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Abstract. Least Absolute Shrinkage and Selection Operator (LASSO) re-

gression utilizes an `1 coefficient constraint to produce high accuracy, sparse
models of wide datasets with many regressors. Kernel-based models in the

LASSO family offer a further improvement by providing a nonparametric

method which can accommodate non-linear models. Roth (2004) proposes
a kernelized LASSO using the robust Huber loss function. Our model builds

upon this work by adding a centralized kernel. We implement this model as

an algorithm including hyperparameter selection in R.

1. Introduction

Consider the regression problem of fitting a model to a large data set with
many potentially correlated predictors. In this case, the Ordinary Least Squares
(OLS) method will produce unnecessarily complex, overfitted models with poor
generalizability. While unbiased, the resultant coefficients will have high standard
errors and thus low accuracy. Additionally, a large number of predictors will be
retained by the model, making interpretation difficult. The goal is to replace the
problematic OLS method with one which produces sparse, prediction-optimized
models.

Subset selection algorithms provide a number of methods for determining which
variables to include in a regression model, yielding simpler and more easily inter-
pretable models [7]. However, in situations with a large number of regressors, an
exhaustive search of the potential feature space may be unfeasible — especially
in cases with nonlinear models. Additionally, the coefficients produced by subset
selection algorithms are only unbiased if the correct variables are discarded. How-
ever, the inclusion of non-predictive regressors increases the prediction error via
overfitting, leading to a bias-variance trade-off.

Regularization refers to the technique of addressing overfitting by controlling
the complexity of the models produced. Consider a data set (X,y), where X =
(xi1, . . . ,xip)

T are the regressors, and each yi is the response for the ith observation,
with i = 1, . . . , N . The OLS solution is given by

β = arg min
β

‖y −Xβ‖22. (1.1)

The regularization problem is obtained by adding to the above equation a penalty,
λ on the regularization term (i.e., the specified measure of model complexity), L.

β = arg min
β

‖y −Xβ‖22 + λL(β). (1.2)
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Ridge regression is defined to be the `2 specification of the model complexity in
the regularization expression above:

β = arg min
β

‖y −Xβ‖22 + λL2(β). (1.3)

where L2(β) = ‖β‖2 =
∑
i(βi)

2.
Thus, the penalty in a ridge regression model is proportional to the norm of

its coefficient vector. This technique shrinks redundant or non-predictive coeffi-
cients, but will not typically produce any coefficients exactly equal to zero [2]. This
improves prediction accuracy relative to the OLS method, but fails to reduce the
number of regressors or to produce a sparse solution.

The Least Absolute Shrinkage and Selection Operator (LASSO) provides a reg-
ularization method using an `1 complexity term.

β = arg min
β

‖y −Xβ‖22 + λL1(β). (1.4)

where L1(β) = ‖β‖1 =
∑
i |βi|.

Introduced by Tibshirani in 1994, LASSO combines the strategies of the subset
selection and ridge regression methods, to produce a method that takes into account
both of the major drawbacks of the OLS method [10]. The geometry of the `1
constraint results in sparse solutions, with many coefficients going to zero; the
model is simplified while still retaining prediction accuracy.

1.1. LASSO vs SVM
Both Support Vector Machines (SVM) and LASSO lead to sparse models, but

the regularization method in each is very different. In SVM, the loss function does
not reflect knowledge about the noise, as it is selected to enforce sparse solutions
independent of the noise distribution. LASSO, on the other hand, uses a noise
model to choose a loss function. Additionally, in SVM, the data points that are
within the ε tube around the regression fit have weights of zero and thus do not
influence the regression fit. In LASSO, the determination of the optimal coefficients
depends on all of the input vectors, so every input vector has influence on the
coefficients that are included in the model [10].

1.2. Paper Structure
In §2, we summarize the LASSO problem and introduce kernelized LASSO; we

use a Bayesian specification to arrive at a robust loss function and state the resul-
tant robust kernelized LASSO problem. In §3, we outline the K-LASSO algorithm
proposed in [9] and provide our method of kernel centering. In §4, we describe
model hyperparameters and propose a method for their optimization. In §5 we
derive a method of generating predictions from a K-LASSO model. We conclude
with suggestions for future work including a potential performance evaluation of
the K-LASSO algorithm in comparison to related regression methods.
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2. Background

2.1. Definition of LASSO
Let (X,y) be a set of data where yi are the responses for i = 1, 2, . . . , N , and X

is the matrix

X =


x11 x12 . . . x1p
x21 x22

...
. . .

xp1 xpp


, previously shown as X = (xi1,xi2, . . . ,xip)

T . Further, assume the following: (i)
either the observations are independent, or the yi values are conditionally indepen-
dent given the xij values, (ii)the xij values are standardized so that

∑
i=1

xij
N = 0

and
∑
i=1

x2
ij

N = 1 [10].

The goal of regression is to construct a model y = Xβ̂ + ε based on data. Let

β̂ = (β̂1, β̂2, . . . , β̂p)
T . The LASSO estimate (β̂0, β̂) is defined by

(β̂0, β̂) = min

[
N∑
i=1

(
yi − β0 −

∑
j

βjxij

)2
]

subject to
∑
j

|βj | ≤ t, (2.1)

where t ≥ 0 is a tuning parameter that can be estimated using cross validation [10].
(2.1) shows that to estimate the coefficients β, the goal is to minimize the squared
error of the model. Due to our assumption of standardization, the solution for β0
is β̂0 = ȳ for all values of t, and we can assume, without loss of generality, that

ȳ = 0 so β̂0 = 0 and can be omitted. This simplification leaves us with

(β̂0, β̂) = min

[
N∑
i=1

(
yi −

∑
j

βjxij

)2
]

subject to
∑
j

|βj | ≤ t (2.2)

.
The tuning parameter t controls the amount of shrinkage that is applied to the

coefficients in the model. The smaller the value of t, the tighter the constraint and
larger the number of coefficients that will be shrunken to zero. As a result, fewer
predictors will be included in the model.

2.2. Geometry of LASSO
The geometry of LASSO regression is important for understanding why LASSO

often produces coefficients that are equal to zero, which rarely results from ridge
regression. This happens because LASSO uses the `1 constraint

∑
j |βj | ≤ t, while

ridge regression uses the `2 constraint
∑
j β

2
j ≤ t. We will use a model with two

regressors x1 and x2 and their coefficients β1 and β2 as an illustrative example.

The criterion
∑N
i=1(y1 −

∑
j βjxij)

2 from (2.2) equals the quadratic function

(β − β̂)TXTX(β − β̂) plus a constant [10]. Fig. 1 shows the elliptical contours
of this function in red, which are centered at the OLS estimates. On the left-hand
graph, the shaded diamond is the constraint region determined by our LASSO
constraint

∑
j |βj | ≤ t, which in this case is just |β1| + |β2| ≤ t. Note that each

corner of the diamond corresponds to a zero for one of the coefficients, meaning the
coefficient is eliminated from the model. The LASSO solution is the first place that
the red contours touch the diamond, which often occurs at a corner of the diamond.
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Figure 1. Solutions for LASSO (left) and ridge (right) regression
models with two coefficients β1 and β2 [1].

In the right-hand plot, the shaded circle is the constraint region determined by
the ridge regression constraint

∑
j β

2
j ≤ t. Because the ridge constraint region has

no corners, solutions with a zero coefficient are much less likely to occur. For this
reason, LASSO regression produces much sparser models than does ridge regression.
For more complex models with more than two regressors, the constraint region for
LASSO will be a hyper-diamond with many corners, while the constraint region for
ridge will be a hyper-sphere with no corners.

2.3. Kernelized LASSO
Kernelized LASSO utilizes the same `2 norm as the traditional LASSO method,

but with a kernel regressor matrix. The optimization problem for kernelized LASSO
is

(β̂0, β̂) = min ‖y −Kβ‖22 subject to‖β‖1 ≤ t, (2.3)

where K is the kernel matrix

K = (k(xi,x1), k(xi,x2), . . . , k(xi,xN )),

and for some kernel function φ,

k(xi,xj) = (φ(xi) · φ(xj)).

Like SVM, kernelized LASSO (K-LASSO) is a kernel-based learning algorithm
that utilizes the kernel trick, where the dot product is taken between pairs of
points mapped to a higher dimensional feature space without having to know the
coordinates in the feature space. This method is less computationally intensive
because it works in the lower dimensional input space. Note that in kernelized
LASSO, the inner product is taken between rows of the matrix X to form the
kernel matrix. In this paper, we will use the Radial Basis Function (RBF) kernel
with the hyperparamter γ:

K(xi,xj) = exp(−γ‖xi − xj‖2), γ > 0.

K-LASSO offers several advantages to SVM, such as giving probabilistic outputs,
which SVM lacks. K-LASSO can also handle very large data sets, while SVM suffers
from a “steep growth of the number of support vectors” as the size of the training
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set increases [9]. Finally, K-LASSO produces even sparser solutions than SVM does
when dealing with large-scale problems, allowing for more efficient predictions.

2.4. Bayesian Framework
As proposed in [9], we will link the LASSO to a Bayesian regression model

through the use of Automatic Relevance Determination (ARD) priors. Using this
probabilistic framework makes it possible to estimate the prediction variance. In
order to apply this Bayesian method to our LASSO regression problem, we must
define a set of probabilistic models of the data.

Given a hypothesis, or prediction, H with prior probability p(H), the likeli-
hood of H is p(H|D), where D is the data, given in pairs of inputs and outputs
{(xi, yi)}Ni=1. Assuming that the outputs y are generated by corrupting the values
of the regression function f with Gaussian noise with variance σ2, the likelihood of
H is given by:∏

i

p(yi | xi, H) =
∏
i

1√
2πσ2

exp

{
− (yi − f(xi))

2

2σ2

}

= (2πσ2)−
N+1

2 exp

{
−
∑
i

(yi − f(xi))
2

2σ2

} (2.4)

In regression problems, each H corresponds to a regression function f(x), which
in K-LASSO is Kβ [9].

The ARD prior is given by:

p(β | η′) ∝ exp

{
−
∑
i

η′iβ
2
i

}
(2.5)

In this case, each expansion coefficient has its own prior variance (η′i)
−1 [9]. This

prior and the likelihood of H give us a posterior that we will transform into a
minimization problem by the following procedure.

M(β) = −log(likelihood · prior)

= −log

(
(2πσ2)−

N+1
2 exp

{
−
∑
i

η
′

iβ
2
i +

(yi − f(xi))
2

2σ2

})

= −log

(
exp

{
−σ2

∑
i

η
′

iβ
2
i + (yi − f(xi))

2

})
= σ2

∑
i

η
′

iβ
2
i + (yi − f(xi))

2

= σ2
∑
i

η
′

iβ
2
i +

∑
i

(yi − f(xi))
2)

= ‖y −Kβ‖2 + σ2
∑
i

η
′

iβ
2
i

(2.6)

We view the equivalence between LASSO and Adaptive Ridge Regression (AdR)
in the following way. The AdR procedure minimizes (2.6) subject to the constraint
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1

N + 1

N+1∑
i=1

1

ηi
=

1

λ
, (2.7)

where λ is exogenous and ηi = η
′

iσ
2 [9]. Taking a Bayesian viewpoint of regression,

the following marginalization procedure gives a LASSO-type functional in the form
of an AdR problem in which the hyperparameters do not appear. Consider the
exponential hyperpriors

p(ηi) =
ρ

2
exp

{
−ρηi

2

}
(2.8)

and the corresponding prior distributions

p(βi) =

∫ ∞
0

p(βi|ηi)p(ηi)∂ηi =
ρ

2
exp{−√ρ|βi|}. (2.9)

Recall the likelihood (2.4), which together with (2.9) gives the functional

MLASSO = −log

((
1

2πσ2

)N
exp

{∑N
i=1(yi − f(xi))

2

2σ2

})

− log

(√
ρ

2
exp

{
−√ρ

N∑
i=1

|βi|

})

=

∑N
i=1(yi − f(xi))

2

2σ2
+
√
ρ

N∑
i=1

|βi|

=
1

2σ2

N∑
i=1

(yi − f(xi))
2 +
√
ρ

N∑
i=1

|βi|

= ‖y −Kβ‖22 + λ̃‖β‖1

(2.10)

Thus, with λ̃ =
√
ρ, we obtain the result

MLASSO(β) = ‖y −Kβ‖22 +
√
ρ‖β‖1. (2.11)

We can get rid of the constant values ( 1
2πσ2 )N , 1

2 , and
√
ρ

2 when we take the
negative log because we only need the proportional equation [9]. Thus we can view
the LASSO problem from a Bayesian perspective to see it as a type of AdR. We
will use this in the following section to construct a robust version of the kernelized
LASSO optimization problem.

2.5. Robust Kernelized LASSO
For practical application of the kernelized LASSO method, the true noise density

of the data set used often cannot be assumed to have a Gaussian distribution and
may only be assumed to be partially Gaussian and partially arbitrarily distributed.
In such a case, it is preferable to use Huber’s robust loss function,

L(z) =

{
c|z| − c2

2 for |z| > c
z2

2 for |z| ≤ c
(2.12)

as opposed to a quadratic loss function, as Huber’s loss function penalizes large
deviations only linearly while penalizing small deviations quadratically. Thus we
will rewrite the kernelized LASSO problem to include Huber’s loss function.
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To do so, we first take the robust complement of (2.6):

Mrob =

N∑
i=1

L(yi − (Kτβτ )i) + βTτ diag{ητ}βτ . (2.13)

Computing the partial derivatives of (2.13) obtains the following gradient:

∇βMrob = KT
τ Ω(βτ )y −KT

τ Ω(βτ )Kτβτ + 2 diag{ητ}βτ (2.14)

where Ω(βτ ) = diag {ω([y−Kτβτ ]i)} and ω(u) = ∂L(u)
u∂u . The gradient must vanish

in the optimal solution, so setting (2.14) to zero and solving for βτ yields the
updated estimate:

βnewτ = [KT
τ Ω(βτ )Kτ + 2 diag{ητ}]−1KT

τ Ω(βτ )y, (2.15)

assuming 0 < ω(u) ≤ ω(0) < ∞ in order to enable convergence. Note that
(2.15) defines the normal equations of a least squares problem with a design matrix

K̃τ = Ω1/2Kτ and dependent variables ỹ = Ω1/2y. Therefore the robust kernelized
LASSO optimization problem is given by:

min‖ỹ − K̃τβτ‖22 s.t. ‖β‖1 ≤ t, (2.16)

where (ỹ, K̃τ ) = (Ω1/2y,Ω1/2Kτ ) [9].

2.6. Standard Errors
Recall that statistical inference on an estimate requires the computation of Mean

Squared Error (MSE) where:

MSE(β̂j) = Eβ̂j
[
(β̂j − βj)2

]
= Varβ̂j + Bias

(
β̂j , βj

)2
.

Because penalized regression reduces variance at the expense of bias, the latter
is likely to be a large component of MSE. Further, since there is no closed form
for the LASSO estimators, the estimation of standard errors has proven difficult.
There is no consensus on the appropriate standard error estimators to be used with
the LASSO estimators although methods based on an approximated covariance
matrix, bootstrapping, and the Empirical Bayesian approach have been proposed.
Tibshirani (1996) suggests an approximate covariance matrix based on ridge regres-
sion. In this approach and many others based on the covariance matrix, however,

the standard errors generated are not valid for coefficients with β̂j = 0, yielding a
biased standard error identical to zero [10].

Given the difficulty of estimating the covariance matrix, bootstrap standard
errors offer a potential solution which is distribution free, generated by sampling
with replacement from the observed data. However, Leeb and Potscher find that
in general, boostrap standard errors of shrinkage estimators like LASSO can be

unreliable [6]. Additionally, the problem of biased standard errors for β̂j = 0
persists even when using bootstrapping [5]. Further, it is important to note that
bootstrap standard errors can only estimate the variance of the LASSO estimators
and cannot address bias, the other component of Mean Squared Error.

Given the drawbacks of each class of standard error estimators, it is suggested
that they be omitted from penalized regression packages to avoid giving the user
an inaccurate perception of estimate precision. Note that the R packages GLMNET

and penalized indeed do not provide standard errors.
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Roth (2004) proposes another method for statistical inference. Given an optimal
β̄ found using the algorithm, the uncertainty of a prediction f̄(x∗) given a new
observation x∗ with feature vector φτ (x∗) can be measured based on the variance:

var[f(x∗)] = σ2φTτ (x∗)
[
K̃T
τ K̃τ + 2diag{ητ}

]
φτ (x∗) (2.17)

where σ2 is an estimate of the variance of the Gaussian noise in the transformed
problem [9].

3. Algorithm

To solve the optimization problem stated in (2.16), we implement an algorithm
proposed in Roth (2004) [9]. In this algorithm, we incrementally add a vector
h to the vector of estimated coefficients β, indexed by N . Here h represents
our search direction locally around our current estimation of β. Because the goal
is convergence, some elements of h will be zero as to leave our corresponding β
elements unchanged. Thus, h is formally defined as h := PT

(
hτ
0

)
, where P is

a permutation matrix that is used to collect the |τ | non-zero elements of β, i.e.
β = PT

(
βτ
0

)
. Thus, our local optimization problem is:

min
h
‖ỹ − K̃(β + h)‖22 s.t. θTτ (βτ + hτ ) ≤ t and h = PT

(
hτ
0

)
. (3.1)

where the linear constraint is proven to be equivalent to the typical `1 constraint
in (3.4) for small enough steps in the direction h.

By the Karush-Kuhn-Tucker conditions, we have(
K̃T
τ K̃τ θτ
θTτ 0

)(
hτ
µ

)(
K̃T
τ (ỹ − K̃τβτ )
t− θTτ βτ

)
(3.2)

which we obtain in the following process. The Lagrangian of our objective function
(3.1) can be given as:

L = ‖ỹ − K̃τ (βτ + hτ )‖22 − µ′(t− θTτ (βτ + hτ )) (3.3)

where µ′ ≥ 0. Taking the partial in terms of h yields:

∂Lh = −r̃K̃τ + hτ K̃
T
τ K̃τ + µθTτ (3.4)

where µ = µ′

2 and r̃ = ỹ − K̃β. By the KKT conditions, (3.4) must equal zero, so
we can solve for hτ and µ:

hτ = (K̃T
τ K̃τ )−1(K̃T

τ (ỹ − K̃τβτ )− µθTτ ) (3.5)

θTτ hτ = t− θTτ βτ
θTτ (K̃T

τ K̃τ )−1(K̃T
τ (ỹ − K̃τβτ )− µθTτ ) = t− θTτ βτ

θTτ (K̃T
τ K̃τ )−1(K̃T

τ ỹ − K̃T
τ K̃τβτ − µ(θTτ ) = t− θTτ βτ

θTτ ((K̃T
τ K̃τ )−1K̃T

τ ỹ − βτ − (K̃T
τ K̃τ )−1µθτ ) = t− θTτ βτ

θTτ (K̃T
τ K̃τ )−1K̃T

τ ỹ − θTτ βτ − µ(θTτ (K̃T
τ K̃τ )−1θτ ) = t− θTτ βτ

max

(
0,
θTτ (K̃T

τ K̃τ )−1K̃T
τ ỹ − t

θTτ (K̃T
τ K̃τ )−1θτ

)
= µ

(3.6)



LASSO WITH CENTRALIZED KERNEL 9

where β is fixed, ỹ and K̃ are defined with respect to Ω(β+h), and θτ is the sign
vector θτ := sign(βτ ).

The first step of the algorithm is checking for sign feasibility. For β† := β+h to
be sign feasible, we must have sign(β†τ ) = θτ . If this is not the case, the following
steps in Part A are used to correct this.

Part A

(1) Find the smallest γ ∈ (0, 1) such that 0 = βk + γhk for some k ∈ τ (i.e.
βk 6= 0) and define β′ = β+γh. Essentially, this sets the element of β that
was most likely causing the feasibility issue, βk, to zero.

(2) Now set θ′k = −θk (i.e. switch the sign of βk) and compute a new value of h,
which we will label h′ for clarity. If β′+h′ is sign feasible, set β† = β′+h′

and move on to the second half of the algorithm (i.e. skip steps 3 and 4
and proceed to Part B. Otherwise, proceed to step 3.

(3) Remove the k used above from τ , and update βk and θk accordingly.
(4) Recompute h for this revised problem and iterate on Part A until a sign

feasible β† is obtained.

Part B
(5) Once a sign feasible β† is obtained, test its optimality by computing the

following:

v† =
K̃T r̃†

‖K̃T
τ r̃
†‖∞

= PT
(
v†1
v†2

)
(3.7)

where r̃† = ỹ−K̃β†. Recall that (v†1)i = θi for i ≤ |τ |. If −1 ≤ (v†2)j ≤ 1
also holds for 1 ≤ j ≤ N − |τ |, then β† is optimal. Otherwise, continue to
Part C. A more detailed explanation of this procedure can be found in §3.2.

Part C
(6) If β† was not the optimal solution, identify the most violated condition by

finding the index s such that (v†2)s has the greatest absolute value.
(7) Update the index set τ by adding the indices from 1, . . . , s that are in N−|τ |

to it, and update β†τ and θτ accordingly. Append a zero to the end of β†τ ,

and append sign(v†2)s to the end of θτ . Now update K̃τ and ỹ accordingly.
(8) Set β = β†, compute a new search direction h, and iterate from the begin-

ning of A.

3.1. Initialization
To initialize the algorithm and select the first index set τ , we choose the OLS

estimate β̂† = (K̃T K̃)−1K̃T ỹ as the initial β̂† estimate. We then proceed imme-
diately to Parts B and C of the algorithm to determine the index s, assuming that
τ is initially empty. Once s is found, set τ = {1, . . . , s}, and update β†τ and θτ
accordingly. As in Part C, append a zero to the end of β†τ and sign(v†2) to the end
of θτ . Compute h and proceed to Part A.
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3.2. Further Explanation of Algorithm
Fig. 2 below presents the general organization of the algorithm.

Initial Values Part A Part B Prediction

Part C

Cross Validation
for

parameters

Model Selection

Sign Feasible Optimal

Not Sign Feasible

Not Optimal

Figure 2. Algorithm outline.

Part B determines if β† is the optimal solution. We assume the loss function
is differentiable, and therefore write the Lagrangian of the kernelized LASSO opti-
mization problem as

L(β, λ̃) = ‖ỹ − K̃β‖22 − λ̃(t− ‖β‖1). (3.8)

By the Karush-Kuhn-Tucker conditions, the partial derivative ∂βL must vanish
at the optimal solution, i.e.

∂βL = −K̃T r̃ + λ̃v
!
= a, (3.9)

where vi =

{
sign(βi) if βi 6= 0

ai ∈ [−1, 1] if βi = 0,
(3.10)

where r̃ = ỹ − K̃β†. Note that ‖v‖∞ = 1, which implies that λ̃ = ‖K̃T r̃‖∞.

3.3. Kernel Centering
For the above algorithm to be computationally feasible, we must center the kernel

matrix and thereby eliminate the intercept β0 because an intercept term produces
an ill-conditioned kernel matrix. To center an n× n kernel matrix we must center
the data set elements as they are mapped in the feature space as follows [3]:

Kcenter = (φ− φ̄1T )(φ− φ̄1T ) (3.11)

= (φ− 1

n
φ11T )T (φ− 1

n
φ11T ) (3.12)

= (I − 1

n
11T )φTφ(I − 1

n
11T ) (3.13)

= H ×K ×H (3.14)

where the centering matrix H is defined as

H = I − 1

n
11T (3.15)
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where 1 is of length n. Expanding (3.11) we get

Kcenter = K − 1

n
11TK − 1

n
K11T +

1

n
11TK11T

1

n
, (3.16)

which implies that the i, jth element of Kcenter is

kc(i, j) = k(i, j)− 1

τ

n∑
r=1

k(i, r)− 1

τ

n∑
r=1

k(j, r) +
1

τ2

n∑
r=1

n∑
s=1

k(r, s). (3.17)

3.4. Convergence
Proof of the convergence of the algorithm consists of two cases:
If the current estimate β† is not sign feasible and is suboptimal, then in (3.1), it

is implied that h is a descent direction. Thus, the objective function (3.1) is reduced
in each step, and cycling cannot occur. This process must converge because the
possible configurations of τ are finite. Therefore, the procedure must converge, and
the final β must be sign feasible. Note that if β† is optimal for (3.1), then this part
of the algorithm is bypassed[8].

If the current estimate β† is sign feasible and not optimal, then the augmented
vector (β†τ ,0)T must also be suboptimal for (3.1). We update τ by adding s and
augment θτ as (θτ , θs)

T . Then the solution for the augmented problem is (hτ , hs)
T ,

which is a descent direction for the augmented problem [8].
By definition of descent direction, we have:

0 >
(
hτ
hs

)T
(ỹ − K̃(β + h))(−2)(−K̃)

> −
(
hτ
hs

)T
(ỹ − K̃β†)(K̃)

> −
(
hτ
hs

)T
(ỹ − K̃β†)

(
K̃τ
φs

)
> −

(
K̃τ
φs

)T
(r̃†)T

(
hτ
hs

)
> −(r̃†)T K̃τhτ − (r̃†)Tφshs

> −µθTτ hτ − µ(v†2)shs

> −µ(θTτ hτ + (v†2)shs)

(3.18)

.
For (3.1) to be feasible, we must have θTτ hτ + θshs ≤ 0 [9]. We can multiply by

µ and add (3.18) to obtain:

0 ≤ µ(θTτ hτ + θshs)− µ(θTτ hτ + (v†2)shs) (3.19)

≤ µ(θshs − (v†2)shs) (3.20)

≤ (θs − (v†2)s)hs. (3.21)

To show that θs = sign(hs), set θs = sign((v†2)s) in (3.21). First suppose

sign((v†2)s) = 1. Then θs − (v†2)s < 0 because | (v†2)s | > 1 by definition. Thus

hs > 0, and sign(hs) = 1. Now suppose sign((v†2)s) = −1. By similar logic to

the previous case, θs − (v†2)s > 0, and therefore hs < 0 and sign(hs) = −1, which

is the desired conclusion. Therefore, setting θs = sign((v†2)s) will always yield
θs = sign(hs). Thus, the linear constraint in (3.1) is equivalent to the `1 constraint
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in (2.3) for small enough displacements in the step direction (hτ , hs)
T . Therefore,

primal feasibility is maintained throughout the algorithm [9].

4. Hyperparameter Selection

In addition to the variables determined within our model (e.g. β, h, etc.), we
also have three hyperparameters: c, γ, and t.

As indicated in §2.5, the hyperparameter c is utilized in Huber’s loss function.
Essentially, c is used here as a cut off between the “small” errors and the “large”
errors. According to Huber, values of c between 1 and 2 are good choices, and for
our purposes we use the computational standard of c = 1.345 [4].

Recall that the γ hyperparameter is used in the creation of the RBF kernel.
Ultimately, γ represents a value inversely proportional to the standard deviation of
the RBF kernel (σ). More specifically,

γ =
1

2σ2
.

Therefore, a small gamma defines a Guassian function for the RBF kernel with a
large variance, and a large gamma defines such a function with a small variance.
Also recall that the hyperparameter t is the postively-valued constraint we place
on our β values.

While Huber [4] identifies an optimal value for c, γ and t must be optimized
for each data set. We implement this optimization via a grid search over all pos-
sible pairs of candidate values. Preliminary candidate values of γ and t are gen-
erated by stepping an initial value over powers of ten: {10−3, 10−2, . . . , 102, 103}.
The optimal pair (γ0, t0) is defined to be that which minimizes the 10-fold cross
validation error of the algorithm in §3. Next, we perform a fine grid search
around this optimal pair where candidate values of γ are elements of the set
{0.2γ0, 0.4γ0, . . . , γ0, 2γ0, 4γ0, 8γ0} and candidate values of t are elements of the
set {0.2t0, 0.4t0, . . . , t0, 2t0, 4t0, 8t0}.

5. Predictions

Once an optimal β has been chosen via the algorithm given some t and σ,
predictions can be made on the robustly transformed test data, ỹtest, as follows.
Compute ˆ̃ytest = K̃predictβτ , where Kpredict is the n× τ centered prediction kernel
matrix, which, similar to (3.17), is constructed element-wise such that

kc(i, j) = k(i, j)− 1

τ

τ∑
r=1

k(i, r)− 1

τ

τ∑
r=1

k(j, r) +
1

τ2

τ∑
r=1

τ∑
s=1

k(r, s), (5.1)

where i ∈ {1, . . . , n} indexes the rows of the test data, and j ∈ {1, . . . , τ} indexes
the rows of the train data. It is then necessary to multiply Kpredict by Ω1/2 to get

K̃predict = Ω1/2Kpredict.
To measure the accuracy of the predictions, calculate the RMSE, given by

RMSEi =

√√√√ 1

n

n∑
i=1

(
ỹi − ˆ̃yi

)2
, (5.2)

and note that a smaller RMSE indicates a more accuarate prediction.
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6. Rcpp

The computational cost of using cross validation along with obtaining the pre-
dictions is expensive. R language is notorious for being slow with computationally
intensive programs. Rcpp is a useful application programming interface that ad-
dresses many of these obstacles and improves the efficiency of this algorithm. Rcpp
was created by Dirk Eddelbuettel and Romain Francois, in order to use C++ lan-
guage with R. This allows R to take advantage of the advanced data structures and
functions included within the standard template library of C++.

Rcpp accounts for many of the bottlenecks experienced in R language. Pro-
grams that use recursion, have loops that are difficult to vectorize, or call functions
millions of times, would benefit from using Rcpp. In this algorithm, Rcpp is im-
plemented in the cross validation for the hyperparameter selection, and could be
utilized anywhere there are loops. Results show that the performance time of Rcpp
is more efficient than R alone [11].

7. Discussion

Moving forward in our implementation of the kernelized LASSO algorithm, we
hope to perform experimental validation of the models accuracy, sparsity, and effi-
ciency. This will include a comparison to SVM and ridge regression for benchmark
data.

Currently, our primary performance measurements of prediction accuracy are
the root mean squared error (RMSE) on the test data and the prediction variance
given in (2.17). By computing the RMSE over a test dataset, we are validating
our model’s accuracy and checking for overfitting. Additionally, we will consider
the number of coefficients in our model because sparsity is desirable for prediction
efficiency and for avoiding overfitting.

In addition to evaluating the relative predictive validity of our model, we will
assess its computational efficiency relative to Ridge and SVM regression. We an-
ticipate needing to optimize our algorithm. While our algorithm is implemented in
R, it includes many loops which we hope to make more efficient via the use of Rcpp,
which permits integration of R and C++.

Once we have improved the efficiency of our model and properly compared the
accuracy and sparsity of its results with those of other regression methods, we hope
to provide our algorithm for public use.
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