S be a numerical semigroup with N(S) = (N0, . . . , Nk−1). Then S is Arf if

and only if S = N(k)
0 .

Proof. The following will be a proof by induction on k.

If k = 0, then N(S) = ∅ so S = N0 = N(0)
0 .

Suppose for some n ∈ N0, if S is Arf and has N(S) = (N0, . . . , Nn−1), then S = N(n)
0 .

Now suppose T is Arf with N(T ) = (N0, . . . , Nn), then by 9.1.1 T = S ′ for some Arf numerical
semigroup S with N(S) = (N1, . . . , Nn). Note that S fits the conditions of our induction hypothesis,

so S = N(n)
0 , then T = S ′ = (N(n)

0 )′ = N(n+1)
0 .

So by induction, if S is Arf, then S = N(k)
0 for some k ∈ N0.

Indeed, for all k, N(k)
0 is an Arf numerical semigroup by 9.1.1.

Corollary 9.1.5. Let S be a numerical set. Then S is an Arf numerical semigroup if and only if
N(S) = (N0, . . . , Nk) and M(S) = (1, . . . , 1) and for each i ∈ {0, . . . , k}, Ni + 1 is in the semigroup
T with N(T ) = (Ni+1, . . . , Nk) and M(T ) = (1, . . . , 1).
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The power of Corollary 9.1.5 is that it gives us a way of constructing Arf semigroups sequentially,
without referring to the actual semigroup, only the N sequence. To see why, if we wanted an Arf
numerical semigroup, we start from N0 and add any gap length to its N sequence. We underline
this mapping of N sequences below. For all of the following, remember that Mi is identically 1.

N0 → (x)

(x)→ (y, x) where y ≥ x

(y, x)→ (z, y, x) where z ≥ x+ y + 1 or z = y

(z, y, x)→ (w, z, y, x) where w ≥ z + y + x+ 2 or w = z + y + 1 or w = z

...

Any of the above sequences is an N-sequence for an Arf semigroup.

We will now show left extension is a partial ordering on semigroups (providing we are left-extending
with elements in the respective semigroups).

Theorem 9.1.6. The left extension is a partial order on numerical semigroups with S � T if
S = T (k) for some k ∈ N0.

Proof. We will show that left-extension is reflexive, anti-symmetric, and transitive.
First, we must show that � is reflexive. So suppose S � S, then S = S(k) for some k ∈ N0. So
S = S(0) = S. Therefore � is reflexive.

We will now show left-extension is antisymmetric. We will first prove a Lemma.

Lemma 9.1.7. If S � T , then S ⊆ T .

Proof. We first consider when S = T ′ so that S = {0} ∪m + T . Let s ∈ S. If s = 0,
then we know 0 ∈ T since it is a semigroup, and since m ∈ T and T is closed under
addition, then s ∈ m + T implies that s ∈ T . This gives us S ⊆ T . Now suppose
S = T k for k ≥ 2. By the previous result, we know S = (T k−1)′, implies S ⊆ T k−1.
Since (T k−1) = (T k−2)′, then again by the last result T k−1 ⊆ T k−2. Together these give
us S ⊆ T k−2. This continues inductively, so that we have S ⊆ T .

Now for the proof of antisymmetry. Suppose S � T and T � S. Then by our Lemma, S ⊆ T and
T ⊆ S. This gives us S = T as required.

Suppose S, T, and V are numerical semigroups with S � T and T � V . LetN(V ) = (N0, N1, . . . , Nj).
Then T = V (k) for some k ∈ N0 so N(T ) = (N−k, N−k+1, . . . , N−1, N0, N1, . . . , Nj) for some appro-
priate N−k, . . . , N−1. Also, S = T (l) for some l ∈ N0 so

N(S) = (N−k−l, N−k−l+1, . . . , N−k−1, N−k, N−k+1, . . . , N−1, N0, N1, . . . , Nj)

and in fact S = (V (k))(l) = V (k+l) and S � V .
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Theorem 9.1.8. The left extension is a graded partial order on numerical semigroups and each
numerical semigroup has a unique minimal element that it spawns from.

Proof. Let T and V be minimal semigroups in the left extension partial order. Let N(T ) =
(TN

0 , T
N
1 , . . . , T

N
x ), M(T ) = (TM

0 , TM
1 , . . . , TM

x ), N(V ) = (V N
0 , V N

1 , . . . , V N
y ), andM(V ) = (V M

0 , V M
1 , . . . , V M

y ).

Let S be a semigroup such that S � T and S � V . So S = T (k) withN(S) = (TN
−k, . . . , T

N
−1, T

N
0 , . . . , T

N
x )

and S = V (l) with N(S) = (V N
−l , . . . , V

N
−1, V

N
0 , . . . , V N

y ). We show (TN
−k, . . . , T

N
−1, T

N
0 , . . . , T

N
x ) must

equal (V N
−l , . . . , V

N
−1, V

N
0 , . . . , V N

y ).

Here we eliminate the case that V and T have different lengths. Assume to the contrary they don’t
and without loss of generality, suppose y > x. This gives us that N(V ) contains N(T ), that is,
N(V ) = (V N

0 , V1, V
N
2 , . . . , TN

0 , T
N
1 , . . . , T

N
x ). However, since V is minimal, then (V1, V2, . . . , T0, T1, . . . , Tx)

is not a semigroup. If we tried to left-extend from T to match S, we get (V N
1 , V N

2 , . . . , TN
0 , T

N
1 , . . . , T

N
x )

before reaching S, but since this isn’t a semigroup then there is no way to construct S from T . There-
fore our assumption that y > x was wrong and x = y. Furthermore, this also gives us l = k since
N(S) and M(S) must have the same length as T (k) and V (l).

We have (TN
−k, . . . , T

N
−1, T

N
0 , T

N
1 , . . . , T

N
x ) = (V N

−k, . . . , V
N
−1, V

N
0 , V N

1 , . . . , V N
x ) so V N

i = TN
i for all i ∈

{0, . . . , x} and N(V ) = N(T ). Similarly, M(S) = (1, . . . , 1, TM
0 , . . . , TM

x ) = (1, . . . , 1, V M
0 , . . . , V M

x )
so V M

i = TM
i for all i ∈ {0, . . . , x} and M(V ) = M(T ), so V = T .

So the height function h defined by h(S) = |N(S)|− |N(T )| where T is the unique minimal element
that S spawns from is well-defined.

The natural question is then whether it is possible to determine the minimal elements in this
partially ordered set of semigroups. We know of one being N0. The others are given in the following
theorem (credit to Maria Amoros for showing us this).

Theorem 9.1.9. A numerical semigroup S is a non-minimal element of the left-extension poset if
and only if it has maximal embedding dimension.

Proof.
First recall that a necessary and sufficent condition for a semigroup S to have maximal embedding
dimension is that for any x, y ∈ S with neither being 0, then x + y −m(S) ∈ S. The proof hinges
on this property.
⇒
Suppose S is a non-minimal element. Then this means S = T ′ for some T , with T being a semigroup.
Let x, y ∈ S with neither being 0. Since S spawned from T , then ∃a, b ∈ T such that x = a+m(S)
and y = b+m(S). Since T is a semigroup, then a+ b = x+ y − 2m(S) ∈ T . Again, since S = T ′,
a+ b ∈ T gives us a+ b+m(S) = x+ y −m(S) ∈ S. This gives the desired implication, so S has
maximal embedding dimension.
⇐
Now suppose S is a numerical semigroup with maximal embedding dimension. This means that
the set T = (S −m(S))\{−m(S)} is a semigroup. To see why, note that 0 ∈ T since m(S) ∈ S
and T is cofinite is guaranteed because S was cofinite. For a, b ∈ T , then ∃ nonzero f, g ∈ S
with a = f − m(S) and b = g − m(S). S having maximal embedding dimension guarantees
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f + g −m(S) ∈ S, and therefore a + b = f + g − 2m(S) = (f + g −m(S)) −m(S) ∈ T as long
as f + g − m(S) 6= 0. This is guaranteed though since f, g ≥ m(S), so f + g − m(S) ≥ m(S).
Recall from 9.0.5, that T is actually a parent of S. Since we now know T is a semigroup, then S is
non-minimal.

Corollary 9.1.10. The minimal elements of the poset are the semigroups that do not have maximal
embedding dimension.

As an addendum since it may be unclear, we prove the essential result used in Theorem 9.1.9

Theorem 9.1.11. S is a numerical semigroup with maximal embedding dimension if and only if S
is a numerical set with ∀ non-zero x, y ∈ S, x+ y −m(S) ∈ S

Proof. le

Theorem 9.1.12. For each m−1 ∈ N, then the numerical set S given by N(S) = (m−1, 1, k) and
M(S) = (1, 1, 1) is a semigroup for k ≤ m− 3.

Proof. Let M(S) = (1, 1, 1) and let N(S) = (m − 1, 1, k). Then S = {0,m,m + 2,m + k + 1 →}.
Note, m+ k+ 1 ≤ 2m since k ≤ m− 3 and m+m+ 2 > 2m so S is closed under addition and thus
is a semigroup.

Observation 9.1.13. The semigroups given in Theorem 9.1.12 are minimal with respect
to the left extension partial order provided k > 1.

Theorem 9.1.14. Let S be a numerical semigroup. Then S lives in a tree of numerical semigroups
and has a parent P so that S = P (n) for some n ∈ N0. Say N(P ) = (S0, . . . , Sk) and N(S) =
(S−n, . . . , Sk). The gap set of S is

H(S) =
n⋃

i=0

{
−n+i−1∑
j=−n

Sj + i+ 1,
−n+i−1∑
j=−n

Sj + i+ 2, . . . ,
−n+i∑
j=−n

Sj + i

}⋃(
H(P ) +

−1∑
j=−n

Sj + n

)

Proof. To avoid confusion, we make a note here that a sum in the form of
∑n

m = 0 when n < m.

Proven with induction on n. First consider base cases where n=0 and n=1. When n=0,

H(S) =
n⋃

i=0

{
−n+i−1∑
j=−n

Sj + i+ 1,
−n+i−1∑
j=−n

Sj + i+ 2, . . . ,
−n+i∑
j=−n

Sj + i

}⋃(
H(P ) +

−1∑
j=−n

Sj + n

)

reduces to

0⋃
i=0

{
−0+i−1∑
j=−0

Sj + i+ 1,
−0+i−1∑
j=−0

Sj + i+ 2, . . . ,
−0+i∑
j=−0

Sj + i

}⋃(
H(P ) +

−1∑
j=−0

Sj + 0

)
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which becomes
{1, 2, . . . , S0}

⋃
(H(P )) .

Hence the statement holds since the elements of {1, 2, . . . , S0} are contained in the H(P), and clearly
H(P ) = H(S) since S = P . The case of n=1 is handled in Theorem 9.0.10.

Now for an inductive step. Suppose

H(P (m)) =
m⋃
i=0

{
−m+i−1∑
j=−m

Sj + i+ 1,
−m+i−1∑
j=−m

Sj + i+ 2, . . . ,
−m+i∑
j=−m

Sj + i

}⋃(
H(P ) +

−1∑
j=−m

Sj +m

)

for some m ∈ N0 for all valid P (m). Then for all valid P (m+1) we have P (m+1) = (P (m))′ for some
valid P (m), so by 9.0.10

H(P (m+1)) = {1, . . . , S−m−1} ∪
(
H(P (m)) + S−m−1 + 1

)
= {1, . . . , S−m−1}∪(

m⋃
i=0

{
−m+i−1∑
j=−m

Sj + i+ 1 + S−m−1 + 1,
−m+i−1∑
j=−m

Sj + i+ 2 + S−m−1 + 2, . . . ,
−m+i∑
j=−m

Sj + i+ S−m−1 + 2

})
⋃(

H(P ) +
−1∑

j=−m

Sj +m+ S−m−1 + 1

)
= {1, . . . , S−m−1}∪(

m⋃
i=0

{
−m+i−1∑
j=−m−1

Sj + i+ 2,
−m+i−1∑
j=−m−1

Sj + i+ 3, . . . ,
−m+i∑

j=−m−1

Sj + i+ 1

})
⋃(

H(P ) +
−1∑

j=−m−1

Sj +m+ 1

)
= {1, . . . , S−m−1}∪(

m+1⋃
i=1

{
−m+i−2∑
j=−m−1

Sj + i+ 1,
−m+i−2∑
j=−m−1

Sj + i+ 2, . . . ,
−m+i−1∑
j=−m−1

Sj + i

})
⋃(

H(P ) +
−1∑

j=−m−1

Sj +m+ 1

)

=
m+1⋃
i=0

{
−m+i−2∑
j=−m−1

Sj + i+ 1,
−m+i−2∑
j=−m−1

Sj + i+ 2, . . . ,
−m+i−1∑
j=−m−1

Sj + i

}
⋃(

H(P ) +
−1∑

j=−m−1

Sj +m+ 1

)

=
m+1⋃
i=0


−(m+1)+i−1∑
j=−(m+1)

Sj + i+ 1,

−(m+1)+i−1∑
j=−(m+1)

Sj + i+ 2, . . . ,

−(m+1)+i∑
j=−(m+1)

Sj + i


⋃H(P ) +

−1∑
j=−(m+1)

Sj + (m+ 1)


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Therefore, for all n ∈ N0,

H(P (n)) =
n⋃

i=0

{
−n+i−1∑
j=−n

Sj + i+ 1,
−n+i−1∑
j=−n

Sj + i+ 2, . . . ,
−n+i∑
j=−n

Sj + i

}⋃(
H(P ) +

−1∑
j=−n

Sj + n

)
.

Corollary 9.1.15. Let S be a numerical semigroup with parent P , i.e. S = P (k) where N(P ) =
(N0, N1, . . . , Nl) and N(S) = (N ′k, N

′
k−1, . . . , N

′
1, N0, . . . , Nl), then S is a n-core if and only if

n ∈
k⋃

j=1

{
j−1∑
i=0

N ′k−i + j

}⋃(
Core(P ) +

k∑
i=1

N ′i + k

)

where Core(P ) = {p ∈ N0 | P is a p− core}.

Proof. Note, Core(S) = {y ∈ S : y < F (S)} = S ∩ {1, . . . , F (S)}. We have F (S) =
∑k

i=1N
′
i + k +

F (P ), so

S = {0, N ′k + 1, N ′k + 1 +N ′k−1 + 1, . . . , N ′k + 1 + · · ·+N ′1 + 1} ∪

(
P +

k∑
i=1

N ′i + k

)
so

S ∩ {1, . . . , F (P ) +
k∑

i=1

N ′i + k} =
k⋃

j=1

{
j−1∑
i=0

N ′k−i + j

}
∪

((
P +

k∑
i=1

N ′i + k

)
∩

{
1, . . . , F (P ) +

k∑
i=1

N ′i + k

})

=
k⋃

j=1

{
j−1∑
i=0

N ′k−i + j

}
∪((

P +
k∑

i=1

N ′i + k

)
∩

{
k∑

i=1

N ′i + k, . . . , F (P ) +
k∑

i=1

N ′i + k

})

=
k⋃

j=1

{
j−1∑
i=0

N ′k−i + j

}
∪

(
(P ∩ {0, . . . , F (P )}) +

k∑
i=1

N ′i + k

)

=
k⋃

j=1

{
j−1∑
i=0

N ′k−i + j

}
∪

(
(P ∩ {1, . . . , F (P )}) +

k∑
i=1

N ′i + k

)

=
k⋃

j=1

{
j−1∑
i=0

N ′k−i + j

}
∪

(
Core(P ) +

k∑
i=1

N ′i + k

)

Corollary 9.1.16. If S is an Arf numerical semigroup with N(S) = (N ′k, . . . , N
′
1), then

H(S) =
k⋃

i=0

{
k∑

j=k+1−i

N ′j + i+ 1,
k∑

j=k+1−i

N ′j + i+ 2, . . . ,
k∑

j=k−i

N ′j + i

}

and Core(S) =
⋃k

j=1

{∑j−1
i=0 N

′
k−i + j

}
.
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Proof. By 9.1.4, S = N(k)
0 for some k ∈ N0. Since, H(N0) = ∅ and Core(N0) = ∅, the result follows

immediately from 9.1.14 and 9.1.15.

9.2 2 generated Symmetric non-maximum embedding dimension with
m > 2 M & N

We shift our attention to two generated sequences with multiplicity greater than 2. This way, we
guarantee that they have non-maximal embedding dimension and they are roots in the semigroup
forest.

For S a numerical semigroup with multiplicity m, suppose we are given M and N sequences M(S) =
(M0,M1, . . . ,Mk) and N(S) = (N0, N1, . . . , Nk). For a semigroup, we always know M0 = 1 and
N0 = m − 1. For an indefinite amount of time, we can have that this pattern will continue. That
is, for some maximal j ∈ N,

(property 1) Ni = m− 1 and Mi = 1 for i < j
(property 2) Ni = m− 1 for i < j and Mi = 1 for i ≤ j

NEED TO GO THROUGH AND CHANGE ALL THE LEMMA STATEMENTS TO SAY PROP-
ERTY 1 OR PROPERTY 2

This pattern must eventually terminate for every semigroup, whether it be because the M and N
elements change or because the sequences terminate. In both of these cases, the pattern terminates
because of the introduction of non-multiplicity generators. When only one new generator is allowed
to be introduced, the M and N sequence is then completely determined. For all of the following,
suppose property 1 holds for j, and j is the maximal such choice. We will often say that either Mj

or Nj is the first to ”break the pattern” to refer to property 1. We will also have to split the cases
where M breaks the pattern or to when N breaks the pattern.

We will first consider the cases where M breaks first. That is, Mj is the first M not equal to 1, and
Ni = m− 1 identically for i < j.

For the proof below, recall that {Mk} = {J, J+1, J+2, . . . , J+Mk−1} where J =
∑k−1

i=0 (Mi +Ni)

Lemma 9.2.1. Suppose S is a numerical semigroup, and suppose we have for j > 1, Mj is the first
M not equal to 1, and Ni = m− 1 identically for i < j. Then {Mj} contains Mj − 1 generators.

Proof. We first show that for i ≤ j, {Mi} contains im. This is because for i ≤ j, then the M’s are
identically 1 before and the N’s are identically m-1, so

∑i−1
k=0Nk +Mk = im. From our hypothesis,

since the pattern breaks at M we know Mj 6= 1, so there are Mj elements in {Mj}. We have
just shown jm ∈ {Mj}, and j > 1 gives us its not a generator. The other elements of {Mj},
namely, jm + 1, jm + 2, . . . , jm + Mj − 1, are atoms since the only numbers preceding them are
multiples of m, and therefore none of them can be combinations of smaller elements. Thus since all
of jm+ 1, jm+ 2, . . . , jm+Mj − 1 are generators, there are Mj − 1 generators in {Mj}.
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In the case where j=1, it is not hard to see that there M1 generators in {M1} since we now include
the multiplicity.

Corollary 9.2.2. If S is two generated, Mj = 2.

Proof. If Mj > 2, then in light of 9.2.1, then there are at least 3 generators of S, but clearly this is
contradiction. So Mj = 2.

Lemma 9.2.3. Let S be a numerical semigroup with N(S) = (m−1,m−1, . . . ,m−1, Nj, Nj+1, . . . , Nk)
and M(S) = (1, 1, . . . , 1,Mj,Mj+1, . . . ,Mk) where Mj 6= 1. Then Nj 6= m− 1.

Proof. By 8.2.6, Mj +Nj ≤ m, so since Mj > 1, Nj ≤ m−Mj < m− 1.

Lemma 9.2.4. Let S be a two generated numerical semigroup with multiplicity m ≥ 3 and N(S) =
(m−1,m−1, . . . ,m−1, Nj, Nj+1, . . . , Nk) and M(S) = (1, 1, . . . , 1,Mj,Mj+1, . . . ,Mk) where Nj 6=
m− 1. Then the second generator of S is g2 = mj + 1.

Proof. In light of Theorem 9.2.1, then we know that the second generator is contained in {Mj}.
Also, since S is two generated, then we know Mj = 2. Hence, since Mj breaks the pattern, Mi = 1
and Ni = m − 1 for all i < j, and

∑j−1
k=0Nk + Mk = (j − 1)m + j = jm is the multiple of of m in

{Mj}, so then g2 = jm+ 1.

Corollary 9.2.5. If S is semigroup with the M breaking the pattern, then for the second generator
g2, then g2 ≡ 1 mod m(S).

Lemma 9.2.6. Let S be a two generated numerical semigroup as in the statement of Lemma 9.2.4.
Then F (S) = jm2 − jm− 1.

Proof. By [5] if a numerical semigroup is two generated with generators s1 and s2, then F (S) =
s1s2 − s1 − s2 − 1. In our case, s1 = m and s2 = g2 = mj + 1, so

F (S) = (m)(mj + 1)−m− (mj + 1)− 1 = jm2 +m−m−mj − 1 = jm2 − jm− 1.

Lemma 9.2.7. If S is a 2 generated numerical semigroup with multiplicity m ≥ 3 , and N(S) =
(m−1,m−1, . . . ,m−1, Nj, Nj+1, . . . , Nk) and M(S) = (1, 1, . . . , 1,Mj,Mj+1, . . . ,Mk) where Mj 6=
1, then Ap(S) = {0,mj + 1, 2mj + 2, . . . , (m− 1)mj + (m− 1)}.

Proof. By 9.2.4, the second generator of S is g2 = mj+1. Suppose towards contradiction that there
exists an x ∈ Ap(S) such that g2 6 |x. Then we must have x = am+bg2 where a 6= 0, a, b ∈ N0. Notice
that then x−m = (a−1)m+bg2 ∈ 〈m, g2〉 = S since a−1 ≥ 0 so a−1, b ∈ N0. This is a contradiction
because since x ∈ Ap(S) we must have x−m /∈ S. Thus, everything in Ap(S) is a multiple of g2. So
in particular, Ap(S) = {0, g2, 2g2, . . . , (m−1)g2} = {0,mj+1, 2mj+2, . . . , (m−1)mj+(m−1)}.

Theorem 9.2.8. If S = 〈m, q〉 such that q ≡ 1 mod m and m ≥ 3, then

M(S) = (1, 1, . . . , 1, 2, 2, . . . , 2, . . . ,m− 1,m− 1, . . . ,m− 1)

where the amount of repetition of each single element is the solution, j, for the equation q = jm+1.
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Proof. We have q = jp+ 1 for some j ∈ N. By 9.2.7, we know that the Ap(S) = {0, q, 2q, . . . , (p−
1)q} = {0, jp + 1, 2jp + 2, . . . , (p − 1)jp + (p − 1)}. Until we reach q we only have multiples of
p, so we have j steps with width one in the begining of M(S) = (M0, . . . ,Mk), i.e. M(S) =
(1, 1, . . . , 1,Mj,Mj+1, . . . ,Mk). On the jth step we have jm and jm+ 1 and we do not have jm+ 2
because we have nothing congruent to 2 modulo m until we reach the element of the Apery set
congruent to 2, so until we reach 2jm + 2. After jm + 1 we have everything congruent to 1
modulo m, so each of the j steps until the step with 2jm + 2 has step width 2. So M(S) =
(1, 1, . . . , 1, 2, 2, . . . , 2,M2j,M2j+1, . . . ,Mk). Then after 2jm + 2 we have everything congruent to
2 modulo m, but we do not have anything congruent to 3 until we reach 3jm + 3, so the next j
steps all have step width 3. This process continues until we have m elements in a row, so then
we have everything after that point is in S. So, we have M(S) = (1, 1, . . . , 1, 2, 2, . . . , 2, . . . ,m −
1,m − 1, . . . ,m − 1) where there are p steps of each width. Since S is symmetric, we have that
N(S) = (m− 1,m− 1, . . . ,m− 1,m− 2, . . . ,m− 2, . . . , 1, . . . , 1).

Corollary 9.2.9. Let S be a two-generated numerical semigroup with multiplicity m ≥ 3 and
N(S) = (m − 1,m − 1, . . . ,m − 1, Nj, Nj+1, . . . , Nk) and M(S) = (1, 1, . . . , 1,Mj,Mj+1, . . . ,Mk)
where Mj 6= 1, then Ni +Mi = m for all i ∈ {0, . . . , k}.

Proof. By 9.2.8, M(S) = (1, 1, . . . , 1, 2, 2, . . . , 2, . . . ,m − 1,m − 1, . . . ,m − 1) and N(S) = (m −
1,m− 1, . . . ,m− 1,m− 2,m− 2, . . . ,m− 2, . . . , 1, 1, . . . , 1). So Ni +Mi = m for each i.

Corollary 9.2.10. Let S be a two generated numerical semigroup with multiplicity m ≥ 3 and
N(S) = (m − 1,m − 1, . . . ,m − 1, Nj, Nj+1, . . . , Nk) and M(S) = (1, 1, . . . , 1,Mj,Mj+1, . . . ,Mk)
with Mj 6= 1. Then k = (m− 1)j − 1.

Proof. By 9.2.6, F (S) = jm2 − jm − 1 so the conductor of S is jm2 − jm = jm(m − 1) =∑k
i=0(Mi +Ni). By 9.2.9, Mi +Ni = m for all i so

∑k
i=0(Mi +Ni) = (k+ 1)m = jm(m− 1). Then

k + 1 = j(m− 1) and k = j(m− 1)− 1.

Now for when Nj is the first to break. That is, when we are working with M and N sequences with
property 2.

Theorem 9.2.11. If S is a numerical semigroup such that M and N obey property 2 up until Nj,
then g2 = jm+Nj + 1.

Proof. We can locate g2 since we know it is the first element of {Mj+1}(if this is unclear, argue how
for i ≤ j that {Mi} contains only a multiple of m). Hence, g2 =

∑j
i=0(Mi +Ni) = (j + 1) + ((m−

1)j +Nj) = mj +Nj + 1.

Corollary 9.2.12. If a semigroup obeys property 2, then g2 ≡ Nj + 1 mod m(S).

Corollary 9.2.13. If S is a two generated semigroup with property 2, then 2 ≤ Nj + 1 ≤ m − 1
and Nj + 1 - m.

Proof. We know 1 ≤ Nj ≤ m−1 since S is a semigroup and due to 6.0.4. This gives us 2 ≤ Nj +1 ≤
m. Suppose Nj + 1 = m. Then the previous corollary gives g2 ≡ 0 mod m, but this means g2 is a
multiple of m and thus not a generator. Hence 2 ≤ Nj + 1 ≤ m− 1.
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Now suppose towards a contradiction that S is two generated and Nj + 1 | m. Then g2 = jm +
Nj + 1 = jk(Nj + 1) +Nj + 1 = (Nj + 1)(jk + 1). In particular, Nj + 1 | g2, but since Nj + 1 6= 1,
then this is contradiction to m and g2 being relatively prime. Thus for the two generated case,
Nj + 1 - m.

Conjecture 9.2.14. Suppose S is the semigroup generated by m and jm + r where
j ∈ N0 and r ∈ {1, . . . ,m− 1}.

• If r = 1, |N(S)| = |M(S)| = (m− 1)j.

• If r = m− 1, |N(S)| = |M(S)| = (m− 1)j + (m− 2).

• If r = 2, |N(S)| = |M(S)| =
(
m−1
2

) (
m+1
2

)
j +

(
m−1
2

)
.

• If r = m− 2, |N(S)| = |M(S)| =
(
m−1
2

) (
m+1
2

)
j +

(
m−1
2

) (
m+3
2

)
.

• If r = 3,

– If m ≡ 1 mod 3, |N(S)| = |M(S)| =
(
m−1
3

) (
2m+1

3

)
j +

(
2m−2

3

)
.

– If m ≡ 2 mod 3, |N(S)| = |M(S)| =
(
m+1
3

) (
2m−1

3

)
j +

(
2m−1

3

)
.

• If r = m− 3,

– If m ≡ 1 mod 3, |N(S)| = |M(S)| =
(
m−1
3

) (
2m+1

3

)
j +

(m−1
3 )(m+8

3 )
2

.

– If m ≡ 2 mod 3, |N(S)| = |M(S)| =
(
m+1
3

) (
2m−1

3

)
j +

(m−1
3 )(m+10

3 )
2

.

• If r = 4,

– If m ≡ 1 mod 4, |N(S)| = |M(S)| =
(
m−1
4

) (
3m+1

4

)
j +

(
3m−3

4

)
.

– If m ≡ 3 mod 4, |N(S)| = |M(S)| =
(
m+1
4

) (
3m−1

4

)
j +

(
3m−1

4

)
.

• If r = m− 4,

• If r = 5,

• If r = m− 5,

Conjecture 9.2.15. Suppose S is the semigroup generated by m and jm + r where
j ∈ N0 and r ∈ {1, . . . ,m− 1}.

• If m ≡ 1 mod r, then |N(S)| = |M(S)| =
(
m−1
r

) ( (r−1)m+1
r

)
j +

(
(r−1)m−(r−1)

r

)
• If m ≡ 1 mod m−r, then |N(S)| = |M(S)| =

(
m−1
m−r

) ( (m−r−1)m+1
m−r

)
j+

(m−1
m−r )(m+(m−r+1)(m−r−1)

m−r )
m−r−1

10 Conclusion

In this paper, we continued investigation into the complements of numerical sets and semigroups.
Through this investigation we discovered exactly when S and S̃ are both numerical semigroups and
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characterized what the associated numerical semigroups are when only one is a numerical semigroup.
This investigation gave rise to the M and N sequences which we were able to use to characterize a
semigroup or set and find some of their connections to other invarients of numerical semigroups.M
and N sequences also discovered a partial ordering on the set of all numerical semigroups while
exploring the M and N sequences. This partial ordering created a forest that contains all numerical
semigroups.

One open question we have deals with how the associated numerical semigroups of S and S̃ relate
when they both start as numerical sets. This turned out to be a hard question to answer. In
Example 7.2.8 we showed that when you fix the associated numerical semigroup of S, there is a
wide variety of what the associated numerical semigroup of S̃ is. If you begin by fixing the associated
numerical semigroup of S̃, there is even more variation because of the column and row extensions
defined in section 9.

Our results have also inspired some question on the M and N sequences. For example, is there a way
to tell if an M and N sequences correspond to a numerical set or semigroup definitively. We were
able to classify a few necessary conditions on M and N for them to correspond to semigroups but
they weren’t sufficient conditions. In addition, how do our sequences relate to other invariants, such
as the Apery Set, the embedding dimension, etc. Can that information of the numerical semigroup
be extracted from just the M & N sequences. We also questioned whether you could classify the
Bras-Amoros Tree with our sequences. There seems to be a pattern to how the sequences change
while traversing the tree but it would need further investigation.

11 Miscellaneous

This is a section with somewhat random thoughts and possible ideas to pursue in the future. It
probably does not follow any sort of logical progression.

Other questions:

• If A(S̃) is a column and M0 = 1 and Ni ≤ m(S)−Mi for all i, is S necesadiky a semigroup?
If not, what other restrictions do we need to put to make it a semigroup.

• If we left extend two things to the M and N sequences when do we get a semigroup?

• Look back at trees

• Can the family of sets with A(S) a column be grouped in a meaningful way (i.e. the comple-
ments of semigroups, other, and another).

11.1 Classifying Numerical Set Maps

PUT INTRO HERE

57



Theorem 11.1.1. For all m ∈ N and for all k with 1 ≤ k ≤ m − 1 the numerical set T =
{0, 1, . . . , k − 1,m,m + 1,m + 2, . . .} if and only if the complement partition of T is empty, so if
and only if T̃ = N0. Additionally, the numerical set T corresponds to the numerical semigroup
A(T ) = {0,m,m+ 1,m+ 2, . . .}.

Proof. Given T = {0, 1, .., k−1,m,→}, λ(T ) corresponds to a young diagram that has the numbers
0 through k − 1, doesn’t include k through (m− 1), finally includes every number greater than m.

m− 1

...

k + 1

0 1 ... k − 1 k

By definition λ̃ = {r1 − ri : r1 > ri & 1 < i ≤ t} where r1 is the first and largest row in the
partition and ri is every sequential row less than r1. Our λ is a rectangle where each row is equal
to every other row. Therefore λ̃ = ∅, because r1 is never greater than ri and our corresponding
numerical set is N0.

If T̃ = N0, then λ(T ) must look like

m− 1

...

k + 1

0 1 ... k − 1 k

for some k,m ∈ N so T = {0, 1, . . . , k − 1,m→}.

Now we show A(T ) = {0,m,m+ 1, . . .} Let i ∈ {j | 1 ≤ j < m}. There are then two cases.

Suppose 1 ≤ i ≤ k− 1. Then note that k− (k− 1) = 1 ≤ k− i ≤ k− 1, so k− i ∈ T. Assume to the
contrary that i ∈ A(T ). Then we must have i+T ⊆ T . However, since k− i ∈ T , then k− i+ i = k
must be in i+ T , but this is contradiction to the fact that T = {0, 1, .., k− 1,m,→} (in particular,
k /∈ T ). Hence any i ∈ {j | 1 ≤ j ≤ k − 1} must not be in A(T ).

Now suppose k ≤ i ≤ m − 1. Clearly i /∈ T . Since 0 ∈ T , then and with i + 0 = i /∈ T then we
conclude i+ T 6⊆ T , and no such i can be in A(T ).
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It is straightforward to show 0 ∈ A(T ). If i ≥ m, then i ∈ A(T ) by definition of T . So we conclude
A(T ) = {0,m,m+ 1, . . .}.

Theorem 11.1.2. For all m ∈ N, m ≥ 5. For all k with 1 ≤ k ≤ m− 3. Consider the numerical
set T = {0, 1, . . . k − 1, k + 1,m→}. The complement of this numerical set T is the numerical set
{0, 2→} and the numerical semigroup associated to this complement is also {0, 2→}. Additionally,
the numerical set T corresponds to the numerical semigroup A(T ) = {0,m→}.

Proof. For 1 ≤ i ≤ k− 1, k− (k− 1) = 1 ≤ k− i ≤ k− 1 so k− i ∈ T and i+ k− i = k /∈ T . Thus,
i /∈ A(T ). Note (k + 1) + 1 = k + 2 /∈ T so also k + 1 /∈ A(T ). For k ≤ j ≤ m − 1, j + 0 = j /∈ T
so j /∈ A(T ). However, for n ≥ m, n + t ≥ m + 0 = m ∈ T for every t ∈ T , so n + T ⊆ T and
n ∈ A(T ). Thus, A(T ) = {0,m→}.

Notice that the Young diagram of T would be k steps to the right to include 0, . . . , k − 1, one step
up to exclude k, one step right to include k+ 2, and m− k− 2 steps up to exclude k+ 2, . . . ,m− 1.
So the Young diagram of T looks as below:

m− 1

...

k + 1 k + 2

0 1 ... k − 1 k

Then the first m−k−2 rows of the partition of T have row length k+1 and the m−k−1th row has
length k, so the complement partition of T is λ̃ = {k+1−k} = {1} and the associated numerical set
is {0, 2→}. The numerical set {0, 2→} is also a numerical semigroup, so the semigroup associated
to this set is also {0, 2→}.

Lemma 11.1.3. Consider the numerical set T = {0, 1, . . . , k − 1, k + 2,m,→}. For m < 6, there
exists no numerical set, T , that corresponds to {0,m,→}.

Proof. Consider the case where m = 1. Our T = {0, 1,→}, so we have no space in between 0 and
m to place our k’s. Now consider m = 2, our T = {0, .., 2,→}, this forces our k = 1, and by the
structure of out T , 2 would have to be out of the set because it is k + 1. Similarly for m = 3, our
T = {0, .., 3,→}. In this case our k = 1 or k = 2. If k = 1, then our k + 2 = 3 = m and our
k + 3 = 4 has to be excluded from the numerical set. But this is a contradiction because we have
to include everything greater than 4. If k = 2, k + 1 has to be excluded but k + 1 = 3 = m. If
you have m = 4, you can have k = 1, 2, 3. For all of these you end up excluding a number that is
required in the set when you begin to construct T . Finally for m = 5, you can have k = 1, 2, 3, 4.
And similarly, the structure of our T forces a number to be excluded that should not be when any
of those k are selected.
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Theorem 11.1.4. For m > 5 and 1 ≤ k ≤ m − 4 consider the numerical set T = {0, 1, . . . , k −
1, k + 2,m →}. This numerical set T corresponds to the semigroup A(T ) = {0,m →} and the
complement of T corresponds to the semigroup {0, 3→}.

Proof. To create the Young diagram of T we go right k spots to include 0, . . . k − 1, up two to
exclude k and k+ 1, right one to include k+ 2, and up m−k−3 to exclude k+ 3, . . . ,m−1. Below
is the Young diagram of T :

m− 1

...

k + 2 k + 3

k + 1

0 1 ... k − 1 k

Notice from the above depiction that the first m − k − 3 rows of the Young diagram of T have
length k + 1 while the next and last two rows have length k, so the complement partition of T is
λ̃ = {k + 1− k, k + 1− k} = {1, 1} and has diagram as depicted below:

2

0 1

So the numerical semigroup corresponding to the complement of T is {0, 3→}.

Here we show A(T ) = {0,m→}. Note that the proof for i ∈ {j | 0 ≤ j ≤ m− 1} given in Theorem
11.1.2 applies in this case as well, with the only difference being for i = k + 2. We treat that case
here.

If k > 1, then since k + 2 + 1 = k + 3 /∈ T , then (k + 2) + T * T . This along with the previous
reasoning would give us A(T ) = {0,m,→}. All that remains is if k = 1. However, this gives us
that T = {0, 3,m,→}. Since m > 6, this guarantees that 3 + 3 = 6 /∈ T and so k + 2 /∈ A(T ).

Hence, we conclude A(T ) = {0,m,→}.

Theorem 11.1.5. Let m > 5, and let 1 ≤ n ≤ m−4. Consider the numerical set T = {0, 1, . . . , n−
1, n + 1, n + 2,m→}. This numerical set corresponds to the semigroup A(T ) = {0,m→} and the
complement of T corresponds to the semigroup {0, 3→}.

Proof. Let λ(T ) = λ be the partition associated to the numerical semigroup T , λ is depicted below:
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m− 1

...

n+ 1 n+ 2 n+ 3

0 1 . . . n− 1 n

The conjugate partition of λ, λ∗ = {(j, i) : (i, j) ∈ λ} is depicted below. Let k = m− n− 3:

m− 1

...

k + 2 k + 3

k + 1

0 1 ... k − 1 k

Note 1 = m−(m−4)−3 ≤ k ≤ m−1−3 = m−4, so the numerical set corresponding to λ∗ is of the
form T ′ = {0, 1, . . . , k − 1, k + 2,m →}. By Theorem 11.1.4, A(T ′) = {0,m →} so by Propositon

8.0.11 A(T ) = {0,m→}. Also, note λ̃ = {2} and ˜(λ∗) = {1, 1} = (λ̃)∗, so again by Theorem 11.1.4
and Proposition 8.0.11 the complement numerical set of T corresponds to the numerical semigroup
{0, 3→}.

Theorem 11.1.6. Let m > 6 and 1 ≤ k ≤ m−5. Consider T = {0, 1, . . . , k−1, k+1, k+3,m→}.
Then A(T ) = {0,m →} and the complement numerical set of T corresponds to the numerical
semigroup {0, 2, 4→}.

11.2 Looking at other families

This section will use Theorem 6.0.11 to analyze when semigroups that are members of other families
are have that their complement is also a semigroup.

11.2.1 pseudo-arithmetic

Definition 11.2.1. We call a numerical semigroup pseudo-arithmetic if S = 〈a, ha+ d, ha+ 2d, . . . , ha+ kd〉
for some a ∈ N0, h ∈ N, 1 ≤ k ≤ a− 1, and d ∈ Z\{0}. [reference to Geogroup Union]
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Proposition 11.2.2. Let S be a pseudo-arithmetic semigroup, i.e. S 〈a, ha+ d, ha+ 2d, . . . , ha+ kd〉
for some a ∈ N, h ∈ N, 1 ≤ k ≤ a − 1, and d ∈ Z\{0}. Then S̃ is a semigroup if and only if
k = a− 1 and d = 1 or a = 3, d = 2, and k = a− 1.

Proof. Suppose S is a pseudo-arithmetic semigroup and S̃ is a semigroup. Then by 6.0.11, S is a
truncated n-staircase with l steps for some n, l ∈ N. So either S = 〈n, ln+ 1, ln+ 2, . . . , ln+ a− 1〉
in which case a = n, d = 1, and k = a− 1. Or

S = 〈n, ln− j, ln− j + 1, . . . , ln− 1, ln+ 1, ln+ 2, . . . , (l + 1)n− j − 1〉

for j ∈ N, j 6= 0. We would still have a = n and k = n− 1, but now the difference between ln− 1
and ln + 1 is d = 2 but the difference between ln − j and ln − j + 1 is d = 1 so this only works
when n = a = 3, d = 2, k = n − 1. Thus, if S is an arithmetic semigroup with S̃ a semigroup if
and only if k = a− 1 and d = 1 or a = 3, d = 2, and k = a− 1.

11.2.2 Geometric Semigroups

Definition 11.2.3. We call a numerical semigroup S geometric if S =
〈
a, ar, ar2, . . . , ark

〉
for

some a ∈ N, r ∈ Q+\{0}, 1 ≤ k ≤ a− 1, and ar, ar2, . . . , ark ∈ N.

Proposition 11.2.4. A geometric numerical semigroup S has S̃ is a semigroup if and only if S is
a one or two staircase.

Proof. ⇐ If S is a one staircase (i.e. S = 〈1〉) then clearly letting a = 1 and r ∈ Q+\{0} would show
S is a geometric numerical semigroup. If S is a two staircase, then S = 〈2, j〉 for some odd integer
j, (in particular, k=B(S)+3). Let a = 2 and r = j/2, will produce S as a geometric semigroup.

⇒. It now suffices to show that no other instance of a geometric semigroup can be a truncated
n-staircase. First note that since ark ∈ Z∀0 ≤ k ≤ a − 1, then their differences must also be
integers. Or ark+1−ark = ark(r−1) = c for c ∈ Z. Since ark > 0, then (wait this is circular). First
consider the case where there are at least three minimal generators. That is, S = 〈a, ar, ar2, . . .〉. If
we consider the consecutive differences between the two generators arandar2, then since they are
both integers, their difference must be an integer. Hence

11.2.3 pseudo-symmetric

Definition 11.2.5. We call a semigroup S pseudo-symmetric if

S =

〈
p1p2 · · · pk

p1
,
p1p2 · · · pk

p2
, . . . ,

p1p2 · · · pk
pk

〉
for some relatively prime p1, . . . , pk ∈ N.

Proposition 11.2.6. The only pseudo-symmetric semigroup S with S̃ a semigroup is S = 〈1〉.
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Proof. Without loss of generality, let p1 > p2 > · · · > pk so p1p2···pk
p1

< p1p2···pk
p2

< . . . < p1p2···pk
pk

. The

semigroup S has S̃ is a semigroup if and only if S is a truncated staircase by 6.0.11. Then for all
i ∈ {2, . . . , k}, p1p2···pk

pi+1
− p1p2···pk

pi
= q where q = 1, 2. So

pi(p1p2 · · · pk)− pi+1(p1p2 · · · pk) = qpipi+1

(p1 · · · pipi+2 · · · pk)− (p1 · · · pi−1pi+1 · · · pk) = q

(p1 · · · pi−1pi+2 · · · pk)(pi − pi+1) = q

If q = 1, then (p1 · · · pi−1pi+2 · · · pk)|1 so we must have (p1 · · · pi−1pi+2 · · · pk) = 1, then k = 3 and
p1 = 1 in which case S = 〈1〉. If q = 2 suppose towards contradiction that S 6= 〈1〉, then p1 6= 1
but p1|2 so we must have p1 = 2. Then there is not enough room for the other p’s to be less than
p1 and relatively prime to p1, so we have k = 1 and S = 〈2〉 contradicting that S is a numerical
semigroup. Thus the only pseud-symmetric semigroup S that has S̃ is a semigroup is S = 〈1〉.

11.2.4 Arf

Proposition 11.2.7. Let S be a truncated n-staircase with S = {0, n, 2n, . . . , (k − 1)n, kn− j →}
for some j ∈ {1, 2, . . . , n−m}. Then S is Arf.

Proof. Let x, y, z ∈ S with x ≥ y ≥ z. If x < kn − j then x = m1n, y = m2n, z = m3n for some
m1,m2,m3 ∈ {0, . . . , k − 1}. So x+ y − z = (m1 +m2 −m3)n is a multiple of n so x+ y + z ∈ S.
If x ≥ kn− j, then since z ≤ y, y − z ≥ 0, so x+ y − z ≥ x ≥ kn− j and x+ y − z ∈ S.
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