
Generating Functions of Invariants in Numerical Semigroups

Jeske Glenn
Benjamin Sepanski

July 2017

1 Introduction

Given a Numerical Semigroup N = 〈n1, n2, ..., nk〉, we define the Hilbert Series H(N ; t) to be∑
n∈N

tn

We define the simplicial complex ∆n of each element n ∈ N to be simplicial complex on the
vertices {n1, n2, ..., nk} where the d-dimensional face F of vertices {nr1 , nr2 , ..., nrd} is in ∆n if

and only if n−
d∑
i=1

nri ∈ N . It is known that one expression for the generating function of H(N ; t)

is
K(N ; t)
k∏
i=1

(1− tni)

where

K(N ; t) =
∑
n∈N

(∑
F∈∆n

(−1)|F |

)
tn =

∑
n∈N

χ(∆n)tn

where χ(∆n) is the euler characteristic of the simplicial complex ∆n. We introduce similar
generating functions for other invariants on the semigroup N .

2 Max Length Factorization in Two Generated Numerical
Semigroups

Let S = 〈n1, n2〉, where {n1, n2} is the minimal generating set for S. Now let M(n) denote the
maximum length of the factorizations of n for each n ∈ S. We denote

M(N ; t) =
∑
n∈S

M(n)tn

Theorem 1.

Classification of Generating Function for Two Generators

M(N ; t) =
tn1 + tn2 − 2tn1+n2 − n1t

n1n2 + (n1 − 1)tn1n2+n1 + (n1 − 1)tn1n2+n2 − (n1 − 2)tn1n2+n1+n2

(1− tn1)2(1− tn2)2

(1)

1

Proof. We begin by noting that the right side of the above equation may be factored so that

(1− tn1n2)(tn1 + tn2 − 2tn1+n2)− n1t
n1n2(1− tn1)(1− tn2)

(1− tn1)2(1− tn2)2

=
(1− tn1n2)(tn1 + tn2 − 2tn1+n2)

(1− tn1)2(1− tn2)2
− n1t

n1n2
1

(1− tn1)(1− tn2)

=
(tn1 + tn2 − 2tn1+n2)

(1− tn1)2(1− tn2)2
− tn1n2

(tn1 + tn2 − 2tn1+n2)

(1− tn1)2(1− tn2)2
− n1t

n1n2
1

(1− tn1)(1− tn2)

=
tn1(1− tn2) + tn2(1− tn1)

(1− tn1)2(1− tn2)2
− tn1n2

(tn1 + tn2 − 2tn1+n2)

(1− tn1)2(1− tn2)2
− n1t

n1n2
1

(1− tn1)(1− tn2)
(2)

We now identify each of the three terms in the above equation. Firstly, consider

1

(1− tn1)2(1− tn2)2
=

(
1

1− tn1

)2(
1

1− tn2

)2

=

∑
n≥0

tn·n1

2(∑
n·n2

tn·n2

)2

=

∑
n≥0

(n+ 1)tn·n1

∑
n≥0

(n+ 1)tn·n2


Now we see that

tn1(1− tn2) + tn2(1− tn1)

(1− tn1)2(1− tn2)2
=

(
tn1

(1− tn1)2

)(
1

(1− tn2)

)
+

(
1

(1− tn1)

)(
tn2

(1− tn2)2

)

= tn1

∑
n≥0

tn·n1

2∑
n≥0

tn·n2

+

∑
n≥0

tn·n2

 tn2

∑
n≥0

tn·n2

2

=

∑
n≥1

ntn·n1

∑
n≥0

tn·n2

+

∑
n≥0

tn·n1

∑
n≥1

ntn·n2


=

∑
n≥0

ntn·n1

∑
n≥0

tn·n2

+

∑
n≥0

tn·n1

∑
n≥0

ntn·n2



Note that we may re-index from n ≥ 1 to n ≥ 0 because the n = 0 term is 0. Now, the above
equation is the sum of two products of sums. Consider the left product. For any n ∈ S, any
factorization of n may be written in the form an1 + bn2 for some a and b (This is simply the
n = 2 case of Lemma (1)). Note that, in the left product, the coefficient of tan1 is, in fact, a.
In particular, the coefficient of the tn term in the left product is the sum of each value a over
all factorizations an1 + bn2 of n. Analogously, the coefficient of tn in the right product is the
sum of each value b over all factorizations an1 + bn2 of n. Adding the two products of sums
together, we find that the coefficient of tn for n ∈ S is equal to the sum of the lengths of each
factorization of n in S. We have now characterized the power series generated by the first term
in (2). In addition, the second term in (2) is simply the first term with each exponent shifted up
by n1n2. In particular, the coefficient of tn for n − n1n2 ∈ S is the sum of the lengths of each
factorization of n− n1n2 in S.

2

It remains to characterize the third term in (2). Define zS(n) to be the set of factorizations
of n in S, and to be 0 if n /∈ S. Observe that

1

(1− tn1)

1

(1− tn2)

is the generating function for ∑
n∈S
|zS(n)|tn

It is then merely a matter of distributing tn1n2 into the sum to see that the third term in (2)
generates ∑

n−n1n2∈S
|zS(n− n1n2)|tn

For a given factorization f ∈ zS(n) for some n ∈ S, let lS(f) denote the length of the
factorization. We now have that 2 is equivalent to

∑
n∈S

 ∑
f∈zS(n)

ls(f)

 tn −
∑

n−n1n2∈S

 ∑
f∈zS(n−n1n2)

ls(f)

 tn − n1

∑
n−n1n2∈S

|zS(n− n1n2)|tn (3)

It remains to show that M(N ; t) is equal to (3). For n < n1n2, if n ∈ S then n has exactly one
factorization. Then, tn term appears only in the leftmost sum, whose coefficient is the length of
the only factorization of n. For n ≥ n1n2, one may obtain all factorizations of n by first picking
the factorization with the maximal number of n1’s, and then repeatedly exchanging n2 n1’s for
n1 n2’s by noting that n1n2 is the least common multiple of n1 and n2.
From this process, one may see that the factorization using the most n1’s is the longest factor-
ization. In particular, every other factorization has at least n1 n2’s. Subtracting n1 n2’s from
any of these factorizations results in a unique factorization of n − n1n2, and adding n1n2 to
any factorization of n − n1n2 creates a unique factorization of n. Thus, the summation of the
second and third sums has, as the coefficient for tn, the sum of the lengths of all non-maximal
factorizations of n. Subtracting this from the first results in M(N ; t).

The above proof separates the generating function forM(N ; t) into parts and identifies what
each part counts. In generalizing this result different methods of proof are used, but the basic
components and the general idea of their function remains.

3 Max Length Factorization in Numerical Semigroups

Lemma 1.

Formula for the Sum of the Length of the Factorizations of n

k∑
i=1

(−1)i−1 i
∑

A⊆[k],|A|=i
t

∑
j∈A

nj

(1− tn1)2(1− tn2)2 · · · (1− tnk)2
=

1
k∏

j=1,j 6=i
(1− tnj)

k∑
i=1

tni

(1− tni)2
=
∑
n≥0

 ∑
f∈Zs(n)

|f |

 tn

where [k] = {1, 2, 3, . . . , k} and Zs(n) is the set of factorizations of n in N .

3

Proof. To simplify, we will only look at the numerator momentarily.

k∑
i=1

(−1)i−1 i
∑

A⊆[k],i∈A

t

∑
j∈A

nj

=

k∑
i=1

 ∑
A⊆[k],i∈A

(−1)|A|−1t

∑
j∈A

nj


=

k∑
i=1

tni

 ∑
A⊆[k],i∈A

(−1)|A|−1t

∑
j∈A,j 6=i

nj



We may now rewrite the inner sum as a product by noting that given any subset A of [k]
such that i /∈ A, we may obtain the term in the above inner sum for A ∪ {i} by multiplying
together, for each generator nj , 1 if j /∈ A and (−1) · tnj if j ∈ A. Thus, the above sum is equal
to:

k∑
i=1

tni

k∏
j=1,j 6=i

(1− tnj)

Dividing by the denominator, we find

k∑
i=1

tni

(1− tni)2
· 1

k∏
j=1,j 6=i

(1− tnj)

=

k∑
i=1

(∑
n

ntn·ni

)
k∏

j=1,j 6=i

(∑
tn·nj

)
This is analogous to the sum of the lengths of the factorizations of n. For any n ∈ S, all

factorizations of n are written in the form an1 + bn2 + · · ·+ knk for some a, . . . , k ∈ N. Consider
the inner term:

(∑
n

ntn·ni

) k∏
j=1,j 6=i

(∑
tn·nj

)
where the coefficient of tan1 is a, and for tn the coefficient is the sum of a’s for all possible
factorizations of n. When you sum up this product for every ni we find that the coefficient of tn

is precisely the sum of the length of every factorization of n.

Definition 1. Weighted Euler Characteristic

Given a simplicial complex ∆ on vertices {1, 2, 3, ..., n}, assign to each vertex i a weight ci ∈ Z
so that c1 ≤ c2 ≤ c3 ≤ · · · ≤ cn, relabeling the vertices if necessary. Define

χW (∆) =
∑
F∈∆

(−1)|F |min
i∈F

(ci, cn)

Lemma 2.

4

If ∆ is the simplicial complex generated by the facet {1, 2, 3, ..., n}, then χW (∆) = 0

Proof. Consider the faces of ∆ which contain vertex 1. Each face is uniquely identified by some
subset of the vertices {2, 3, 4, ..., n}, so there are exactly 2n−1 such faces. Since for each subset
A of {2, 3, 4, ..., n}, the set {2, 3, 4, ..., n} \A has the opposite sign, exactly half of these faces are
positive in the above sum, and exactly half are negative. In particular, the part of the above
sum over these faces is 0. More generally, for i in {1, 2, 3, ..., n}, the number of faces containing
the vertex i, but not any vertex in {1, 2, 3, ..., i− 1}, is exactly 2n−i. If i < n, then exactly half
of these faces are positive in the above sum, and exactly half are negative. Thus, the sum over
these faces is 0. If i = n, then there is only one such face, leaving a value of −cn. The only
remaining face, however, is the empty face, which restores the sum to 0.

Our definition for weighted euler characteristic is defined in order to work with the nabla
complex ∆n, the simplicial complex with each vertex being a factorization of n, and a face
between a set of vertices if they have support in common, i.e. all of the factorizations use at
least one of some common generator ni.

Lemma 3.

Given a numerical semigoup N with minimal generating set {n1, n2, ..., nk}, for n ∈ N , let
M(n) denote the maximum factorization length of n. Consider a face F ∈ ∇n. Each vertex in
∇n is associated to some factorization of n. For a vertex v ∈ F , let len(v) denote the length of
its associated factorization. Define

gn(F) = min
v∈F

(len(v),M(n))

Now consider a face f ∈ ∆ where ∆ is the simplicial complex on vertices {1, 2, 3, ..., n} generated
by the facet {1, 2, 3, ..., n}. Define

hn(f) =


M(n−

∑
i∈f
ni) + |f | n−

∑
i∈f
ni ∈ N

0 n−
∑
i∈f
ni /∈ N

Then,

χW (∇n) =
∑
F∈∇n

(−1)|F |gn(F) =
∑
f∈∆

(−1)|f |hn(f) = χM (∆n) (4)

Note that the above equation defines χM .

Proof. Note that the first equality is simply the definition of χW . For some A ⊆ {1, 2, 3, ..., n},
put SA = {F ∈ ∇n| the associated factorization of each vertex v ∈ F uses at least one ni∀i ∈ A}.
Then, SA is a simplicial complex which satisfies the requirements of Lemma (2), where the weight
of each vertex v ∈ SA is len(v). Since the only faces for which min

i∈F
(ci, cn) 6= gn(F) are the empty

face and possibly the vertex with the largest factorization in SA,∑
F∈SAf

(−1)|F |gn(F) = M(n)−max
v∈SA

(len(v))

Now, for each f ∈ ∆, put Af = {i | ni ∈ f}. Note that for any subset of A of {1, 2, 3, ..., n} there

is some unique f ∈ ∆ for which A = Af . If n−
∑
i∈f
ni /∈ N , then hn(f) = 0, and SAf

= ∅. In this

case, ∑
F∈SAf

(−1)|F |gn(F) = M(n)

5

Else, n−
∑
i∈f
ni ∈ N . In this case,

hn(f) = M(n−
∑
i∈f

ni) + |f |

Now, consider SAf
. For each v ∈ SAf

, by definition its associated factorization must use at least
one ni for each i ∈ f . Now, note that

{factorizations of n which use nifor each i ∈ f} = {factorizations of n −
∑
i∈f

niwith an added nifor each i ∈ f}

Thus,

max
v∈SAf

(len(v)) = M(n−
∑
i∈f

ni) + |f | = hn(f)

In particular, for any Af :∑
F∈SAf

(−1)|F |gn(F) = M(n)−max
v∈SA

(len(v)) = M(n)− hn(f)

Since ∇n = ∪
|f |=1

SAf
, and SAf1

∩ SAf2
= Af1∩f2 , one may apply inclusion-exclusion principle in

summing over faces of ∇n:∑
F∈∇n

(−1)|F |gn(F) =
∑
f∈∆

(−1)|f |−1
∑

F∈SAf

(−1)|F |gn(F) =
∑
f∈∆

(−1)|f |−1(M(n)− hn(f))

= −M(n)
∑
f∈∆

(−1)|f | +
∑
f∈∆

(−1)|f |hn(f) =
∑
f∈∆

(−1)|f |hn(f)

Definition 2. χM (∆n) =
∑

F∈∆n

(−1)|F |

(
M(n−

∑
ni∈F

ni) + |F |

)
It is known that, for sufficiently large n, M(n+n1) = M(n)+1. In order to fully characterize

the generating function for M(N ; t), we need the following definition.

Definition 3. Harmonic and Dissonant Semigroups
Given a Numerical Semigroup N with minimal generating set {n1, n2, n3, ..., nk}, we say N is
harmonic if

M(n+ n1) = M(n) + 1 ∀ n ∈ N

If N is not harmonic, we say N is dissonant. If the above relation is satisfied for a particular
element n ∈ N , we say that n has the harmonic property.

This theorem gives three different characterizations for the generating function of M(N ; t).

Theorem 2.

Generating Function for Generic Semigroup

6

(a)

M(N ; t) = zl ·
∑
n∈N

χ(∆n)tn + z ·
∑
n∈N

χM (∆n)tn

where zl =

k∏
j=1

1

(1− tnj)

(
k∑
i=1

tni

(1− tni)

)
and z =

k∏
j=1

1

(1− tnj)

Note that zl is the function from Lemma (1) and z is the generating function for the number
of factorizations of an element.

(b) Let
q(t)

(1− tn1)2
=
∑
n∈N

M(n)tn, then q(t) =
∑
n≥0

[M(n)− 2M(n− n1) +M(n− 2n1)] tn

If n− n1 and n− 2n1 have the harmonic property and are in N , then the coefficient of tn is
0.

(c) Let
r(t)

(1− tn1)(1− t)
=
∑
n∈N

M(n)tn, then r(t) =
∑
n≥0

[M(n)− 2M(n− n1) +M(n− n1 − 1)] tn

If n−n1−1 ∈ N and n−n1 and n−n1−1 have the harmonic property, then the coefficient
of tn is 0.

Proof. (a) We begin by multiplying the right side of the equation by the denominator

k∏
j=1

(1− tnj)
∑
n∈N

M(n)tn

=
∑
n∈N

∑
A⊆[k]

(−1)|A|t

∑
i∈A

ni

M(n)tn where [k] = {1, 2, . . . , k}

let m = n+
∑
i∈A

ni

=
∑
m∈N


∑
A⊆[k],

m−
∑
i∈A

ni∈N

(−1)|A|M(m−
∑
j∈A

nj)

 tn

It is now important to note that

∑
n∈N

∑
A∈∆n

(−1)|A|

(
k∑
i=1

tni

1− tni

)
tn +

∑
n∈N

∑
A∈∆n

(−1)|A||A|tn = 0 (5)

7

Proof.

=

k∏
j=1

(1− tni)
∑
n∈N

∑
A∈∆n

(−1)|A|

(
k∑
i=1

tni

1− tni

)
tn +

k∏
j=1

(1− tni)
∑
n∈N

∑
A∈∆n

(−1)|A||A|tn

=
∑
n∈N

∑
A∈∆n

(−1)|A|

 k∑
i=1

tni

k∏
j=1,j 6=i

(1− tni)

 tn +
∑
n∈N

∑
B⊆[n]

(−1)|B|t

∑
j∈B

nj ∑
A∈∆n

(−1)|A||A|tn

let B ⊆ [n],m = n+
∑
j∈B

nj

=
∑
m∈N

∑
A∈∆m

(−1)|A|
k∑
i=1

∑
B⊆[m],
i∈B,

m−
∑
j∈B

nj∈N

(−1)|B|−1tm +
∑
m∈N

∑
B⊆[m],

m−
∑
i∈B

ni∈N

(−1)|B|
∑
A∈∆m

(−1)|A||A|tm

=
∑
m∈N

∑
A∈∆m

(−1)|A|
∑

B⊆[m],

m−
∑
j∈B

nj∈N

(−1)|B|−1|B|tm +
∑
m∈N

∑
B⊆[m],

m−
∑
i∈B

ni∈N

(−1)|B|
∑
A∈∆m

(−1)|A||A|tm

=
∑
m∈N

∑
A∈∆m

(−1)|A|
∑
B∈∆m

(−1)|B|−1|B|tm +
∑
m∈N

∑
B∈∆m

(−1)|B|
∑
A∈∆m

(−1)|A||A|tm = 0

We will now use this claim by taking our current summation and adding on these two terms
which sum to zero.

=
∑
n∈N

∑
k∈∆n

(−1)|A|

(
k∑
i=1

tni

1− tni

)
tn +

∑
m∈N


∑
A⊆[k],

m−
∑
i∈A

ni∈N

(−1)|A|M(m−
∑
j∈A

nj)

 tn

+
∑
n∈N

∑
A∈∆n

(−1)|A||A|tn

=
∑
n∈N

[(∑
k∈∆n

(−1)|A|

)(∑
i=1

k
tni

(1− tni)

)
+
∑
A∈∆n

(−1)|A|

(
M(n−

∑
ni∈A

) + |A|

)]
tn

=

k∏
j=1

(1− tnj)
∑
n∈N

(χ(∆n)zl + χM (∆n)z) tn

8

(b) Here we extend M(n) to Z by letting M(n) = 0 if n /∈ N

(1− tn1)2
∑
n∈N

M(n)tn = (1− tn1)
∑
n≥0

(M(n)−M(n)tn1) tn

=
∑
n≥0

(M(n)−M(n)tn1) tn −
∑
n≥0

(M(n)−M(n)tn1) tn+n1

=
∑
n≥0

(M(n)−M(n)tn1) tn −
∑
n≥n1

(M(n− n1)−M(n− n1)tn1) tn

=
∑
n≥0

[M(n)−M(n− n1)− (M(n)−M(n− n1)) tn1] tn

=
∑
n≥0

[M(n)−M(n− n1)− (M(n− n1)−M(n− 2n1))] tn

And now we must observe the four possible cases of n’s:

1. n − 2n1 ∈ N → M(n) = M(n − n1) + 1 + b and M(n − n1) = M(n − 2n1) + 1 + d so
[tn]q(t) = b− d

2. n − 2n1 /∈ N but n − n1 ∈ N → M(n) = M(n − n1) + 1 + b and M(n − 2n1) = 0 so
[tn]q(t) = 1 + b−M(n− n1)

3. n− n1 /∈ N →M(n− n1) = M(n− 2n1) = 0 so [tn]q(t) = M(n)

4. n /∈ N →M(n) = 0 so [tn]q(t) = 0

(c) Continuing the extension on M(n) to Z

(1− tn1)(1− t)
∑
n∈N

M(n)tn = (1− t)
∑
n≥0

(
M(n)−M(n)tn−1

)
tn

=
∑
n≥0

(M(n)−M(n)tn1) tn −
∑
n≥0

(M(n)−M(n)tn1) tn+1

=
∑
n≥0

(M(n)−M(n)tn1) tn −
∑
n≥1

(M(n− 1)−M(n− 1)tn1) tn

=
∑
n≥0

(
M(n)−M(n− 1)− (M(n)−M(n− 1)) tn−1

)
tn

=
∑
n≥0

(M(n)−M(n− 1)− (M(n− n1)−M(n− n1 − 1))) tn

A similar argument of multiple cases of n will hold here as well.

1. n− n1 − 1 ∈ N , n− n1 and n− n1 − 1 have the harmonic property:
n−n1− 1 ∈ N →M(n−n1) + 1 = M(n), M(n−n1− 1) + 1 = M(n− 1) so [tn]r(t) = 0

2. The Non-Zero Cases:

i Dissonance on either n− n1 or n− n1 − 1 so that M(n− n1) + 1 6= M(n) or M(n−
n1−1)+1 6= M(n−1) allowing [tn]r(t) to have terms which do not cancel completely.

ii Either n or n− 1 are in the apery set, meaning n− n1 or n− 1− n1 not in N again
leading to lack of cancellation and some M(x) = 0.

iii Either n or n − 1 are not in N which forces n − n1 or n − 1 − n1 to not be in N
respectively, causing some M(x) = 0 and less cancellation.

9

The following lemma allows for some characterization of the numerator in part (a) of the
previous theorem.

Lemma 4.

Let N be a numerical semigroup with minimal generating set {n1, n2, n3, ..., nk}. Suppose
some n ∈ N has the property that for any subset A ⊆ {1, 2, 3, ..., k}, if

m = n−
∑
i∈A

ni ∈ N

then m has the harmonic property, and that for each face F in ∆n such that n1 /∈ F , F ∪{n1} ∈
∆n. Then,

χM (∆n) = 0

Proof. Choose a face F in ∆n. If n1 ∈ F , then by definition of ∆n, F \ {n1} ∈ ∆n. Else, n1 /∈ F ,
and by assumption F ∪ {n1} ∈ ∆n. In particular, we may group the faces of ∆n into pairs in
this manner. For such a pair of faces, let n1 ∈ F1 and let F2 = F1 \ {n1}. Then, note that

|F1| = |F2|+ 1

And that, using the definition of hn(F) from Lemma (3),

hn(F1) = M(n−
∑
ni∈F1

ni)+|F1| = M(n−
∑
ni∈F2

ni−n1)+|F1| = M(n−
∑
ni∈F2

ni)+|F1|−1 = hn(F2)

Since n−
∑

ni∈F1

ni is assumed to have the harmonic property. Thus,

(−1)|F1|hn(F1) = −(−1)|F2|hn(F2)

Since each face in ∆n is a member of exactly one such pair, we see that

χM (∆n) =
∑
f∈∆n

(−1)|f |hn(f) = 0

Corollary 1.

For any Numerical Semigroup N and sufficiently large n ∈ N ,

χM (∆n) = 0

Proof. Suppose {n1, n2, n3, ..., nk} is the minimal generating set for N . It is known that M(n)
is a quasi-linear function in n for n� 0. Choose n such that

n−
k∑
i=1

ni ∈ N

and such that M(m) is quasi-linear for all values m ≥ n −
k∑
i=1

ni. Then, Lemma (4) holds for

n.

10

Corollary 2.

For a harmonic Numerical Semigroup N with minimal generating set {n1, n2, n3, ..., nk}, let
F (N) denote the Frobenius number of N . Let

n = F (N) +

k∑
i=1

ni

Then
χM (∆n) = (−1)|k−1|hn({n2, n3, n4, ..., nk})

In particular, χM (∆n) 6= 0.

Proof. Note that ∆n contains every face except for F1 = {n1, n2, n3, ..., nk}. Since this face, in
the proof of Lemma (4), is paired with F2 = {n2, n3, n4, ..., nk}, the sum over all other faces is
0. This leaves χM = (−1)|F2|hn(F2).

Corollary 3.

For a dissonant harmonic Numerical Semigroup N , define the dissonance point d(N) such
that d(N) does not have the harmonic property, but for n ∈ N , n > d(N) implies that n has
the harmonic property. Then, if {n1, n2, n3, ..., nk} is the minimal generating set of N , and

m = d(N) +

k∑
i=1

ni

Then
χM (∆m) 6= 0

Proof. Sincem is defined so thatm−
k∑
i=1

ni ∈ N , ∆m has every face on the vertices {n1, n2, n3, ..., nk}.

Moreover, for every face F except for F1 = {n1, n2, n3, ..., nk}, m −
∑
ni∈F

ni has the harmonic

property. Put F2 = F1 \ {n1}. As in the above proof, the sum to calculate χM over all faces
other than F1 and F2 of ∆m gives 0. Thus,

χM (∆m) = (−1)|F1|hn(F1) + (−1)|F2|hn(F2) = (−1)|F1|(hn(F1)− hn(F2))

= (−1)|F1|(M(d(N)) + |F1| −M(d(N) + n1)− |F2|)
= (−1)|F1|(M(d(N)) + 1−M(d(N) + n1))

6= 0

By the definition of d(N).

Corollary 4.

Given a Numerical Semigroup N = 〈n1, n2, ..., nk〉,

deg
∑
n∈N

χ
M

(∆n)tn = max(F (N), d(N)) +

k∑
i=1

ni

11

Proof. Put m = max(F (N), d(N)) +
k∑
i=1

ni. Note that d(N) ∈ N and F (n) /∈ N by definition,

so d(N) 6= F (N). If d(N) > F (N), then Lemma (4) holds for n > m, so for χ
M

(∆n) = 0 for

n > m. In addition, we know m 6= 0 by Corollary (3), so the degree of
∑
n∈N

χ
M

(∆n)tn must be m.

Now suppose F (n) > d(N). Lemma (4) still holds for n > m. Since F (n) > d(N), m −
∑
ni∈F

ni

for any F ∈ ∆m is harmonic, so that Corollary (2) holds and χ
M

(∆m) 6= 0.

Note:
The conditions of the second corollary may be loosened slightly to either N is harmonic, or

F (N) > d(N). In addition, if either of these hold, then χM (∆n) = 0 for all n > F (N) +
k∑
i=1

ni.

Note:
Letm(n) denote the minimal factorization length of n ∈ N . It is known thatm(n+nk) = m(n)+1
for n� 0. There are analogous results for each of the above statements in section 2, the proofs
are also analogous.

Lemma 5.

If N is a dissonant numerical semigroup, then there exists some n − n1 ∈ N without the
harmonic property such that the intersection of the supports of the maximal factorization of n
and any factorization of n using at least one n1 is empty.

Proof. If N is a dissonant numerical semigroup, then there exists some n− n1 ∈ N without the
harmonic property. In particular,

M(n) 6= M(n− n1) + 1

This implies that the factorization f0 of n with maximal length does not use any n1’s. Now
consider any factorization f of n that uses at least one n1. If f and f0 have support in common,
then subtract off the intersection of their support to obtain a new n. This new n retains the
property that

M(n) 6= M(n− n1) + 1

Since f0 minus the intersection in support will still be of greater length than any factorization
f which uses an n1 minus the intersection in support (if such a factorization is an appropriate
factorization of the new n. Note that by construction one such f always exists). This is a process
which will, in a finite number of steps, obtain some n such that n− n1 is not harmonic and the
intersection of the supports of the maximal factorization of n and any factorization of n using
at least one n1 is empty.

Corollary 5.

Given a Numerical Semigroup N with minimal generating set 〈n1, n2, n3〉, then N is a disso-
nant semigroup if and only if there exist a, b, c ∈ N so that bn2 has two factorizations: (0, b, 0)
and (a, 0, c), and bn2 − n1 does not have the harmonic property

Proof. If N has any element without the harmonic property, it is dissonant by definition. Now
suppose that N is dissonant. Then, by lemmma (5), there exists some n− n1 ∈ N without the
harmonic property such that the intersection of the supports of the maximal factorization of n

12

and any factorization of n using at least one n1 is empty. Now, if this element exists, it is of the
form n = (a, b, c) such that either

n = bn2 + cn3 = an1

n = cn3 = an1 + bn2

n = bn2 = an1 + cn3

Now, in the first equation it is clear that a ≥ b+ c, and in the second equation that c ≤ a+ b
since n1 < n2 < n3. In particular, since it is known that M(n) is quasi-linear for n > n1n3, the
above factorizations are the only factorizations of n, and a maximal factorization of n uses n1

so n− n1 is harmonic. Thus, the only possible such element n is of the form

bn2 = an1 + cn3

Lemma (5) ensures that there is such an n so that n− n1 is dissonant.

4 Maximal Factorization Length Under Gluings

Given two numerical semigroups S1 = 〈s1,1, s1,2, ..., s1,k1〉 and S2 = 〈s2,1, s2,2, ..., s2,k2〉, choose
b ∈ S2, c ∈ S1 such that (b, c) = 1, and let G = 〈bs1,1, bs1,2, ..., bs1,k1 , cs2,1, cs2,2, ..cs2,k2〉. Let
g1 < g2 < · · · < gk1+k2 = gkG be the ordered minimal generating set of G. Assume that,
without loss of generality, bs1,1 = g1. Let M1(n),M2(n),MG(n) be the maximal factorization
length of n in S1, S2, and G respectively (assuming n is in the respective semigroup). We denote
G = bS1 + cS2. Note that M1(s+ c) > M1(s) for all s ∈ S1 since c ∈ S1.

In general, characterizing χ
M (G) in terms of χ

M (S1) and χ
M (S2) is very difficult. Much of this

arises from the fact that the gluing of two harmonic semigroups may be dissonant. Take, for
example,

G = 〈138, 230, 345, 135, 162〉 = 23 · 〈6, 10, 15〉+ 27 · 〈5, 7〉
Both S1 and S2 are harmonic, while G has dissonant elements

{831, 969, 993, 1061, 1131, 1155, 1199, 1223, 1291, 1293, 1317, 1361, 1385, 1429, 1453, 1455, 1479,

1523, 1547, 1591, 1615, 1617, 1685, 1709, 1753, 1777, 1847, 1915, 1939, 2077}

Both S1 and S2 have weighted euler characteristics very similar to the Hilbert Series Numerator,

K(S1; t) = 1− 2t30 + t60 χ
M (S1) = −5t30 + 5t60

K(S2; t) = 1− t30 χ
M (S2) = −5t30

Whereas G’s is quite dissimilar

K(G; t) = 1− t621 − 2t690 − t810 + 2t1311 + t1380 + t1431 + 2t1500 − t2001 − 2t2121 − t2190 + t2811

χ
M (G) −−3t621 − 5t690 − 5t810 − t966 − 2t1242 − t1290 + 12t1311 + 5t1380 + 8t1431 + 15t1500

+ t1566 + 2t1587 + t1635 + t1656 + 2t1776 − t1911 + 2t1932 + t1980 − 9t2001 + t2052 − 23t2121

− 10t2190 − t2256 − 2t2277 − t2325 − t2397 − 2t2466 + t2601 − t2742 + 15t2811

One may often expect two harmonic semigroups to produce a dissonant one if some of their
small generators wind up very close together in the gluing.

Definition 4. Given G = bS1 + cS2, consider n ∈ G. We may write n as a decomposition into
bn′+ cn′′ with n′ ∈ S1, n′′ ∈ S2. Let n1 be the maximal such n′, and n2 be its corresponding n′′.
We say that G is a harmonic gluing if, for all n ∈ G, M1(n1) +M2(n2) = MG(n).

13

Lemma 6.

Given G = bS1 + cS2 a harmonic gluing, let bn1 + cn2 be the decomposition of n ∈ G with
maximal factorization length. Then g2 = (g + b)2.

Proof.

n ≡ n+ b mod b

⇒ bn1 + cn2 ≡ b(n+ b)1 + c(n+ b)2 mod b

⇒ cn2 ≡ c(n+ b)2 mod b

Since (b, c) = 1, c−1 mod b exists, and

n2 ≡ (n+ b)2 mod b

⇒ n2 = (n+ b)2 + kb for some k ∈ Z

Suppose k > 0. Then,

n = bn1 + cn2

= bn1 + c ((n+ b)2 + kb)

= b (n1 + kc) + c(n+ b)2

Since n1 + kc ∈ S1 and (n + b)2 ∈ S2, this is a valid decomposition of n, contradicting the
maximality of n1.
Now suppose k < 0. Then write n2 + k′b = (n+ b)2 with k′ = −k > 0. Then,

n+ b = b(n+ b)1 + c(n+ b)2

= b(n+ b)1 + c (n2 + k′b)

= b ((n+ b)1 + k′c) + cn2

Since (n + b)1 + k′c ∈ S1 and n2 ∈ S2, this is a valid decomposition of n + b, contradicting the
maximality of (n+ b)1.

Corollary 6.

Suppose G = bS1 + cS2 is a harmonic gluing. Then, ∑
n∈Ap(S2;b)

M2(n)(tc)n

 ∑
m∈S1

(tb)m +
∑

n∈Ap(S2;b)

(tc)n

(∑
m∈S1

M1(m)(tb)m

)
=
∑
g∈G

MG(g)tg (6)

This is equal to ∑
n∈Ap(S2;b)

M2(n)(tc)n

H(S1; tb) + (1− tbc)H(S2; tc) ·
(
zl1(tb)K(S1; tb) + z1(tb)χ

M (1)(t
b)
)

Proof. Consider a ∈ Ap(G; b). We must have a1 = 0, so a = ca2, and a2 ∈ Ap(S2; b). Suppose
n ∈ G such that n ≡ a mod b. Then n = bn1 + cn2 = bn1 + ca = bn1 + ca2. In particular,

MG(n) = M1(n1) +M2(a2)

14

Now consider the coefficient of tn in the left-hand side of equation (6). In the left-hand product of
sums, its coefficient must be M2(a2) since n is uniquely obtained as an exponent by bn1 + cn2 =
bn1 +ca2. In the right-hand product of sums, n is uniquely obtained in the same manner, and so
has a coefficient of M1(n1). In particular, its total coefficient is the sum of these two coefficients,
and so is M1(n1) +M2(a2) = MG(n).
As to the second equation,

H(S1; tb) =
∑
m∈S1

(tb)m

by definition, and it is known that ∑
n∈Ap(S2;b)

(tc)n

1− (tc)b
= H(S2; tc)

The substitution of
zl1(tb)K(S1; tb) + z1(tb)χ(t

b)

for ∑
m∈S1

M1(m)(tb)m

comes from Theorem (2).

Lemma 7.

Suppose G = bS1 + cS2, and that G and S1 are harmonic. Then G is a harmonic gluing.

Proof. Consider a ∈ Ap(S1; s1,1). Suppose ba − bs1,1 = bn1 + cn2 for some n1 ∈ S1, n2 ∈ S2.
Then

b(a− s1,1 − n1) = cn2

Since a−s1,1 /∈ S1, and n1 ∈ S1, a−s1,1−n1 /∈ S1. Since c ∈ S1, c does not divide (a−s1,1−n1).
Since (b, c) = 1, c does not divide b. Thus, ck 6= b(a−s1,1−n1) for all k ∈ Z and ba ∈ Ap(G; g1).
In addition, each such ba has exactly one decomposition. Note then that ba + ck for some
0 ≤ k ≤ b− 1 must then also be in Ap(G; g1) and have exactly one decomposition. We proceed
by induction.

Suppose that the statement holds for n < m for some m ∈ G not in Ap(G; g1). Consider
m−g1. Since G is harmonic, MG(m−g1) = MG(m)−1, so if (m−g1) = b(m−g1)1 +c(m−g1)2

with (m − g1)1 maximal in factorization length, then (m − g1)1 + s1,1 is the n1 with maximal
factorization length (note that S1 is harmonic) in a decomposition bn1 + cn2 of n. By the
inductive hypothesis and since G is harmonic and bs1,1 = g1, this must give rise to the maximal
factorization length of n. In addition, if there exists some n′1 > n1, then n = bn1 + ck for some
k ∈ S2 with k ≥ b. In particular, n−g1 = bn1+ck−g1 = b(n−g1)1+ck = b((n−g1)1+c)+c(k−b)
which contradicts the definition of (n− g1)1.

5 General Invariants

Theorem 3.

Consider some mapping f : R → R such that f(n) = 0 ∀n /∈ N where N = 〈n1, n2, . . . , nk〉.
Let [k] = {1, 2, 3, . . . , k} Define χ̂

f
(∆n) =

∑
F∈n

(−1)|F |f(n−
∑
j∈F

nj)

15

Then,
∑

f(n)tn =

∑
χ̂

f
(∆n)tn

k∏
i=1

(1− tni)

Proof.

k∏
i=1

(1− tni)

∑
n≥0

f(n)tn


=
∑
n≥0

(
k∏
i=1

(1− tni)

)
f(n)tn =

∑
m≥0

∑
A⊆[k]

(−1)|A|f(n−
∑
j∈A

nj)

 tn

=
∑
m≥0


∑
A⊆[k]

n−
∑
j∈A

nj∈N

(−1)|A|f(n−
∑
j∈A

nj)

 tn =
∑
m≥0

 ∑
F∈∆M

(−1)|F |f(n−
∑
j∈A

nj)

 tn

=
∑
m≥0

χ̂
f
(∆n)tn

Corollary 7.

Define χ
f
(∆n) =

∑
F∈∆n

(−1)|F |(f(n−
∑
j∈F

nj) + |F |)

∑
f(n)tn = zl

∑
n≥0

χ(∆n)tn + z
∑
n≥0

χ
f
(∆n)tn

Proof. We will now refer back to equation (5) and the definitions of zl and z from Theorem (2)

∑
f(n)tn =

∑
n∈N

∑
F∈∆n

(−1)|F |
(

k∑
i=1

tni

1−tni

)
tn

k∏
i=1

(1− tni)

+

∑
F∈∆n

(−1)|F |f(n−
∑
j∈F

nj)

k∏
i=1

(1− tni)

+

∑
n∈N

∑
F∈∆n

(−1)|F ||F |tn

k∏
i=1

(1− tni)

=
1

k∏
i=1

(1− tni)

(
k∑
i=1

tni

1− tni

)∑
n∈N

∑
F∈∆n

(−1)|F |tn +
1

k∏
i=1

(1− tni)

∑
n∈N

∑
F∈∆n

(−1)|F |(f(n−
∑
j∈F

nj) + |F |)

 tn

= zl
∑
n≥0

χ(∆n)tn + z
∑
n≥0

χ
f
(∆n)tn

Lemma 8.

If 〈n1, n2, ..., nk〉 is the minimal generating set for some numerical semigroup N , and if f
satisfies the conditions of Theorem (3), then if for n� 0

f(n+ nj) = f(n) + d

for some d ∈ R and some 1 ≤ j ≤ k, then χ̂
f
(∆n) = 0 for sufficiently large n

16

Proof. Choose n large enough that ∆n contains every face on k vertices, and so that f(m+ni) =

f(m) + d for m ≥ n−
k∑
i=0

ni. Then,

χ̂
f
(∆n) =

∑
F∈∆n

(−1)|F |f(n−
∑
ni∈F

ni)

=
∑
F∈∆n
nj∈F

(−1)|F |f(n−
∑
nj∈F

ni) +
∑
F∈∆n

nj /∈F

(−1)|F |f(n−
∑
ni∈F

ni)

=
∑
F∈∆n
nj∈F

(−1)|F |(f(n−
∑
ni∈F
i 6=j

ni) + d) +
∑
F∈∆n

nj /∈F

(−1)|F |f(n−
∑
ni∈F

ni)

=
∑
F∈∆n

nj /∈F

(−1)|F |+1(f(n−
∑
ni∈F

ni) + d) +
∑
F∈∆n

nj /∈F

(−1)|F |f(n−
∑
ni∈F

ni)

= d
∑
F∈∆n

nj /∈F

(−1)|F |

Now, note that the above sum is the euler characteristic of a simplicial complex with every face
on the vertices {n2, n3, ..., nk}. In particular,∑

F∈∆n

nj /∈F

(−1)|F | = 0

Corollary 8.

If f(n+ p) = f(n) + d for some p ∈ N , d ∈ Z, then

(1− tp)
∑
n∈N

χ̂
f
(∆n)tn

is finite

Proof. We may define a simplicial complex ∆n (p) on the non-minimal generating set {n1, n2, n3, ..., nk, p}.
Then,

∑
n∈N

χ̂
f
(∆n (p))t

n is finite. Moreover,

χ̂
f
(∆n (p)) = χ̂

f
(∆n)− χ̂

f
(∆n−p)

So
∑
n∈N

χ̂
f
(∆n (p))t

n = (1− tp)
∑
n∈N

χ̂
f
(∆n)tn

Note that this proof implies that treating p as a generator will give an expression in terms
of H and χM using zl and z.

Lemma 9.

Suppose f(n) satisfies the requirements for Theorem (3) for a numerical semigroup N with
minimal generating set 〈n1, n2, ..., nk〉, and that

f(n+ p) = f(n) +

m∑
i=0

λini

17

for some p,m, λ0, λ1, ..., λm ∈ R. i.e. f is quasi-polynomial of degree m. Then,

(1− tp)m+1
∑
n≥0

χ̂
f
(∆n)tn

(1− tp)m+1
k∏
i=1

(1− tni)

is a finite, rational generating function for f(n).

Proof. It is known that quasi-polynomial sequences of degree m and period p have a generating
function of the form

q(t)

(1− tp)m+1

For some finite polynomial q(t). Theorem (3) gives us

∑
f(n)tn =

∑
χ̂

f
(∆n)tn

k∏
i=1

(1− ti)
=

q(t)

(1− tp)m+1

So that

(1− tp)m+1
∑
χ̂

f
(∆n)tn

(1− tp)m+1
k∏
i=1

(1− ti)
=

q(t)
k∏
i=1

(1− ti)

(1− tp)m+1
k∏
i=1

(1− ti)

Thus, (1− tp)m+1
∑
χ̂

f
(∆n)tn is finite.

Lemma 10.

Suppose f(n) satisfies the requirements for Theorem (3) for a numerical semigroup N and f
is eventually quasi-linear of period p = ni for some i. Then,

(a) Let
q(t)

(1− tp)2
=
∑
n∈N

f(n)tn, then

q(t) =

p−1∑
i=0

(f(n)− f(n)tp) tn −
∑
n≥p

(−f(n) + 2f(n− p)− f(n− 2p)tp) tn

(b) Let
r(t)

(1− tp)(1− t)
=
∑
n∈N

f(n)tn, then

r(t) = f(0)− f(0)tp −
∑
n≥1

(−f(n) + f(n− p) + f(n− 1)− f(n− p− 1)) tn

18

Proof. (a)

(1− tp)2
∑
n∈N

f(n)tn = (1− tp)
∑
n≥0

(f(n)− f(n)tp) tn

=
∑
n≥0

(f(n)− f(n)tp) tn −
∑
n≥0

(f(n)− f(n)tp) tn+p

=
∑
n≥0

(f(n)− f(n)tp) tn −
∑
n≥p

(f(n− p)− f(n− p)tp) tn

=

p−1∑
n=0

(f(n)− f(n)tp) tn −
∑
n≥p

(−f(n) + f(n)tp + f(n− p)− f(n− p)tp) tn

=

p−1∑
n=0

(f(n)− f(n)tp) tn −
∑
n≥p

(−f(n) + f(n− p) + f(n− p)− f(n− 2p)tp) tn

(b)

(1− t)(1− tp)
∑
n∈N

f(n)tn = (1− t)
∑
n≥0

(f(n)− f(n)tp) tn

=
∑
n≥0

(f(n)− f(n)tp) tn −
∑
n≥0

(f(n)− f(n)tp) tn+1

=
∑
n≥0

(f(n)− f(n)tp) tn −
∑
n≥1

(f(n− 1)− f(n− 1)tp) tn

= f(0)− f(0)tp −
∑
n≥1

(−f(n) + f(n)tp + f(n− 1)− f(n− 1)tp) tn

= f(0)− f(0)tp −
∑
n≥1

(−f(n) + f(n− p) + f(n− 1)− f(n− p− 1)) tn

5.1 General Comments on χ
f

Lemma 11. χ̂
f

and χ
f

are Equivalent for Large n

If N = 〈n1, n2, ..., nk〉 with k > 1, then for n� 0, χ̂
f
(∆n) = χ

f
(∆n)

Proof.

χ
f
(∆n)− χ̂

f
(∆n) =

∑
F∈∆n

(−1)|F ||F |

For n� 0, this is equal to

∑
A⊆[k]

(−1)|A||A| =
k∑
i=0

(
k

i

)
i(−1)i

Now, given x

(1 + x)k =

k∑
i=0

(
k

i

)
xi

19

With k > 1, we may differentiate and put x = −1 so that

0 = (1− 1)k =

k∑
i=0

(
k

i

)
i(−1)i

Definition 5.

Put
χ(0)

f
= f

Then, given χ(i)
f

, put χ(i+1)
f

= χ
χ
(i)
f

Theorem 4.

Given a function f which satisfies the conditions of Theorem (3) and some m ≥ 0,

∑
f(n)tn =

∑
χ̂

f

(m)
(∆n)tn

k∏
i=1

(1− tni)m

Proof. The result follows from m applications of Theorem (3)

Lemma 12.

Given m ≥ 1, m! divides χ(m)
f

for n� 0.

Proof. Note that

χ(m)
f

=
∑

Fm∈∆n

(−1)|Fm|
∑

Fm−1∈∆n

(−1)|Fm−1|...
∑

F1∈∆n

(−1)|F1|f(n− cF1
)

=
∑

F1,F2,F3,...,Fm∈∆n

(−1)

m∑
i=1
|Fi|

f(n−
k∑
i=1

cFi
)

In particular, each term in the above sum appears exactly m! times.

Notation:
Given n, we may write χ

f
(n) for χ

f
(∆n).

Lemma 13.

Suppose f is a function which satisfies the requirements of Theorem (3) for some Numerical
Semigroup N = 〈n1, n2, ..., nk〉 with k > 1, and that for n� 0, f is a quasi-polynomial of degree
m and period p such that p is some nj . Then, for sufficiently large n, χ

f
is a polynomial in n,

and degχ
f
≤ degf − k.

Proof. We begin by re-labeling n1, n2, n3, ..., nk so that p = n1. Put Ni = 〈n1, n2, ..., ni〉, and
write χf (i) for χf (Ni)

χf (1)(n) = f(n)− f(n− n1) = f(n)− f(n− p)

Now, since f is a quasi-polynomial of period p for sufficiently large n,

deg(f(n)− f(n− p)) ≤ degf(n)− 1

20

Moreover,

f(n)− f(n− p) = f(n)−

(
f(n)−

m−1∑
i=0

λin
i

)
=

m−1∑
i=0

λin
i

For some constants λ1, λ2, ..., λm−1. In particular, χf (1) is a polynomial for n � 0. Now,
suppose that for some i < k, χf (i) is a polynomial of degree less than or equal to degf − i for
n� 0. Note that

χf (i+1) = χf (i)(n)− χf (i)(n− ni+1)

In particular, χf (i)(n) − χf (i)(n − ni+1) is clearly still a polynomial, and of degree less than
χf (i) for n� 0. The proof follows by induction.

6 Other Quasi-Linear Invariants

6.1 Introduction

It is known that Maximum Factorization Length, Minimum Factorization Length, and size of the
Length set are all eventually quasi-linear with a period that is a multiple of one of the generators.
This section identifies a few other invariants to which the results of the previous section may be
applied

6.2 More Quasi-Linear Invariants

Definition 6. Given n in some Numerical Semigroup N , let η(n) denote the set of factorizations
of n in N with maximal length

Lemma 14.

For n� 0, |η(n)| is periodic and its period divides n1.

Proof. There exists m1 such that n ≥ m implies M(n+ n1) = M(n) + 1. Let

m = max

(
m1, n1

k∑
i=2

ni

)

Now, for n ∈ N , let z(n) denote the set of factorizations of n. Given a factorization F =
(a1, a2, ..., ak), denote (a1, a2, ..., ai−1, ai + 1, ai+1, ..., ak) by F + ni. Consider n ≥ m, and
F ∈ z(n). The M(n + n1) = M(n) + 1 implies that if F ∈ η(n) then F + n1 ∈ η(n + n1), and
that if F /∈ η(n) that F + n1 /∈ η(n+ n1). The only factorizations G ∈ z(n+ n1) that may not
be written as F + n1 for some F ∈ z(n) are ones of the form G = (0, b2, b3, ..., bk). However,

n ≥ n1

k∑
i=2

ni, so bi ≥ n1 for some 2 ≤ i ≤ k. Thus, Ĝ = (ni, b2, b3, ..., bi−1, bi − n1, bi+1, ..., bk) is

also a factorization of n+n1, and the length of Ĝ is strictly greater than that of G. In particular,
G /∈ η(n). Thus, for n� 0, |η(n)| = |η(n+ n1)|.

Lemma 15.

Let N = 〈n1, n2, n3〉. Let

a =
n3 − n2

gcd(n3 − n2, n2 − n1)

c =
n2 − n1

gcd(n3 − n2, n2 − n1)

b = a+ c

21

Then,

|η(n)| < 1 + min

(
1

b

n1

gcd(n1, n2)
,

1

c

n1

gcd(n1, n3)
,

1

c

n2

gcd(n2, n3)

)
In addition, for some semigroups, this bound is tight.

Proof. Define a trade to be a set of two factorizations of the same element with an empty
intersection of support. Suppose T = {(a1, a2, a3), (b1, b2, b3)} such that both factorizations have
the same length and are non-zero. Since n1 < n2 < n3, we must have T = {(0, a2, 0), (b1, 0, b3)}
with a2, b1, b3 6= 0. Now, we have

a2 = b1 + b3

a2n2 = b1n1 + b3n3

So that

b1n2 + b3n2 = b1n1 + b3n3

b1(n2 − n1) = b3(n3 − n2)

Now, we want (b1, b3, a2) = 1, else the length preserving trade may be created by iterating a
smaller trade. Now, since a2 = b1 +b3, if any two have a common divisor, the other also has that
divisor. In particular, we are looking for solutions b1, b3, a2 that are pairwise relatively prime.
Thus, b1 must divide n3 − n2 and b3 must divide n2 − n1. Note that, given any solution for
b1, b3, a|b1 and c|b3. Since a and c are also solutions to the b1 and b3 respectively, we see that

any length preserving trade T̂ may be recreating as iterations of T = {(0, b, 0), (a, 0, c)}.
Now consider any F = (a1, a2, a3) ∈ η(n). If there are any other factorizations of in η(n), we

may obtain them by performing the trade T iteratively on F . In particular,

η(n) = {(a1 + ka, a2 − kb, a3 + kc) | k ∈ Z, a1 + ka, a2 − kb, a3 + kc ≥ 0}

If F is chosen from η(n) so that a2 is maximal, then we may choose k exclusively from Z≥0.
Then, the maximal valid k is equal to |η(n)| − 1. We must have

a2 ≥ kb

and, since the factorization is maximal in length

a2 <
n1

(n1, n2)

Thus,

b(|η(n)| − 1) <
n1

(n1, n2)

Similarly,

a3 + kc <
n1

(n1, n3)
,

n2

(n2, n3)

Since kc ≤ a3 + kc,

c(|η(n)| − 1) <
n1

(n1, n3)
,

n2

(n2, n3)

This bound is tight for N = 〈9, 10, 23〉. b = 14, n1

(n1,n2) = 9, so

|η(n)| < 1 +
9

14
< 2

Since 1 ≤ |η(n)| < 2 and |η(n)| ∈ Z, |η(n)| = 1.

22

Note: This bound is not tight for N = 〈14, 23, 35〉. For n � 0, |η(n)| = 1, but the best
bound given by this Lemma is η(n) < 3.

nb: A family of numerical semigroups which allows for the number of maximal factorizations
to be sufficiently large is N = 〈a, a + 1, a + 2〉 where one chooses a to be a large integer. Note
that the length preserving trade (1, 0, 1|0, 2, 0) must be in this semigroup. Note also that the
maximal factorization of an element in the semigroup with value a− 1 mod a must use at least
a
2 of n2 and n3. In particular, one may apply the above length-preserving trade at least a

2 times,
so as a increases, the maximal |η(n)| also increases.

nb: Another family which restricts the maximal factorization to be unique (|η(n)| = 1 ∀n∈N)
is N = 〈a, 2a+1, 3a+3〉 with n > 3. Note that (n1, n2) = 1, (n3−n2, n2−n1) = (a+2, a+1) = 1,
and that b = 3a+2−a

(n3−n2,n2−n1) = 2a+ 2 > n1

(n1,n2) = n1.

Lemma 16.

Let the Length set L(n) for n ∈ N be the set {`1(n), `2(n), ..., `j(n)} of lengths of factor-
izations of n, where `1(n) > `2(n) > · · · > `j(n). Then, for sufficiently large n, and fixed i,
`i(n+ n1) = `i(n) + 1.

Proof. Since `1(n) = M(n), it is known that the statement holds for i = 1. The proof proceeds
by induction. Since |L(n)| grows eventually quasi-linearly, if N has more than one generator
then there exists m1 such that n > m1 for n ∈ N implies that |L(n)| ≥ i. Suppose that, for
some m2, n > m2 implies that `i−1(n+ n1) = `i−1(n) + 1. Let m = max(m1,m2) and consider
the sequence an = `i−1(n) − `i(n). Clearly, an > 0. In addition, for n ≥ m, since there is
a factorization of length `i(n), adding n1 to that factorization gives a factorization of length
`i(n) + 1 for n + n1. In addition, since n ≥ m, `i−1(n + 1) = `i−1(n) + 1 ≥ `i(n) + 1, we must
have that `i(n+n1) ≥ `i(n)+1. Thus, an+n1

= `i−1(n+n1)−`i(n+n1) ≤ `i−1(n)−`i(n) = an,
and {an} is a monotonically decreasing sequence of integers which is bounded below, so must
be eventually constant. In particular, for n� 0, `i−1(n)− `i(n) = k for some k ∈ Z, and so we
must have `i(n+ n1) = `i(n) + 1.

Lemma 17.

Suppose that, for some n ∈ N , |L(n)| ≥ i for i ∈ N. Let ηi(n) be the set of factorizations of
n with length `i(n). For n� 0, |ηi(n)| is periodic, and its period divides p.

Proof. There exists m1 such that n ≥ m1 implies `i(n+ n1) = M(n) + 1. Let

m = max

(
m1, i · n1

k∑
i=2

ni

)

Now, for n ∈ N , let z(n) denote the set of factorizations of n. Given a factorization F =
(a1, a2, ..., ak), denote (a1, a2, ..., ai−1, ai + 1, ai+1, ..., ak) by F + ni. Consider n ≥ m, and
F ∈ z(n). The `i(n + n1) = `i(n) + 1 implies that if F ∈ ηi(n) then F + n1 ∈ ηi(n + n1), and
that if F /∈ ηi(n) that F + n1 /∈ ηi(n + n1). The only factorizations G ∈ z(n + n1) that may
not be written as F + n1 for some F ∈ z(n) are ones of the form G = (0, b2, b3, ..., bk). However,

n ≥ i ·n1

k∑
i=2

ni, so bi ≥ n1 for some 2 ≤ i ≤ k. Thus, G(1) = (ni, b2, b3, ..., bi−1, bi−n1, bi+1, ..., bk)

is also a factorization of n+n1, and the length of G(1) is strictly greater than that of G. Having
formed the factorization G(j) such that j < i, and the length of G(j) is strictly greater than that
of G(j−1) in such a way that for some ij , nij ≥ n1, form G(j+1) by G(j) + (nij)n1− (n1)nij . This

23

is possible for j < i by the pigeonhole principle, since n ≥ i · n1

k∑
i=2

ni. In particular, G /∈ ηi(n)

since there are i G(j)s that are factorizations of n and strictly increasing length. Thus, for n� 0,
|ηi(n)| = |ηi(n+ n1)|.

Lemma 18.

Given a factorization F = (a1, a2, ..., ak), define |F |∞ to be max
1≤i≤k

(ai). Then, for n ∈ N , let

|n|∞ = max
F∈z(n)

(|F |∞). For n� 0, |n|∞ is periodic, and its period divides n1.

Proof. Let Fi(n) be some factorization of n such that it has the maximal number of ni’s out of all
factorizations of n. In particular, |n|∞ = max

1≤i≤k
(|Fi(n)|∞). Now, for each ni, and given r mod ni,

consider the set of elements n ∈ N such that n ≡ r mod ni. There exists a least element Fr since
this set is bounded below, and so for sufficiently large n, |Fi(n+ni)|∞ = |Fi(n)|∞+ 1, since one
may obtain Fi by Fr+kn1 for some k ∈ N. In addition, for large enough n, |F1(n)|∞ > |Fi(n)|∞
for 2 ≤ i ≤ k, since |F1|∞ grows more quickly.

Note:
There is strong evidence to the fact that in a Numerical Semigroup N , the Median Factorization
length of an element n, which we will denote as ζ(n), is not eventually quasi-linear, but most
likely very close to eventually quasi-linear.
If there are 2n factorizations ordered by length, we define the lower and upper medians to be the
n and n + 1 lengths in the list, the median to be their mean. If there are 2n+1 factorizations
ordered by length, we define the median, upper median, and lower median to be the n+1 length
in the list.
On 〈3, 4, 5〉, we tested a large range of periods and found rather strange periods to hold. For
instance, every 483 increasing the median by 125 had only 45 non-harmonic points on the set of
medians from n = 0 to n = 20, 000− 483.
In addition, we tested periods ranging from 2 to 1000, and to each assigned the value d such
that ζ(n+ d)− ζ(n) was a constant for the maximal number of values in the range n = 0 to n =
20, 000−period. Across all of these periods, the values [1755, 2238, 2721, 4568, 5449, 8660, 11388]
were non-harmonic in every period.
Even considering lower and upper medians, similarly strange periods occur.

Note: There is relatively convincing evidence that the mode factorization length is eventually
quasi-linear. On 3-generated semigroups, a period dividing (n3−n1)n2 sufficed in every example,
and on any number of generators an arithmetic progression produced small periods that were
clearly eventually quasi-linear.

7 Useful Code

load(’/home/sage/NumericalSemigroup.sage’)

S.<t> = PowerSeriesRing(QQ,default_prec=10000)

"""

24

giveNumerator(vals, period)

description: Returns the numerator for the generating function of a power series

whose coefficients are eventually quasi-linear using a denominator

of (1 - t^period)^2

parameters: vals: A list containing all the coefficients of the power series

before they becomes quasi-linear as well as the first period

of quasi-linear values

period: The period of the quasi-linear coefficients

return value: The numerator for the generating function if the denominator is

(1-t^period)^2

"""

def giveNumerator(vals, period):

#The number of coefficients before the coefficients become quasi-linear

A = len(vals) - period

#The numerator to be returned

numerator = 0

#current "denomionator" is (1-t^period)

#Sum the first period of quasi-linear coefficients into the numerator

for i in [A..A+period-1]:

numerator += vals[i]*t^i

#Convert the current "denominator" (1-t) * (1-t^period)

numerator *= (1-t)

#add to the numerator

numerator += t^(period+A)

#Convert the current "denominator" to (1-t^period)^2

g = 0

for j in [0..period-1]:

g += t^j

numerator *= g

#add up the terms before the coefficients become quasi-linear

h = 0

for k in[0.. A-1]:

if k in N:

h += vals[k]*t^k

#convert them to the proper denominator

h *= (1-t^period)^2

#add them to the numerator

numerator += h

return numerator

"""

prepareMaxVals(N)

25

description: Returns a list of the first n_1 * n_k + n_1 maximum factorization

lengths of values in N (or 0 if not in N) ready to be used

by the function giveNumerator

parameters: N: The Numerical Semigroup to compute the maximum factorizations

in

return value: A list of the first n_1 * n_k + n_1 maximum factorization

lengths of values in N (or 0 if not in N)

"""

def prepareMaxVals(N):

#the generators of N

gens = N.gens

#the last element whose maximum factorization must be recorded

lastelem = gens[0] * gens[-1] + gens[0]

#prepare maximum factorizations and store in vals

N.LengthSetsUpToElement(lastelem)

vals = [max(N.LengthSet(i)) if i in N else 0 for i in [0..lastelem]]

return vals

"""

convertNumeratorTwotoThree(generators, f)

description: Returns f converted from a numerator over (1 - t^n_1)^2 to the

equivalent numerator over the product of (1 - t^n_i)^2 over all

generators n_i

parameters: generators: The list of all generators (Including n_1)

f : The numerator over (1 - t^n_1)^2

return value: The equivalent numerator over the product of (1 - t^n_i)^2 over all

generators n_i

"""

def convertNumeratorTwotoThree(generators, f):

numerator = f

for i in [1..len(generators) - 1]:

numerator *= (1 - t^generators[i])^2

return numerator

"""

giveEC(N,n)

description: Returns the Euler Characteristic of the Simplicial Complex generated

by n in N

parameters: N: The Numerical Semigroup to compute the Simlicial Complex in

n: The element of whose Simplicial Complex’s Euler Characteristic

will be computed

return value: The Euler Characteristic of the Simplicial Complex generated

26

by n in N (note EC defined as 1 - (f0 - f1 + f2 - f3 + ...))

"""

def giveEC(N,n):

#list of faces

faceList = []

#prepare factorizations

N.FactorizationsUpToElement(n)

#for each factorization of n, store the maximal face it encodes in facelist

for factor in N.Factorizations(n):

face = []

for i in [0..len(factor) - 1]:

if factor[i] != 0:

face.append(i)

faceList.append(face)

#generate the Simplicial Complex of n from the list of faces

S = SimplicialComplex(faceList)

#return our definition of the euler characterisitic

return 1 - S.euler_characteristic()

"""

giveHil(N)

description: Returns the numerator of the Hilbert Series of N over the

denominator which is the product of (1 - t^n_i) over all

minimal generators n_i of N

parameters: N: The Numerical Semigroup to compute the Hilbert Series in

return value: The Euler Characteristic of the Simplicial Complex generated

by n in N (note EC defined as 1 - (f0 - f1 + f2 - f3 + ...))

"""

def giveHil(N):

numerator = 0

generators = N.gens

N.FactorizationsUpToElement(N.frob)

#compute sum of generators:

sumOfGenerators = 0

for gen in generators:

sumOfGenerators += gen

#from 0 to the last potential non-zero coefficient on the numerator

#(that of N.Frob + the sum of the generators) add each term to the

#numerator

for i in [0.. N.frob + sumOfGenerators] :

if i in N:

numerator += giveEC(N,i) * t^i

return numerator

27

import itertools

"""

giveSumOfFactLen(generators)

description: Returns the numerator of the generating function for the sum of

lengths of factorizations over all factorizations for a numerical

semigroup generated by the given generators assuming the denominator

is the product of (1 - t^n_i)^2 ranging all minimal generators n_i

of N

parameters: generators: The minimal generating set of the numerical semigroup

return value: Returns the numerator of the generating function for the sum of

lengths of factorizations over all factorizations for the given

numerical semigroup

"""

def giveSumOfFactLen(generators):

numerator = 0

#sum over all subsets A of {1,2,...,k} where k is the number of generators

#(-1)^(|A| - 1) * |A| * t ^ (sum of generators whose indices are in A)

for i in [1..len(generators)]:

for subset in itertools.combinations([0..len(generators) - 1], i):

exp = 0

for k in subset:

exp += generators[k]

numerator += (-1)^(i - 1) * i * t^exp

return numerator

"""

factorByCorrectionTermsToString(N)

description: Returns the numerator of the generating function of the

maximum length factorization in the semigroup N (assuming

denominator of the product of (1 - t^n_i)^2 for each minimal

generator n_i of N) factored by correction terms, i.e.

in the form zl - \sum t^n*(k * zl + c * z) for some finite n

parameters: N: The Numerical Semigroup to compute the factorization in

return value: The numerator of the generating function of the maximum length

factorization in the semigroup N factored by correction terms

AS A STRING

"""

def factorByCorrectionTermsToString(N):

#minimal generators of N

generators = N.gens

vals = prepareMaxVals(N)

#period of N

period = generators[0]

#Numerator of generating function of max factorization lengths of N

answer = giveNumerator(vals, period)

answer = convertNumeratorTwotoThree(generators, answer)

28

#The numerator of the generating function for the sum of factorization

#lengths over all factorizations

zl = giveSumOfFactLen(generators)

#the numerator of the generating function for the hilbert series

K = giveHil(N)

#The numerator of the generating function for the number of factorizations

z = 1

for i in generators:

z *= (1-t^i)

#the current guess as to the best numerator

guess = zl

#a string of the current guess broken up into correction terms

guessStr = "zl"

#For each exponent exp in K = \sum a_n * t^n, compute the correction term

sgn(a_n) * t^exp * (abs(a_n) * zl + sigmaCk * z) and add the correction

to guess

for exp in K.exponents():

if exp > 0:

coeff = K.padded_list()[exp]

sign = coeff / abs(coeff)

if sign == 1:

guessStr += " + "

else:

guessStr += " - "

guessStr += "t^" + str(exp) + "*(" + str(abs(coeff)) + "*zl + "

if exp in guess.exponents():

sigmaCk = sign * (answer.padded_list()[exp] - guess.padded_list()[exp])

else:

sigmaCk = sign * answer.padded_list()[exp]

guessStr += str(sigmaCk) + "*z)"

guess += sign * t^exp*((abs(coeff)) * zl + sigmaCk * z)

#Now go back through exponents in the answer and guess, calculating similar

#correction terms wherever needed (ie the exponent for t^n in the guess

is wrong)

#(each correction term written t^n * (k * zl + c * z))

#This is done by noting that z has a non-zero constant term and zl has a

#zero constant term, so calculate the coefficient for z based on t^n

#and calculate the coefficient for zl based on t^(n + n_1)

exp = 0

while exp < max([max(answer.exponents()), max(guess.exponents())]) and \

exp < generators[0] * generators[-1]:

#coefficient of t^n in answer

answerCoeff = 0

if exp in answer.exponents():

answerCoeff = answer.padded_list()[exp]

29

#coefficient of t^(n + n_1) in answer

nextAnswerCoeff = 0

if exp + generators[0] in answer.exponents():

nextAnswerCoeff = answer.padded_list()[exp + generators[0]]

#coefficient of t^n in guess

guessCoeff = 0

if exp in guess.exponents():

guessCoeff = guess.padded_list()[exp]

#coefficient of t^(n + n_1) in guess

nextGuessCoeff = 0

if exp + generators[0] in guess.exponents():

nextGuessCoeff = guess.padded_list()[exp + generators[0]]

if answerCoeff != guessCoeff:

c = answerCoeff - guessCoeff

k = nextAnswerCoeff - nextGuessCoeff + c

guess += t^exp*(k * zl + c * z)

#if k is negative factor out the negative for the string

if(k >= 0):

guessStr += " + t^" + str(exp) + "(" + str(k) + "*zl + " + str(c) + "*z)"

else:

guessStr += " - t^" + str(exp) + "(" + str(-k) + "*zl + " + str(-c) + "*z)"

#increment exp

exp += 1

return guessStr

"""

Prepares a list of the multiplicity of the maximum factorizations for each element in

the semigroup N up until the lastelem where the index of the list is the element and

the value in the list is the multiplicity of that element

"""

def prepareMultiplicityOfMaxVals(N, lastelem):

#the generators of N

gens = N.gens

#the last element whose maximum factorization must be recorded

vals =[]

#prepare maximum factorizations and store in vals

N.FactorizationsUpToElement(lastelem)

for n in [0..lastelem]:

if n in N:

facts=[]

for fact in N.Factorizations(n):

sum = 0

for i in fact:

30

sum +=i

facts.append(sum)

facts = sorted(facts)

maxx = facts[-1]

multiplicity = 0

for length in facts:

if length == maxx:

multiplicity += 1

vals.append(multiplicity)

else:

vals.append(0)

return vals

"""

factorByCorrectionTerms(N)

description: Returns the numerator of the generating function of the

maximum length factorization in the semigroup N (assuming

denominator of the product of (1 - t^n_i)^2 for each minimal

generator n_i of N) factored by correction terms, i.e.

in the form zl - \sum t^n*(k * zl + c * z) for some finite n

parameters: N: The Numerical Semigroup to compute the factorization in

return value: The numerator of the generating function of the maximum length

factorization in the semigroup N factored by correction terms

AS THE VALUE OF THE NUMERATOR

"""

def factorByCorrectionTerms(N):

#minimal generators of N

generators = N.gens

vals = prepareMaxVals(N)

#period of N

period = generators[0]

#Numerator of generating function of max factorization lengths of N

answer = giveNumerator(vals, period)

answer = convertNumeratorTwotoThree(generators, answer)

#The numerator of the generating function for the sum of factorization

#lengths over all factorizations

zl = giveSumOfFactLen(generators)

#the numerator of the generating function for the hilbert series

K = giveHil(N)

#The numerator of the generating function for the number of factorizations

z = 1

for i in generators:

z *= (1-t^i)

#the current guess as to the best numerator

guess = zl

#For each exponent exp in K = \sum a_n * t^n, compute the correction term

sgn(a_n) * t^exp * (abs(a_n) * zl + sigmaCk * z) and add the correction

31

to guess

for exp in K.exponents():

if exp > 0:

coeff = K.padded_list()[exp]

sign = coeff / abs(coeff)

if exp in guess.exponents():

sigmaCk = sign * (answer.padded_list()[exp] - guess.padded_list()[exp])

else:

sigmaCk = sign * answer.padded_list()[exp]

guess += sign * t^exp*((abs(coeff)) * zl + sigmaCk * z)

#Now go back through exponents in the answer and guess, calculating similar

#correction terms wherever needed (ie the exponent for t^n in the guess

is wrong)

#(each correction term written t^n * (k * zl + c * z))

#This is done by noting that z has a non-zero constant term and zl has a

#zero constant term, so calculate the coefficient for z based on t^n

#and calculate the coefficient for zl based on t^(n + n_1)

exp = 0

while exp < max([max(answer.exponents()), max(guess.exponents())]) and \

exp < generators[0] * generators[-1]:

#coefficient of t^n in answer

answerCoeff = 0

if exp in answer.exponents():

answerCoeff = answer.padded_list()[exp]

#coefficient of t^(n + n_1) in answer

nextAnswerCoeff = 0

if exp + generators[0] in answer.exponents():

nextAnswerCoeff = answer.padded_list()[exp + generators[0]]

#coefficient of t^n in guess

guessCoeff = 0

if exp in guess.exponents():

guessCoeff = guess.padded_list()[exp]

#coefficient of t^(n + n_1) in guess

nextGuessCoeff = 0

if exp + generators[0] in guess.exponents():

nextGuessCoeff = guess.padded_list()[exp + generators[0]]

#if error term, add correction term

if answerCoeff != guessCoeff:

if exp == 90:

print "answerCoeff = ", answerCoeff

print "guessCoeff = ", guessCoeff

print "nextAnswerCoeff = ", nextAnswerCoeff

print "nextGuessCoeff = ",nextGuessCoeff

c = answerCoeff - guessCoeff

k = nextAnswerCoeff - nextGuessCoeff + c

32

guess += t^exp*(k * zl + c * z)

#increment exp

exp += 1

return guess

"""

isGreatSemigroup(N)

description: Returns true if for the given Numerical Semigroup, the maximal

length factorization is quasi-linear for all values of n in N, not

just eventually

parameters: N: The Numerical Semigroup to check for

return value: Returns true if for the given Numerical Semigroup,

M(n + n_1) = M(n) + 1 for ALL n in N

"""

def isHarmonicSemigroup(N):

isHarmonic = True

#it suffices to check the first n_1 * n_k elements

generators = N.gens

n_1 = generators[0]

n_k = generators[-1]

N.LengthSetsUpToElement(n_1 * n_k)

for i in [0..n_1 * n_k]:

if i in N and i - n_1 in N:

if max(N.LengthSet(i)) != max(N.LengthSet(i - n_1)) + 1:

isHarmonic = False

return isHarmonic

"""

Calculates the polynomial of the numerator for max factorization length using the zl,z form

"""

def calcNumerator(N):

generators = N.gens

zl = giveSumOfFactLen(generators)

z = 1

for gen in generators:

z *= (1 - t^gen)

#store maximum length factorizations for numbers 0 to n_1 * n_k + n_1, 0 if not in N

maxLengths = calcMaxLenFact(N)

numerator = 0

N.FactorizationsUpToElement(generators[0] * generators[-1])

for n in [0..generators[0] * generators[-1]]:

33

if n not in N:

continue

weightedEulerChar = maxLengths[n]

#for each face, if m = n minus the sum of generators whose vertices is in the face is in N,

#then add (-1)^(dim(face) + 1) * (maxFact(m) + dim) to the euler characteristic

for dim in [0..len(generators) - 1]:

sign = (-1) ^ (dim + 1)

for subset in itertools.combinations([0..len(generators) - 1], dim + 1):

sumOfGenerators = 0

for elem in subset:

sumOfGenerators += generators[elem]

if n - sumOfGenerators in N:

weightedEulerChar += sign * (maxLengths[n - sumOfGenerators] + dim + 1)

numerator += t^n * (giveEC(N,n) * zl + weightedEulerChar * z)

return numerator

"""

Prints the numerator for max factorization length in string form so it prints

as zl*(____) + z*(____)

"""

def calcNumeratorToString(N):

generators = N.gens

N.LengthSetsUpToElement(generators[0] * generators[-1])

zl = giveSumOfFactLen(generators)

z = 1

for gen in generators:

z *= (1 - t^gen)

K = giveHil(N)

#store maximum length factorizations for numbers 0 to n_1 * n_k, 0 if not in N

maxLengths = []

for i in [0..generators[0] * generators[-1]]:

if i in N:

maxLengths.append(max(N.LengthSet(i)))

else:

maxLengths.append(0)

numeratorStr = ""

for n in [0..generators[0] * generators[-1]]:

if n not in N:

continue

weightedEulerChar = max(N.LengthSet(n))

#for each face, if m = n minus the sum of generators whose vertices

#is in the face is in N,

34

#then add (-1)^(dim(face) + 1) * (maxFact(m) + dim) to the euler characteristic

for dim in [0..len(generators) - 1]:

sign = (-1) ^ (dim + 1)

for subset in itertools.combinations([0..len(generators) - 1], dim + 1):

sumOfGenerators = 0

for elem in subset:

sumOfGenerators += generators[elem]

if n - sumOfGenerators in N:

weightedEulerChar += sign * (max(N.LengthSet(n - sumOfGenerators)) + dim + 1)

if n in K.exponents():

zlCoeff = K.padded_list()[n]

else:

zlCoeff = 0

if zlCoeff != 0 or weightedEulerChar != 0:

numeratorStr += "t^" + str(n) + "*(" + str(zlCoeff) + \

"*zl + " + str(weightedEulerChar) + "*z) + "

return numeratorStr

"""

Will return a list of elements, n, in the semigroup N where M(n+n_1) != M(n) + 1

REMINDER this is essentially the element that maps to the dissonant point

"""

def HarmonicSemigroupViolators(N):

violators = []

#it suffices to check the first n_1 * n_k elements

generators = N.gens

n_1 = generators[0]

n_k = generators[-1]

maxFacts = calcMaxLenFact(N)

for i in [0..n_1 * n_k]:

if i in N:

if maxFacts[i] != maxFacts[i+n_1] - 1:

violators.append(i)

return violators

"""

Calculates the weighted euler characteristic on max factorization for elements in a semigroup N

NOTE: this function only works for max factorization

"""

def weightedEC(N,n):

maxLengths = calcMaxLenFact(N)

weightedEulerChar = maxLengths[n]

35

generators= N.gens

#for each face, if m = n minus the sum of generators whose vertices is in the face is in N,

#then add (-1)^(dim(face) + 1) * (maxFact(m) + dim) to the euler characteristic

for dim in [0..len(generators) - 1]:

sign = (-1) ^ (dim + 1)

for subset in itertools.combinations([0..len(generators) - 1], dim + 1):

sumOfGenerators = 0

for elem in subset:

sumOfGenerators += generators[elem]

if n - sumOfGenerators in N:

weightedEulerChar += sign * (maxLengths[n - sumOfGenerators] + dim + 1)

return weightedEulerChar

"""

Returns the chi HAT for an element in the numerical semigroup with the invariant f

This function is called by the chiHatNumerator function and rarely used on its own

"""

def chiHatF(N,f,n):

chiHatF = f(N,n)

gens=N.gens

for dim in [0..len(gens) - 1]:

sign = (-1) ^ (dim + 1)

for subset in itertools.combinations(gens, dim + 1):

sumOfGenerators = sum(subset)

chiHatF += sign * f(N,n-sumOfGenerators)

return chiHatF

"""

Returns the weighted chi for an element in the numerical semigroup with the invariant f

This function is called by chiNumerator function and rarely used on its own

"""

def chiF(N,f,n):

chiF = f(N,n)

gens=N.gens

for dim in [0..len(gens) - 1]:

sign = (-1) ^ (dim + 1)

36

for subset in itertools.combinations(gens, dim + 1):

sumOfGenerators = sum(subset)

if n - sumOfGenerators in N:

chiF += sign * (f(N,n-sumOfGenerators) + dim + 1)

return chiF

"""

Returns the chi HAT numerator on a semigroup N,

with the invariant f, calculated on all elements through the stop

Stop is usually chosen to be large in order to see if the numerator will

eventually zero out, or if it is infinite

"""

def chiHatNumerator(N,f,stop):

num =0

#N.LengthSetsUpToElement(stop)

N.FactorizationsUpToElement(stop)

for i in [0.. stop]:

coef = chiHatF(N,f,i)

num += coef*t^i

return num

"""

Returns the chi numerator on a semigroup N, with the invariant f,

calculated on all elements through the stop

Stop is usually chosen to be large in order to see if the numerator

will eventually zero out, or if it is infinite

"""

def chiNumerator(N,f,stop):

num =0

#N.LengthSetsUpToElement(stop)

N.FactorizationsUpToElement(stop)

for i in [0.. stop]:

coef = chiF(N,f,i)

num += coef*t^i

return num

37

"""

Calculates the minimum infinite norm for the factorizations of n in the semigroup N

"""

def minInfNorm(N,n):

if n not in N:

return 0

norm = max(N.Factorizations(n)[0])

for fact in N.Factorizations(n):

norm = min(norm,max(fact))

return norm

"""

Calculates the chi for an element, n, in the semigroup N on the invariant of

min infinity norm (this is a slightly modified

weighted chi and therefore needs its own function)

"""

def chiMinInf(N,n):

chiF = minInfNorm(N,n)

gens=N.gens

for dim in [0..len(gens) - 1]:

sign = (-1) ^ (dim + 1)

for subset in itertools.combinations([0..len(gens)-1], dim + 1):

validFactorizations = []

for fact in N.Factorizations(n):

validFact = True

for slot in subset:

if fact[slot] == 0:

validFact = False

if validFact:

validFactorizations.append(max(fact))

if len(validFactorizations) > 0:

norm = min(validFactorizations)

chiF += sign * norm

return chiF

"""

Returns the numerator of chi N up until the stop on the invariatn min infinity norm

"""

def chiMinInfNumerator(N,stop):

num =0

N.FactorizationsUpToElement(stop)

38

for i in [0.. stop]:

coef = chiMinInf(N,i)

num += coef*t^i

return num

"""

Calculates the mode of the factorization length of each element in the semigroup N

Returns a list where the index is the element and the value is the mode of that element

"""

def calcModes(N,stop):

modes = []

N.FactorizationsUpToElement(stop)

for i in [0..stop]:

if i not in N:

modes.append(0)

continue

lengths = [0 for j in range(i//gens[0]+gens[0] +1)]

for fact in N.Factorizations(i):

lengths[sum(fact)] += 1

mode = max(lengths)

modes.append(lengths.index(mode)

return modes

7.1 Example

#create Numerical Semigroup on generators

gens = [3,4,5]

N = Numerical Semigroup(gens)

#print whether or not it is harmonic

isGreatSemigroup(N)

#compute \chi_f for the minimum infinity norm

stop = 2000

chiN = chiNumerator(N, minInfNorm, stop)

#compute hilbert series, z, zl, and hilbert series

denom = 1

z = 1

for g in gens:

denom *= (1 - t^g)^2

z /= (1 - t^g)

zl = giveSumOfFactLen(gens)

39

zl /= denom

hilN = giveHil(N)

hilN *= z

#print generating function for min infinity norm

print zl * hilN + z * chiN

40

	Introduction
	Max Length Factorization in Two Generated Numerical Semigroups
	Max Length Factorization in Numerical Semigroups
	Maximal Factorization Length Under Gluings
	General Invariants
	General Comments on f

	Other Quasi-Linear Invariants
	Introduction
	More Quasi-Linear Invariants

	Useful Code
	Example

