
Study of Vortex Dynamics with Free Surface in a
Shallow Water Regime

Christopher Curtis, Ph.D. Robert Insley Eunji Yoo
Hannah Barta Phoebe Coy Thomas Pecha Thomas Retzloff

Alec Todd

August 18, 2017

Contents

1 Introduction 3

2 The Free Surface Model with Vorticity 4
2.1 Continuous Regions of Constant Vorticity 4
2.2 Discretization Using Point Vortices . 5

3 Mollification of the Kernel 7
3.1 The Gaussian Cutoff Function . 8
3.2 The Mollified Kernel Kε . 9
3.3 Non-Dimensionalization of Vortex Velocities 13

3.3.1 Direct Summation Form of K̃ε . 14
3.3.2 Fourier Series Expansion of K̃ε . 14

3.4 Selection of Kernel . 15

4 Numerical Results 17
4.1 Initial Conditions . 18
4.2 Vortex Sheets . 19
4.3 Experiments in Modeling a Stable Structure 23
4.4 Deformation Metric . 27
4.5 Comparison between Code with and without Implemented Mollifiers 31

5 Conclusions and Future Research 32

A Evaluation of Integrals 33

B Clustering Graphs 34

1

C Acknowledgments 38

2

Abstract

We examine the deformation of varying shapes of collections of point vortices be-
neath a free surface of an inviscid fluid with a flat bottom boundary. Initial simulations
investigate the deformation of vortex sheets in a manner which resembles the Kelvin-
Helmholtz instability. With large numbers of point vortices, the simulations we run
show that these sheets tend to deform into elliptical patches. Several other shapes of
point vortex arrays are simulated, and almost all deform into an elliptical shape. Upon
deciding to simulate an ellipse as a starting shape, we observe that an initial elliptical
shape deforms the least with time. To increase the realism of these simulations, we
introduce a mollified kernel, which slows the speeds of vortices that are close together
and yields ellipses that retain their shape with time. We introduce a metric to measure
the deformation of these ellipses before and after mollification.

1 Introduction

The study of point vortices under a free surface in shallow water is a relatively novel and
unexplored field in hydrodynamics. While several works examine the impact of point vortices
on free surface flows [1, 2, 3, 4, 5, 6, 7], none have thus far developed an approach which
allows for arbitrary numbers of vortices beneath a free surface. Such an approach is necessary
to develop a point-vortex based solver [8] for a free surface over an arbitrary distribution of
vorticity.

Therefore, building off the methodology of [9], in [10] a method was developed for nu-
merically simulating the motion of point vortices in two dimensions under a free surface in
an incompressible fluid with an impenetrable flat bottom boundary. Using this method, the
authors of [10] perform simulations consisting of two and four point vortices with varying
negative and positive circulation strengths. Due to a singularity present in the kernel de-
scribing the motion of point vortices, the method in [10] causes vortices to reach velocities
approaching infinity when within a sufficiently small distance of each other. Additionally,
simulations with larger numbers of vortices have not yet been studied.

To extend the research of [10], we replace the existing singular kernel with a new “mol-
lified” kernel that eliminates the singularity and thus decreases the velocity of vortices that
are close together. Through computer simulation, we examine the evolution of vortex sheets
as well as various other configurations of point vortices. In several of these simulations, we
observe behavior resembling the Kelvin-Helmholtz Instability. Additionally, after numerous
simulations of varying size, circulation, and geometry, we observe that an elliptical array of
point vortices deforms the least with time; we then quantitatively measure the degree to
which these ellipses deform from their initial positions.

The format of this paper is as follows: we first discuss the modeling of continuous
patches of vorticity using collections of point vortices. We then explain the calculation
and implementation of the mollified kernel, and describe the results of our simulations,
particularly concerning the stability of ellipses. Finally, we present topics for further research.

3

2 The Free Surface Model with Vorticity

We now describe the basis of our research problem, introducing regions of vorticity and the
discretization of continuous vortex patches. We introduce the Biot-Savart kernel and provide
reasoning for our later work, specifically the implementation of a mollified kernel.

2.1 Continuous Regions of Constant Vorticity

x

z = H

z

|
−L

|
L

z = η +H

Ω(0)

Figure 1: The free surface z = η+H and flat bottom z = 0 at time t = 0, with vortex patch Ω(0) as shown.
H and L represent the mean fluid depth from the bottom and wave length, respectively

Consider an inviscid, incompressible fluid with an impermeable bottom boundary z = 0
and free surface z = η(x, t)+H in two dimensions. We assume the fluid domain is 2L-periodic
in x so that

η(x+ 2L, t) = η(x, t).

At time t = 0, let Ω(0) denote a region of constant, nonzero vorticity with circulation
strength Γ0, and let all other points in the fluid have zero vorticity. Then, denoting by
ω(x, z, t) = ∇ × u the vorticity profile of the fluid at time t, where u(x, z, t) is the fluid
velocity profile, we have

ω(x, z, 0) = 1Ω(0)Γ0k̂,

where 1Ω(0)(x, z) is the characteristic function on Ω(0), defined by

1Ω(0)(x, z) =

{
1 if (x, z) ∈ Ω(0)

0 otherwise,

and where k̂ is the vector of unit length orthogonal to x̂ = (1, 0) and ẑ = (0, 1), according
to k̂ = x̂× ẑ. Figure 1 illustrates this model.

4

Under the assumption of periodic boundary conditions, one may derive from the Biot-
Savart Law the following equation for fluid velocity, following [11]:

u(x, t) =

∫
Ω(t)

K(x, x̃)ω(x̃, t) dx̃ +∇φ, (1)

where x = (x, z) is position, ω is the signed magnitude of vorticity, Ω(t) is the support of ω
at time t, and K is a Biot-Savart kernel effectively describing the influence of points x̃ with
nonzero vorticity on fluid velocity. Additionally, φ is the velocity potential due to the bulk
and surface of the fluid, subject to the constraints ∆φ = 0 and φz(x, 0, t) = 0.

Consider the flow map
φt(x0, z0) = (x(t), z(t))

describing the time-evolution of an initial point (x0, z0) = (x(0), z(0)) in the fluid. Assuming
that φt : R2 → R2 is differentiable, then it defines a diffeomorphism. Thus, if the initial
region of vorticity Ω(0) is compact and connected, then

Ω(t) = φt(Ω(0))

is compact and connected as well. As this holds for all t ≥ 0, we see that Ω(t) is compact
and connected at any given time t ≥ 0.

2.2 Discretization Using Point Vortices

In order to describe the time-evolution of the initial vortex patch Ω(0), following the approach
described in [8], we discretize the vorticity profile withN irrotational point vortices as follows:

ω(x, t) =
1

2π

N∑
`=1

Γ`(t) δ(x− x`(t)) dx, (2)

where x`(t) is the position of the `-th point vortex and Γ`(t) is its circulation strength. By
requiring that the region Ω(t) follow streamlines of the fluid, we apply Kelvin’s circulation
theorem [12] and Stokes’ theorem in turn to show that the sum of the point vortices’ circu-
lation strengths is constant with respect to time. In other words, there is a net circulation
constant Γω with

Γω =
N∑
`=1

Γ`(t)

for all t. According to this equation, it is possible for point vortices to “exchange” vorticity
as time changes, as long as their circulation strengths Γ`(t) sum to the constant Γω. However,
for our model we impose the restriction that Γ`(t) = Γ`(0) for all t, so that each point vortex
has constant circulation strength Γ` as time changes. Note that this restriction ensures
constant net circulation Γω according to the equation above.

5

We now turn our attention to the Biot-Savart kernel [11] K in equation (1), which may
be expressed as

K(x, x̃) = K̃(x− x̃, z − z̃)− K̃(x− x̃, z + z̃), (3)

where

K̃(x, z) =
(− sinh(πz/L), sin(πx/L))

4L(cosh(πz/L)− cos(πx/L)
. (4)

To derive equations (3) and (4), observe that if we can find a streamfunction ψ satisfying
u = (ψz,−ψx), then we are assured of our fluid being incompressible, as it follows that
∇·u = 0. Additionally, from u = (ψz,−ψx), one may show that Poisson’s equation−∆ψ = ω
holds. Then, given a vorticity profile ω, a streamfunction ψ solving this equation is given by

ψ(x, z, t) = (G ∗ ω)(x, z, t) =

∫
R2

G(x− x̃)ω(x̃, t) dx̃,

where G is Green’s function

G(x) = − 1

2π
log(|x|).

This streamfunction ψ then yields the fluid velocity

u(x, z, t) =

∫
R2

K̄(x− x̃)ω(x̃, t) dx̃,

where K̄ is the function

K̄(x) =
(−z, x)

2π|x|2
.

Recalling our assumption that the fluid domain is horizontally 2L-periodic, every point
(x, z) ∈ Ω(t) with nonzero vorticity (where we take the region Ω(t) to be contained in the
principal domain [−L,L]× R) corresponds to infinitely many points

{. . . , (x− 2L, z), (x, z), (x+ 2L, z), . . . }

in the intervals
. . . , [−3L,−L], [−L,L], [L, 3L], . . . ,

respectively. Then u may be rewritten as

u(x, z, t) =

∫
Ω(t)

∞∑
m=−∞

τhm
(
K̄(x− x̃)

)
ω(x̃, t) dx̃,

where τhm
(
K̄(x− x̃)

)
= K̄(x− x̃− 2mL, z − z̃). Then, setting

K(x, x̃) =
∞∑

m=−∞

τhm
(
K̄(x− x̃)

)
and evaluating the right-hand side yields equations (3) and (4) for the kernel K.

6

Now, substituting the Biot-Savart kernel K and the discretized vorticity profile ω given
in (2) into equation (1) for fluid velocity, we obtain

u(x, t) =
N∑
`=1

Γ`K(x,x`(t)) +∇φ. (5)

Consider now the velocity of a given point vortex j, described by u(xj(t), t). In particular,
consider a generic summand from (5):

Γ`K(xj,x`) = Γ` K̃(xj − x`, zj − z`)− Γ` K̃(xj − x`, zj + z`).

Suppose that point vortices j and ` are very close; more precisely, consider the limit xj−x` →
0. Then xj − x` → 0 and zj − z` → 0, so that∣∣K̃(xj − x`, zj − z`)

∣∣→∞
from (4). This singular behavior poses a central problem to computer simulations of inter-
acting point vortices, as any two point vortices that become too close approach rapid speeds.
To correct the singular behavior of K̃ near the origin, we seek to replace K̃ with a similar
function K̃ε that removes the singularity of K̃ near the origin while approximating K̃ away
from the origin. The calculation of such a function is the chief concern of the following
section.

3 Mollification of the Kernel

Just as the Biot-Savart kernel K is expressed in terms of K̃ according to (3), we define the
mollified kernel Kε in terms of K̃ε as follows:

Kε(x, x̃) = K̃ε(x− x̃, z − z̃)− K̃ε(x− x̃, z + z̃),

where K̃ε is to be determined. In particular, since we wish for K̃ε to approximate K̃ while
removing its singular behavior, we set

K̃ε(x) = (K̃ ∗ χε)(x) =

∫
R2

K̃(y)χε(y − x) dy, (6)

where χε is a cutoff function with parameter ε, which we shall define shortly. Note that
setting χε equal to the Dirac delta function on R2 yields K̃ε(x) = K̃(x), which motivates a
choice of cutoff function χε that is “like” the delta function in some sense.

In this chapter, we discuss the derivation of a formula for K̃ε as an infinite series, and
we then re-express it as a Fourier series. To distinguish between these two expressions for K̃ε,
we refer to the former infinite series as the direct summation expression for K̃ε. We discuss
why implementing K̃ε as a Fourier series is preferable with regard to computer simulation,
and then discuss its effect on the existing code.

7

3.1 The Gaussian Cutoff Function

Consider a function χ : R→ R, and define χ on R2 by setting χ(x) = χ(|x|) for all x ∈ R2.
Formally, χ is said to be a cutoff function of order n (a positive integer) if it satisfies the
following three conditions:

1.
∫
R2 χ(|x|) dx = 2π

∫∞
0
r χ(r) dr = 1.

2. For all positive integers n1 and n2 such that 0 <
√
n2

1 + n2
2 ≤ n− 1, one has∫

R2

xn1zn2 χ(x, z) dx dz = 0.

3. For all positive integers n1 and n2 such that
√
n2

1 + n2
2 = n, one has∫

R2

xn1zn2 χ(x, z) dx dz <∞.

Now consider

χε(r) =
1

ε2
χ
(r
ε

)
(7)

where

χ(r) =
1

π
e−r

2

(8)

is a Gaussian curve. Then χ is a cutoff function of order 2, which we now verify. In order to
check condition 1, we compute

2π

∫ ∞
0

re−r
2

π
dr =

∫ ∞
0

e−u du = 1

using the change of variables u = r2. For condition 2, we see that the only positive-integer
pairs (n1, n2) satisfying 0 <

√
n2

1 + n2
2 ≤ 1 are (0, 1) and (1, 0). In the case where (n1, n2) =

(0, 1), we notice that z χ(x, z) is odd in z, as

−z χ(x,−z) = −z χ(x, z),

so that ∫
R2

z χ(x, z) dx dz = 0.

The same reasoning applies to the case in which n1 = 1 and n2 = 0. Finally, by noting
that the only positive integer pairs satisfying

√
n2

1 + n2
2 = 2 are (0, 2) and (2, 0), we can

confirm condition 3. If (n1, n2) = (0, 2), then we change the integral
∫
R2 z

2χ(x, z) dx dz to
polar coordinates and take absolute value to obtain∣∣∣∣∫ 2π

0

∫ ∞
0

r3χ(r) sin2 θ dr dθ

∣∣∣∣ ≤ ∫ 2π

0

∫ ∞
0

∣∣r3χ(r) sin2 θ
∣∣ dr dθ ≤ 2π

∫ ∞
0

r3χ(r) dr

8

One may then show that the rightmost integral converges. Specifically, write

2π

∫ ∞
0

r3χ(r) dr = 2

∫ 1

0

r3e−r
2

dr + 2

∫ ∞
1

r3e−r
2

dr,

and notice that the integral from 0 to 1 on the right-hand side converges, since the integrand
is continuous. Then, using the fact that e−r

2 ≤ e−r for all r ≥ 1, we note that

2

∫ ∞
1

r3e−r
2

dr ≤ 2

∫ ∞
1

r3e−r dr.

One may then show by induction that
∫∞

1
rne−r dr < ∞ for all positive integers n, using

integration by parts for the inductive step. Thus, we have shown that χ(r) as defined in (8)
is a cutoff function of order 2.

3.2 The Mollified Kernel Kε

Substituting the Gaussian cutoff function χε given in (7) into the convolution formula (6)
for K̃ε, we obtain

K̃ε(x) =
∞∑

m=−∞

τhm

(
(−z, x)

|x|2

∫ |x|
0

r χε(r) dr

)
, (9)

where τhm denotes the horizontal translation operator τhm(f(x, z)) = f(x−2mL, z). One may
then show that

1

|x|2

∫ |x|
0

r χε(r) dr =
1

|x|2

∫ |x|
0

re−r
2/ε2

πε2
dr =

1− e−|x|2/ε2

2π|x|2
.

Note that this expression has a removable singularity at |x| = 0, as

lim
|x|→0

1− e−|x|2/ε2

2π|x|2
=

1

2πε2
.

Then (9) becomes

K̃ε(x, z) =
∞∑

m=−∞

1− e−[(x−2mL)2+z2]/ε2

2π[(x− 2mL)2 + z2]
(−z, x− 2mL), (10)

where the m-th term is defined to be 0 in the case where (x−2mL)2 +z2 = 0. We henceforth
refer to (10) as the “direct summation” form of K̃ε.

Notice that K̃ε is 2L-periodic in x, as one may show that K̃ε(x+ 2L, z) = K̃ε(x, z) by
re-indexing the summation above. Thus, we may expand the components of K̃ε as Fourier
series in x:

f(x, z) =
∞∑

m=−∞

f̂m(z)eiπmx/L, (11)

g(x, z) =
∞∑

m=−∞

ĝm(z)eiπmx/L, (12)

9

where K̃ε(x, z) = (f(x, z), g(x, z)). We now claim that the Fourier coefficients for the series
above are given by

f̂m(z) =
1

2L

∫ ∞
−∞

−z(1− e−[x2+z2]/ε2)

2π[x2 + z2]
e−iπmx/L dx, (13)

ĝm(z) =
1

2L

∫ ∞
−∞

x(1− e−[x2+z2]/ε2)

2π[x2 + z2]
e−iπmx/L dx. (14)

Using orthogonality relations, one may verify the following formula:

ĝm(z) =
1

2L

∫ L

−L
g(x, z)e−iπmx/L dx.

Then we have

ĝm(z) =
1

2L

∫ L

−L

∞∑
k=−∞

(x− 2kL)(1− e−[(x−2kL)2+z2]/ε2)

2π[(x− 2kL)2 + z2]
e−iπmx/L dx

=
1

2L

∞∑
k=−∞

∫ L

−L

(x− 2kL)(1− e−[(x−2kL)2+z2]/ε2)

2π[(x− 2kL)2 + z2]
e−iπmx/L dx

=
1

2L

∞∑
k=−∞

∫ L−2kL

−L−2kL

x(1− e−[x2+z2]/ε2)

2π[x2 + z2]
e−iπm(x+2kL)/L dx

=
1

2L

∫ ∞
−∞

x(1− e−[x2+z2]/ε2)

2π[x2 + z2]
e−iπmx/L dx.

In the second line, we assume that the series for g(x, z) may be integrated term-by-term. In
the third line, we use a change of variables. In the fourth line, we note that

e−iπm(x+2kL)/L = e−iπmx/L

and that the intervals [−L−2kL, L−2kL] cover the real line. Formula (13) follows the same
reasoning.

We now evaluate the Fourier coefficients f̂m(z) and ĝm(z). First, we rewrite (13) as

f̂m(z) =
1

2L

∫ ∞
−∞

−ze−iπmx/L

2π[x2 + z2]
dx+

1

2L

∫ ∞
−∞

ze−[x2+z2]/ε2

2π[x2 + z2]
e−iπmx/L dx. (15)

We now evaluate each of these integrals separately. Define the Fourier transform of f(x) to
be

f̂(ω) =

∫ ∞
−∞

f(x)e−iωx dx

and the inverse Fourier transform of f̂(ω) to be

f(x) =
1

2π

∫ ∞
−∞

f̂(ω)eiωx dω.

10

Recall the convolution theorem, which states that for functions f(x) and g(x), we have

(f̂ g)(ω) =
1

2π
(f̂ ∗ ĝ)(ω),

where the right-hand side denotes the convolution of f̂(ω) and ĝ(ω), defined as

(f̂ ∗ ĝ)(ω) =

∫ ∞
−∞

f̂(ξ) ĝ(ω − ξ) dξ.

In other words, the Fourier transform of a product fg is the convolution of the Fourier trans-
forms of f and g, up to a scalar multiple (in our case, 1/2π, given our choice of convention
for the Fourier transform). Now we claim that the Fourier transform of h1(x) = z

x2+z2
is

ĥ1(ω) = πe−z|ω|, which is readily obtained from the following formula:

1

2π

∫ ∞
−∞

2α

α2 + ω2
eiωx dω = e−α|x|.

Then the first integral in (15) may be rewritten as

− 1

4πL
ĥ1

(πm
L

)
=

1

4L
e−z|πm/L|

Now let h2(x) = e−[x2+z2]/ε2 ; then the second integral in (15) may be rewritten as

1

4πL
(ĥ1h2)

(πm
L

)
=

1

8π2L
(ĥ1 ∗ ĥ2)

(πm
L

)
, (16)

using the convolution theorem. Now, to find ĥ1 ∗ ĥ2, one may compute

ĥ2(ω) = ε
√
πe−z

2/ε2e−ε
2ω2/4

then write

(ĥ1 ∗ ĥ2)(ω) =

∫ ∞
−∞

ĥ1(ξ)ĥ2(ω − ξ) dξ

= επ3/2e−z
2/ε2
∫ ∞
−∞

exp

[
−z|ξ| − ε2

4
(ω − ξ)2

]
dξ

= επ3/2e−z
2/ε2
∫ ∞
−∞

exp

[
−ε

2

4
ξ2 +

ε2ω

2
ξ − ε2ω2

4
− z|ξ|

]
dξ,

Observing that the integral in the last line is of the form∫ ∞
−∞

eax
2+bx+c+d|x| dx,

11

with a < 0, we apply the integral formula (22) (see Appendix A) to evaluate this integral.
Then we obtain

f̂m(z) =
1

4L

[
ezπm/L

E1(z)

2
+ e−zπm/L

E2(z)

2
− e−z|πm/L|

]
(17)

where

E1(z) =

{
1− erf

∣∣ επm
2L

+ z
ε

∣∣ if z > − ε2πm
2L

1 + erf
∣∣ επm

2L
+ z

ε

∣∣ if z ≤ − ε2πm
2L

,

E2(z) =

{
1 + erf

∣∣ επm
2L
− z

ε

∣∣ if z < ε2πm
2L

1− erf
∣∣ επm

2L
− z

ε

∣∣ if z ≥ ε2πm
2L

.

Similarly, the Fourier coefficients ĝm(z) are given by the formula

ĝm(z) =
i

4L

[
ezπm/L

(
1− E1(z)

2
− θ(m)

)
+ e−zπm/L

(
E2(z)

2
− θ(m)

)]
(18)

where i is the imaginary unit,

θ(x) =

0 if x < 0

1/2 if x = 0

1 if x > 0

is the Heaviside step function, and where E1 and E2 are as before. To obtain this formula,
we rewrite (14) as

ĝm(z) =
1

4πL
ĥ3

(πm
L

)
− 1

8π2L
(ĥ2 ∗ ĥ3)

(πm
L

)
,

where

h3(x) =
x

x2 + z2
=

1

2(x+ iz)
+

1

2(x− iz)
.

Then, using the fact that

1

2π

∫ ∞
−∞

1

α + ix
eiωx dx = θ(ω)e−αω

for α ∈ R, one may compute ĥ3(ω) = −iπθ(ω)(ezω + e−zω). Then one may find the convolu-
tion ĥ2 ∗ ĥ3 using similar reasoning to the derivation of Formula (22) in order to obtain the
formula for the Fourier coefficient ĝm(z).

12

3.3 Non-Dimensionalization of Vortex Velocities

We now seek formulas describing the motion of the point vortices in order to numerically
simulate their motion. First, note that the velocity of a given vortex j at time t is given
by u(xj(t), zj(t), t), where xj(t) = (xj(t), zj(t)) is the position of point vortex j at time t.
In particular, using the discretized fluid velocity formula (5) and replacing the problematic
kernel K with the mollified kernel Kε, we have

u(xj, t) =
N∑
`=1

Γ`Kε(xj,x`) +∇φ.

In this section, we consider the partial velocity of vortex j,

(ẋj, żj) =
N∑
`=1

Γ`Kε(xj,x`),

dropping the bulk/surface potential gradient ∇φ. In particular, we seek to express the
partial velocity components ẋj and żj in terms of dimensionless quantities, which allows us
to characterize vortex behavior irrespective of length and time scales.

We introduce the rescaled variables

x̃ =
x

L
, z̃ =

z

H
, t̃ =

√
gH

L
t,

as well as the nondimensional parameters

Γ̃j =
Γj
Γ
, ε̃ =

ε

L
, µ =

d

H
, γ =

H

L
, F =

Γ

µL
√
gH

.

Under this choice of dimensionless quantities, the non-dimensionalized horizontal component
of velocity is

dx̃

dt̃
=
dx̃

dx

dx

dt

dt

dt̃
=

1√
gH

dx

dt
.

Then rescaling ẋj by 1/
√
gH yields

1√
gH

ẋj(t) =
1√
gH

N∑
`=1

Γ`[K̃
1
ε (xj − x`, zj − z`)− K̃1

ε (xj − x`, zj + z`)], (19)

where K̃1
ε denotes the first component of K̃ε. Similarly, one may compute

dz̃

dt̃
=
L/H√
gH

dz

dt

and rescale żj accordingly to obtain

L/H√
gH

żj(t) =
L/H√
gH

N∑
`=1

Γ`[K̃
2
ε (xj − x`, zj − z`)− K̃2

ε (xj − x`, zj + z`)], (20)

13

3.3.1 Direct Summation Form of K̃ε

We now derive non-dimensional formulas for the partial velocity components in Equations
(19) and (20), using the direct sum form of K̃ε in (10). One may show that the non-
dimensionalized horizontal component (19) becomes

− µγF

2π

N∑
`=1

Γ̃`

∞∑
m=−∞

[
(z̃j − z̃`)(1− e−[(x̃j−x̃`−2m)2+γ2(z̃j−z̃`)2]/ε̃2)

(x̃j − x̃` − 2m)2 + γ2(z̃j − z̃`)2

−(z̃j + z̃`)(1− e−[(x̃j−x̃`−2m)2+γ2(z̃j+z̃`)
2]/ε̃2)

(x̃j − x̃` − 2m)2 + γ2(z̃j + z̃`)2

]
,

where, in the singular cases,
(z̃j−z̃`)(1−e−[(x̃j−x̃`−2m)2+γ2(z̃j−z̃`)

2]/ε̃2)

(x̃j−x̃`−2m)2+γ2(z̃j−z̃`)2
= 0 if (x̃j − x̃` − 2m)2 + γ2(z̃j − z̃`)2 = 0

(z̃j+z̃`)(1−e−[(x̃j−x̃`−2m)2+γ2(z̃j+z̃`)
2]/ε̃2)

(x̃j−x̃`−2m)2+γ2(z̃j+z̃`)2
= 0 if (x̃j − x̃` − 2m)2 + γ2(z̃j + z̃`)

2 = 0.

Likewise, the vertical component (20) becomes

µF

2πγ

N∑
`=1

Γ̃`

∞∑
m=−∞

(x̃j − x̃` − 2m)

[
1− e−[(x̃j−x̃`−2m)2+γ2(z̃j−z̃`)2]/ε̃2

(x̃j − x̃` − 2m)2 + γ2(z̃j − z̃`)2

− 1− e−[(x̃j−x̃`−2m)2+γ2(z̃j+z̃`)
2]/ε̃2

(x̃j − x̃` − 2m)2 + γ2(z̃j + z̃`)2

]
,

with the singular cases dealt with as above.

3.3.2 Fourier Series Expansion of K̃ε

Expanding K1
ε (x, z) = f(x, z) as a Fourier series, and using Formula (17) for the Fourier

coefficients f̂m(z), Equation (19) becomes

µF
N∑
`=1

Γ̃`

∞∑
m=−∞

[
˜̂
fm(z̃j − z̃`)− ˜̂

fm(z̃j + z̃`)
]
eiπm(x̃j−x̃`),

or equivalently,

µF
N∑
`=1

Γ̃`

[
˜̂
f0(z̃j − z̃`)− ˜̂

f0(z̃j + z̃`) + 2
∞∑
m=1

[
˜̂
fm(z̃j − z̃`)− ˜̂

fm(z̃j + z̃`)
]

cos(πm(x̃j − x̃`))

]
,

where

˜̂
fm(z̃) =

1

4

[
eγz̃πm

Ẽ1(z̃)

2
+ e−γz̃πm

Ẽ2(z̃)

2
− e−γz̃π|m|

]
,

14

and where

Ẽ1(z̃) =

{
1− erf

∣∣ ε̃πm
2

+ γz̃
ε̃

∣∣ if z̃ > − ε̃2πm
2γ

1 + erf
∣∣ ε̃πm

2
+ γz̃

ε̃

∣∣ if z̃ ≤ − ε̃2πm
2γ

,

Ẽ2(z̃) =

{
1 + erf

∣∣ ε̃πm
2
− γz̃

ε̃

∣∣ if z̃ < ε̃2πm
2γ

1− erf
∣∣ ε̃πm

2
− γz̃

ε̃

∣∣ if z̃ ≥ ε̃2πm
2γ

.

Similarly, by expanding K2
ε (x, z) = g(x, z) as a Fourier series, using Formula (18) for the

coefficients ĝm(z), Equation (20) becomes

µF

γ

N∑
`=1

Γ̃`

∞∑
m=−∞

[
˜̂gm(z̃j − z̃`)− ˜̂gm(z̃j + z̃`)

]
eiπm(x̃j−x̃`),

or equivalently,

2iµF

γ

N∑
`=1

Γ̃`

∞∑
m=1

[
˜̂gm(z̃j − z̃`)− ˜̂gm(z̃j + z̃`)

]
sin(πm(x̃j − x̃`)),

where

˜̂gm(z̃) =
i

4

[
eγz̃πm

(
1− Ẽ1(z̃)

2
− θ(m)

)
+ e−γz̃πm

(
Ẽ2(z̃)

2
− θ(m)

)]
,

and where Ẽ1 and Ẽ2 are as above.

3.4 Selection of Kernel

After computing and implementing into the existing code both choices for the mollified
kernel, we decide which is preferable for our simulations. Runtime is a consideration, but
precision is more important. We want our mollified kernel to compute accurate simulations
for low values of truncation. Therefore, we compute the difference between kernels, one
truncated at ten terms higher than the other. Figure 2 shows these differences for increasing
limits of truncation, with the blunt sum kernel in red and the Fourier series kernel in blue.

The Fourier series kernel converges very quickly, while the blunt sum kernel exhibits
slow convergence. Therefore, we choose the Fourier series version of the mollified kernel
for our final implementation of the code. The elementary example in figure 3 demonstrates
that the mollified code causes vortices to behave in a more reasonable manner when close
together, by not undergoing the unnaturally fast movement caused by the singularity in K.

15

0 50 100 150 200 250 300 350 400 450 500
-14

-12

-10

-8

-6

-4

-2

0

Figure 2: The x-axis is the limit of truncation of the respective series for selected xj , xl, zj , zl values, with
ε = 0.05. (Plots of other x and z values look very similar)

Figure 3: The initial and final positions of two vortices. The left simulation uses the mollified kernel, while
the right simulation uses the non-mollified kernel. We can see that the mollified kernel slows, or “mollifies”
the motion of the vortices.

16

The increased realism and accuracy of the Fourier series kernel comes at a price, namely
runtime. Despite our efforts to decrease runtime, such as implementing symmetries of the
Fourier coefficients (namely f̂m = f̂−m and ĝm = −ĝ−m), and taking advantage of Matlab’s
efficient calculation of vectorized quantities, the code with the Fourier series kernel takes
significantly longer to run than the method from [10].

As an example, using parameters rows=1, cols=8, K = 128, µ = 0.2, γ =
√

0.2,
F = 0.2, and tf = 15, the non-mollified code had a runtime of 25.6 seconds. The Fourier
series mollified code, with additional parameters ε = .05 and Ntrunc=250, had a runtime of
108.2 seconds.

0 100 200 300 400
-14

-12

-10

-8

-6

-4

-2

0

Figure 4: The x-axis is the limit of truncation of the respective Fourier series. Parameters used were
xj = −0.7, xl = 0.3, zj = 0.4, zl = 0.5.

We also consider which value of ε is preferable to use for our mollifier. We aim to
find a “Goldilocks” value, not too large and not too small. If the value is too small, we
lose accuracy, and since the mollified kernel is very close to the original kernel, the speed
of close-by vortices will still be too high. However, if ε is large, we may “over-mollify” and
move farther from real vortex behavior. Figure 4 shows the same information as 2, but for
different values of ε used in the Fourier version of the kernel. We see that ε = 0.05 appears
to be a good choice, as there is not a major increase in rate of convergence for lower values.

4 Numerical Results

We study the possibility that a patch of vortex points assembled in a specific shape preserves
its structure over time. We begin with a description of the parameters used by our functions

17

in Matlab, and next examine a rectangular sheet of points. These rectangular sheets are
composed of at least two rows of closely-spaced point vortices which stretch in a line several
hundred point vortices long. Recall from section 3.3 that

µ =
d

H

and

γ =
H

L
.

When we take the product of these two parameters, we have µγ, or

µγ =
d

L

which is a measurement for the distance between vortices. Changing one or both of these
parameters then allows us to define what we mean by “closely-spaced.”

We proceed to note that each vortex sheet exhibits the property of curling into itself
on the edges, and we call this property “roll-up.” The level of roll-up along the edges of the
sheet is observed to be consistent with the Kelvin-Helmholtz Instability [13]. Additionally, it
is discovered that ellipses preserve their shapes over a relatively long runtime. Furthermore,
we analyze the mollification effects described in section 3 and compare simulations with
and without mollification, and subsequently show that mollification improves the realism of
vortex behavior by smoothing out the effects the vortices have on each other.

Finally, we create a metric which measures how much each ellipse has deformed relative
to its initial configuration. This is expressed through a series of different tests, which compare
the original shape to a reference frame, utilize the ellipse equation, and track clustering
throughout the vortex patch.

4.1 Initial Conditions

In this section, we consider the initial conditions and the various parameters important
to our experiments. In our rectangular vortex sheets, we use as many as two thousand
point vortices, whereas in our simulations involving elliptical patches, we may use as few as
thirty. In the majority of our simulations, we rely on the use of 128 pseudo-spectral modes,
denoted in our Matlab code as K. In some of our simulations, we test using as low as 32
modes or 64 modes. However, we find that 128 modes provide greater frequency spectrum
accuracy, since K accounts for the discretization of section 2, and thus for the accuracy of
our approximations.

In addition to our parameters µ and γ, we have our Froude number F , which is first
defined as

F =
Γ

µL
√
gH

,

where Γ represents our vortices’ circulation strengths, and where g is our gravity constant by
[10]. We maintain our Froude number at F = 0.2 for our simulations. We fix our time step,

18

denoted by δt computationally and by dt in our Matlab functions, as δt = 1×10−2. With our
usage of the fourth-order Runge-Kutta approximation method, our error from the time step
is an estimated 10−8 [10]. We have ε, a measurement of the amount of mollification present in
the model and which is kept at a value of either .05 or .1 for the purposes of our simulations.
Finally, we have Ntrunc, the number at which the kernel sum is truncated. Our simulations
with mollification maintain Ntrunc at either 100 or 150. Finally, in the descriptions of our
simulations that follow, we have tf as the time value for which the simulation runs, and
each simulation also produces a value called the RK4 stability parameter, which is a balance
between K, the number of modes we choose, and our time step δt.

4.2 Vortex Sheets

Our first experiments concern rectangular sheets of point vortices, which we call vortex
sheets, and which provide evidence of the realism of our simulations. Upon simulating a
long, thin sheet of point vortices, the edges of the sheet exhibit roll-up or a curling along the
edges of the sheet. This roll-up is seen in the Kelvin-Helmholtz Instability, a phenomenon
of fluid sheets where, for example, two fluids with different velocities meet and interact
according to difference in velocity and then change due to differences in air speeds and
pressures [13]. The fact that our sheets exhibit this characteristic is a strong indicator that
our simulations are realistically modeling fluid dynamics. Of further note is the fact that
our vortex sheets curl in on themselves, and tend to deform into an ellipse. This tendency
provides the basis for many of our experiments that regard stable ellipses (see section 4.3)
and a deformation metric for said ellipses (see section 4.4).

19

Figure 5: For this simulation, we had 2000 vortices, K = 128, µ = .1, γ =
√
.2, F = 0.2, and tf = 10. Our

stability parameter is RK4 = .2987, and runtime was 2322.017857 seconds.

The above figure showcases the rectangular sheet of point vortices in its initial state,
before any “roll-up” occurs. Other aspects of the code we changed for this simulation
included z-range = .004, the use of Cartesian coordinates, and turning on the sqr-grid

parameter. We describe z-range as the vertical range or diameter of the vortex formation,
while sqr-grid is characterized by allowing the grid spacings in both the z and x directions
to be the same. These grid spacings are denoted in Matlab as dx and dz.

20

Figure 6: The tenth frame in this animation shows some deformation and roll-up of the vortex sheet shown
previously.

Figure 7: The vortex sheet begins to roll into an “S” configuration.

21

Figure 8: At frame 30 of 55, the vortex patch has effectively rolled up into itself, exhibiting the mixing
property of the Kelvin-Helmholtz Instability [13].

Figure 9: The vortex sheet continues to deform.

22

Figure 10: In the final frame of this animation, we have the vortex sheet evidently deforming into an elliptical
pattern.

4.3 Experiments in Modeling a Stable Structure

We now search for a vortex patch which retains its shape over a period of time. We test shapes
such as square grids, equilateral triangles, and circles, but notice that, as in the case with
the vortex sheet, these have the tendency to deform into an ellipse, and we subsequently
find that ellipses maintain a stable form over a period of time. We first examine these
structures without mollification, and in section 4.5, we study the effects mollification has on
our simulations.

The formation of our ellipses include changing several parameters in the Matlab code.
In particular, we use polar coordinates, and we let p-shape = ‘circle’, where for an array
of x positions, we have xpos(ij) = xpos1+(apos1+(ii-1)*da)*costh, with ij denoting
the ith row and jth column position of the vortices in the x direction. Similarly, we let
zpos(ij) = zpos1+(bpos1+(ii-1)*db)*sinth. In the preceding equations, apos1 repre-
sents the length of the semimajor axis of the ellipse in the x direction, while bpos1 represents
the length of the semiminor axis of the ellipse, which, for our purposes, is in the z direction.
We define apos1 to equal da, a grid spacing equal to the vertical grid spacing dz/2 and we
define bpos1 to equal db, a grid spacing equal to dz/4.

23

Figure 11: For this simulation, we have rows = 1, cols = 30, K = 128, µ = .08, γ =
√
.2, F = .2, and

tf = 30. Our stability parameter is .2987, and runtime was 289.900563 seconds.

Figure 12: At frame 25 of 301, the ellipse still shows a maintenance of its shape, but we see that the lower
half of the ellipse shows some caving in. In section 4.5, we will examine the effects of mollification on this
ellipse.

24

Figure 13: At frame 50 of 301, we notice that the ellipse has begin a deformation away from its original
shape.

Figure 14: By frame 100, we notice that the ellipse has deformed from its original shape.

25

Figure 15: The ellipse begins clustering.

Figure 16: By the final frame, we see that the ellipse has completely deformed.

Since the ellipse deforms over time, an interesting question is how we can model said
deformation in the Matlab code or through equations. Because of how the ellipse deforms,

26

forming an equation for how the ellipse changes over time might be difficult or nearly impos-
sible. Thus, our focus is on modifying the Matlab code to create a a metric for determining
the amount of deformation the elliptical patch exhibits over time.

4.4 Deformation Metric

We studied the evolution of vortex patch shapes over time. One shape of interest became the
ellipse, as many times patches that were not originally elliptic in shape evolved to eventually
become elliptic. As a starting case, we chose to track the shape of an ellipse of vortex points,
both as a hollow ring and a filled in patch.

The first direction in tracking the evolution of the shape of an elliptic vortex ring/patch
was to simply visualize the change in shape of a vortex patch. In order to so, we first took the
boundary of the patch when the program started and then plotted the points as points with
nonzero vorticity. This frame would not move on the vertical axis, but rather the horizontal
axis at a rate equal to the average change in position of the vortex points between time
steps. The following figure gives a visual of what the frame is supposed to look like after a
few time steps.

This method was also used to compare the shape between the system with and without
mollification. Using the frame showed that the point vortices from mollified code followed
closer to the reference frame while the points from the unmollified code did not adhere to
the shape. This behavior is shown in the following figure, where the reader can see that the
vortex points from the code using mollification stayed in an elliptic shape while the code
without mollification ended up in a chaotic pattern.

27

With the reference frame sufficiently complete, the second path we chose to quantita-
tively track the change in shape of an elliptic hollow ring. This method includes plugging in
vortex point positions into into the ellipse equation

(x− x0)2

a2
+

(y − y0)2

b2
= 1.

The center point (x0, z0) was taken from the center of the elliptic frame, as this could
be easily taken from the Matlab program that updates the reference frame positions. This
path posed the goal: to find how close could we get points to equal 1 when plugged into the
ellipse equation. Furthermore, the program would count the number of points that when
plugged into the ellipse equation would give a value within ε of 1. We found that the code for
this metric confirmed the less quantitative results above from the reference frame. Using a
ring with twenty points, we plot together how many points are within ε of 1. Several figures
as well as their respective ε values are given below, note that the plots to the right comes
from the mollified system, while the plots to the left uses the unmollified system.

Figure 17: ε = 0

28

Figure 18: ε = 0.01

Figure 19: ε = 0.05

29

Figure 20: ε = 0.1

From the figures above that when ε ≈ .01, we have that the mollified system stops
satisfying the ellipse equation. Furthermore, we see that even for ε = .1, the unmollified
system doesn’t satisfy the ellipse equation for long.

Although the metric we just described works well, one notices that it does not account
for vortex point clustering. This means that we could hypothetically have a few vortices
clustered around only a few points on the reference frame, thus tricking the program into
thinking that we have an ellipse.

In studying point clustering, we decided to place circular bubbles, or rather δ-balls at
reference points that would move at the same rate as the reference frame. These bubbles
would count the number of points that they contain at each point in time. The following
figure serves as a visual for how the δ-balls would look.

Figure 21: The δ-balls are colored cyan.

We furthermore give plots for a configuration of four δ-balls in B. One can note that

30

when the radius of the balls is larger that each ball does not have its vortex number change.
We also note that as the radius decreases, the number of points in each of the balls fluctuates,
but in a decreasing fashion.

4.5 Comparison between Code with and without Implemented
Mollifiers

Figure 22: Mollified ellipse at frame 25. Compare to 12, and notice that the deformation is less noticeable
with added mollification.

31

Figure 23: At the final frame, while 16 showcases clustering, the mollified ellipse has still held together
remarkably well.

In both simulations, we have 1 row, 30 columns, 128 modes, µ = .08, γ =
√
.2, zpos1 = .25,

Γ = 1, F = .2, and a time-final value of 30. The simulations are set to be ellipses with the
grid spacing da = dz

2
and db = 2da. The stability parameter for both simulations was .2987,

but the elapsed runtime for the mollified simulation was considerably longer than the runtime
for the unmollified simulation. (The elapsed runtime for the mollified code was 758.437221
seconds, and the elapsed runtime for the unmollified code was 289.900563 seconds.) There
is certainly much more deformity in the ellipse without mollification. The mollified ellipse
also seems to rotate on an axis (albeit slowly) while mostly maintaining its shape, while the
unmollified ellipse remains upright throughout the simulation and deforms very quickly.

5 Conclusions and Future Research

Future research could take several directions. The specific parameters of the ellipses could be
varied and examined further, and refining the deformation metric for the ellipse to become
more efficient would be a priority. Additionally, we will continue to fine-tune the mollification
by choosing and testing different, more accurate cutoff functions.

32

A Evaluation of Integrals

Proposition 1. For real coefficients a, b, c with a < 0, we have∫ ∞
−∞

eax
2+bx+c dx =

√
−π
a
ec−b

2/4a. (21)

Proof. Note first that

ax2 + bx+ c = c+ a

(
x2 +

b

a
x

)
= c− b2

4a
+ a

(
x2 +

b

a
x+

b2

4a2

)
= c− b2

4a
+ a

(
x+

b

2a

)2

;

then ∫ ∞
−∞

eax
2+bx+c dx = ec−b

2/4a

∫ ∞
−∞

ea(x+b/2a)2 dx

= ec−b
2/4a

∫ h

−∞
∞eax2 dx

= ec−b
2/4a 1√

−a

∫ ∞
−∞

e−u
2

du

=

√
−π
a
ec−b

2/4a.

In the third line we use the change of variables u =
√
−ax, and in the final line we use the

fact that ∫ ∞
−∞

e−u
2

du =
√
π.

Proposition 2. For real coefficients a, b, c, d with a < 0, we have∫ ∞
−∞

eax
2+bx+c+d|x| dx =

√
−π
a
ec[E1 + E2], (22)

where

E1 =

exp
[
− (b−d)2

4a

] (
1
2
− erf |(d−b)/2

√
−a|

2

)
if d−b

2
√
−a < 0

exp
[
− (b−d)2

4a

] (
1
2

+ erf |(d−b)/2
√
−a|

2

)
if d−b

2
√
−a > 0,

E2 =

exp
[
− (b+d)2

4a

] (
1
2

+ erf |(−d−b)/2
√
−a|

2

)
if −d−b

2
√
−a < 0

exp
[
− (b+d)2

4a

] (
1
2
− erf |(−d−b)/2

√
−a|

2

)
if −d−b

2
√
−a > 0,

33

and where the error function “erf” is defined by

erf(x) =
1√
π

∫ x

−x
e−u

2

du

for x ≥ 0.

Proof. First, write∫ ∞
−∞

eax
2+bx+c+d|x| dx =

∫ 0

−∞
eax

2+(b−d)x+c dx+

∫ ∞
0

eax
2+(b+d)x+c dx.

For the first integral on the right-hand side, we complete the square in the exponent to
obtain∫ 0

−∞
eax

2+(b−d)x+c dx = exp

[
c− (b− d)2

4a

] ∫ 0

−∞
exp

[
a

(
x+

b− d
2a

)2
]
dx

= ec exp

[
−(b− d)2

4a

] ∫ (b−d)/2a

−∞
eax

2

dx

= ec exp

[
−(b− d)2

4a

]
1√
−a

∫ (d−b)/2
√
−a

−∞
e−u

2

du

=

√
−π
a
ec exp

[
−(b− d)2

4a

]{1
2
− erf |(d−b)/2

√
−a|

2
, if d−b

2
√
−a < 0,

1
2

+ erf |(d−b)/2
√
−a|

2
, if d−b

2
√
−a > 0,

where in the third line we use the change of variables u =
√
−ax and in the final line we use

the identity

1√
π

∫ L

−∞
e−u

2

du =

{
1
2
− erf |L|

2
if L < 0

1
2

+ erf |L|
2

if L > 0.

A similar computation for the second integral on the right-hand side then yields the desired
formula.

B Clustering Graphs

We give plots for a configuration of four δ-balls, such that the first delta ball exists at the
very topmost point of the elliptic frame (here we start with 20 vortex points), the second at
the very bottom, the third at the very left point, and fourth at the very right most point.

34

Figure 24: δ = 0.5

35

Figure 25: δ = 0.1

36

Figure 26: δ = 0.05

37

Figure 27: δ = 0.01

C Acknowledgments

We would like to thank Professor Curtis for his direction and contributions to our research
this summer. We would also like to acknowledge Eunji Yoo and Robert Insley for their
support and assistance throughout our research project.

References

[1] P.A. Tyvand. On the interaction between a strong vortex pair and a free surface. Phys.
Fluids A, 2:1624–1634, 1990.

[2] P.A. Tyvand. Motion of a vortex near a free surface. J. Fluid Mech., 225:673–686, 1991.

[3] S. Fish. Vortex dynamics in the presence of free surface waves. Phys. Fluids A, 3:504–
506, 1991.

[4] D.L. Marcus and S.A. Berger. The interaction between a counter-rotating vortex pair
in vertical ascent and a free surface. Phys. Fluids A, 1:1988–2000, 1989.

38

[5] J. G. Telste. Potential flow about two counter-rotating vortices approaching a free
surface. J. Fluid Mech., 201:259–278, 1989.

[6] W.W. Willmarth, G. Tryggvason, A. Hirsa, and D. Yu. Vortex pair generation and
interaction with a free surface. Phys. Fluids A, 1:170–172, 1989.

[7] E.A. Kuznetsov and V.P. Ruban. Cherenkov interaction of vortices with a free surface.
JETP, 88:492–505, 1999.

[8] G.H. Cottet and P.D. Koumoutsakos. Vortex Methods: Theory and Practice. Cambridge
University Press, Cambridge, 2000.

[9] M.J. Ablowitz, A.S. Fokas, and Z.H. Musslimani. On a new non-local formulation of
water waves. J. Fluid Mech., 562:313–343, 2006.

[10] C.W. Curtis and H. Kalisch. Vortex dynamics in nonlinear free surface flows. Phys.
Fluids, 29:032101, 2017.

[11] P.G. Saffman. Vortex Dynamics. Cambridge University Press, Cambridge, 1992.

[12] H. Lamb. Hydrodynamics. Dover, New York, N.Y., 1945.

[13] Pijush K. Kundu, Ira M. Cohen, and David R. Rowling. Fluid Mechanics. Academic
Press, Waltham, MA, 2012.

39

