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Abstract

Clear, high-resolution images and video are useful in a wide range of applica-
tions, from finding speeding cars to identifying faces or people over a long distance.
Several approaches exist for improving the quality of images. One problem that
exists in the image processing field is the restoration of an image that undergoes
distortion due to turbulence. The goal of this paper is to outline three topics within
the image turbulence mitigation community. We discuss the creation of an open
source dataset, designed to bring better communication among the image process-
ing community. We also demonstrate methods involving deformation flow for static
image restoration and motion detection for a sequence of images with turbulence
present. Assorted methods and experiments are outlined demonstrating results of
the algorithms we use.

A more complete version of this report (with more experiments and illustrations)
is available at http://www-rohan.sdsu.edu/~jegilles/doc/REU2016_Imaging_

Final_Report.pdf.
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Introduction

A second approach to improving image quality is processing the image after it has
been captured by the camera. Image processing can be applied in two steps: remov-
ing blur and correcting geometric distortion.

Taking images over a long distance can exacerbate both blurring and geometric
distortion. Images taken over a long distance also generally show stronger effects
from turbulence, especially when taken somewhere hot, such as in a desert or on a
highway. Under those conditions, the heat waves visible over a hot road in summer
are captured by the camera and distort the image.

In addition to making it more difficult to recognize shapes and objects in dis-
torted images, turbulence can also make it more difficult to recognize moving objects
in videos. In a turbulent video, the entire scene appears to move; it can be extremely
difficult for both human observers and computers to identify real moving objects.

This report will first attempt to address the lack of a common dataset for test-
ing image processing methods. The dataset will allow easy comparison of different
image processing algorithms. It then presents methods attempting to address tur-
bulence in both still images and video sequences. The methods for still images
will focus on image restoration. Optical flows are used to calculate divergence at
each pixel in an image. The intuition that positive divergence suggests a zoomed-in
area while negative divergence indicates a zoomed-out area, provides motivation for
incorporating divergence into image restoration. The first set of methods in this
report incorporates divergence into lucky-imaging restoration techniques, based on
the methods presented in [12] and [1]. The last method presented is based on work
in [7] and in [5], which focuses on super-resolution of images using zoom as a cue.
The method presented here incorporates divergence as an indicator of zoom.

The methods for video sequences focus on motion detection in turbulent se-
quences. Many algorithms exist, with varying degrees of success, that display the
motion of objects across a frame in a sequence. One algorithm, outlined in [6],
works well for non-distorted sequences, but our results show that the algorithm is
less successful when applied to turbulent sequences. Further, decomposing an image
into its structure and texture components allows the separation of bounded varia-
tion from highly oscillatory components. In noisy images, decomposition removes
the noise with the texture. Though methods exist to separate noise from single
images, little work has been done to remove turbulence from entire sequences of im-
ages. We extend a known algorithm, outlined in [2], to incorporate time evolution
of a turbulent sequence and track constant linear motion across a frame.
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Chapter 1

Open Turbulence Image Set

1.1 Introduction to the dataset (OTIS)

Long distance imaging is subject to the impact of the turbulent atmosphere. This
results into geometric distortions and some blur effect in the acquired frames. De-
spite the existence of several turbulence mitigation algorithms in the literature, no
common dataset exists to objectively evaluate their efficiency. In this paper, we
describe a new dataset called OTIS (Open Turbulent Images Set) which contains
several sequences (both static or with a moving target) acquired through the turbu-
lent atmosphere. For many sequences, we provide the corresponding groundtruth in
order to make the comparison easier.

1.1.1 Equipment

All sequences were acquired by a GoPro Hero 4 Black camera modified with a
RibCage Air chassis permitting to adapt several type of lenses. We always used a
25mm, f/2.0 14d HFOV 3MP lens. The camera was setup at a 1080p resolution
and a framerate of 24 frames per second (fps). A small tripod was used to hold the
camera (see Figure 1.1). The camera was controlled by the usual GoPro App on a
Samsung Galaxy tablet.

Figure 1.1: RibCage Air Modified GoPro Hero 4 Black camera with a 25mm f/2.0
14d HFOV 3MP lens on its tripod.

The acquired sequences contain both natural elements from the observed scene

7



Image Processing and Restoration 1.1

Figure 1.2: The two charts serving as our static artificial targets after being printed
on a poster.

Figure 1.3: Remote Controlled car utilized as our moving target for the dynamic
sequences.

as well as artificial “targets”. For the static sequences, we used two charts containing
some geometric patterns at different spatial frequencies and orientations (see Fig-
ure 1.2). These charts were printed on a poster and hold by a homemade wooden
stand. For the dynamic sequences, we used a standard remote controlled car (see
Figure 1.3).

1.1.2 Procedures

All acquisitions were made on hot sunny days in order to guaranty a certain amount
of atmospheric turbulence. Moreover, all equipments were setup on a practice field

8 Chapter 1 Gilles REU Group
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Manual
Downsampling/
Registration

Pristine chart

Temporal average

Input sequence

Groundtruth

Figure 1.4: Groundtruth images creation procedure.

equipped with artificial turf since such material provide higher temperature gradient
leading to higher level of turbulence. The camera stood at about 10cm above the
ground observing the target positioned at several distances.

After all acquisitions are done, the different recorded movies were downloaded
on a Linux computer and split into sequences of PNG image files. The different
region of interest are finally cropped and saved as individual PNG sequences and
stored. Since the Matlab R© software is widely used by the community, we also pro-
vide each sequence as a Matlab 3D matrix (the first two coordinates are the spatial
coordinates while the third one corresponds to time) saved in a .mat file.

Since the purpose of this dataset is to be used for evaluating turbulence mit-
igation algorithms, all sequences containing the two above mentioned charts are
provided with a ground truth image. This groundtruth image contains the pristine
chart after being downsampled and registered to the actual sequence (in practice,
we manually register the pristine chart on a temporal average of the input sequence
using the GIMP 1 software). This procedure is summarized in Figure 1.4.

1.2 Collected data

1.2.1 Static sequences

We can distinguish two types of static sequences, those containing observations of
natural elements in the scene (doors, steps, signs,. . . ) and those made of the two
previous charts. The former ones are then provided with a groundtruth image in
order facilitate future algorithm evaluation.

1https://www.gimp.org/
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Image Processing and Restoration 1.3

1.2.2 Dynamic sequences

Dynamic sequences contain a moving remote controlled car at different distances
and directions. Our goal was to create both sequences where the moving car is still
easy to detect even if it is affected by geometric distortions, as well as sequences
where the car movement magnitude is close to the magnitude of the turbulence
hence making them more challenging to distinguish.

1.2.3 Information about sequences

Within this paper, sequences are utilized from OTIS. These are listed below:

Table 1.1: Summary of the different static scenes

Filename Type Size
(W×H)

# frames Distance
(m)

Turbulence
level

Steps Static 400 × 500 493 100 Moderate
Barchart 1 Static 271 × 150 622 50 Moderate-

Heavy
Barchart 4 Static 366 × 201 486 30 Light-

Moderate
Barchart 4
Box

Static 182 × 201 486 30 Light-
Moderate

Barchart 6 Static 482 × 260 592 15 Light
CarSeq 2A Dynamic 360 × 100 100 40 Moderate

1.3 Continuing work

OTIS’s construction will continue throughout the academic school year for 2016/2017
as the dataset manager and adviser both attend and work at San Diego State Uni-
versity. It is hoped to be published soon in an academic journal and a public Beta
of the functioning dataset. More sequences of varying turbulence and background
will continue to be created, as the weather in August and September is significantly
more conducive to atmospheric turbulence.

10 Chapter 1 Gilles REU Group



Chapter 2

Image Fusion

2.1 Lucky-region fusion (LRF)

2.1.1 Lucky-region fusion method

While a sequence of images are distorted due to atmospheric turbulence the lucky-
region fusion method aims to correctly fuse the sequence into one clear compiled
image. This process is possible since the LRF algorithm [1] assumes that there are
certain regions in the sequence which are of higher quality, “lucky-regions”. After
iterating throughout the whole sequence only the portions with better image quality
are taken and updated to the single fused synthetic image.

2.1.2 LRF algorithm

The vector r is defined as r = (x, y) where (x, y) are the coordinate pixels in our
image matrix.
I(t)(r) = I(r, t) is our original image at the coordinate (x, y) during frame t.

In order to determine what makes a sharper image there is the need to accurately
detect edges. This is done by taking the norm of the gradient of our image, |∇I(r, t)|.
After evaluating, we then scale this term by normalizing it over the entire intensity
of the whole image. This procedure defines our image quality metric, J(r).

J(r) =
|∇I(r, t)|´
I(r)dr

(2.1)

Since there may be some noise after determining the Image Quality Metric the
following step is needed to smooth J . This is done by taking the 2D convolution
of J with a Gaussian Kernel, G(r, a) = exp[−(x2 + y2)/a2]. We define this as the
Image Quality Map (IQM), M(r).

M(r) =

ˆ
J(r′)G(r − r′, a)dr′ (2.2)

The difficult part is choosing the scalar a, which is referred to as the kernel size.
This is done through trial and error. After acquiring the IQM the next step is the
iterative process to obtain our synthetic image of the fused sequence.

I(n+1)
s (r) = [1−∆(n)(r)]I(n)s (r) + ∆(n)(r)I(n)(r) (2.3)

11



Image Processing and Restoration 2.1

I
(n)
s (r) is the current synthetic image at the nth iteration. ∆(r, t) is the normalized

anisotropic gain defined by ∆(r, t) = δ(r, t)/max(r,t)[δ(r, t)] where

δ(n)(r, t) =

{
M(r, tn)−Ms(r, t) for M(r, tn) > Ms(r, t)
0 otherwise

There are a few options as to what we can select for our initial fused image, I
(0)
s .

The temporal average over the entire sequence of images is a typical choice and that
is the method that was used in the experiments. Other options include using the
first frame I(0) or using the image with the best image quality Jimg which is defined
as Jimg =

´
J(r)dr.

Frame 1 J(r)

M(r), a = 2 M(r), a = 4 M(r), a = 8

Figure 2.1: Initial steps for LRF algorithm

In Figure 2.1 we can notice how the different kernel sizes affect the amount of
blur induced on the image. We can then see how that affects the final output image.

a = 1 a = 12

Figure 2.2: LRF fused images with different kernel sizes

If the kernel size is too small then the image does not receive much blur. This
in turn leads to extra artifacts around hard edges when fusing the images together.

12 Chapter 2 Gilles REU Group



2.2 Image Processing and Restoration

If the kernel size is too large then the image loses its sharpness and we are returned
a blurred image. These results can be seen in Figure 2.2.

2.1.3 Implementation

Included are LRF results from various image sequences, all of which are undergoing
varying intensities of turbulence.

Figure 2.3: Topleft: Barchart1 Frame1, Topright: Average, Bottomleft: LRF a = 4

Figure 2.4: Barchart4Box Frame1, Average, LRF a = 4

Immediately after viewing the images one can see how the effect of turbulence
influences the result of LRF. Sequences with minor turbulence are still geometrically
visible, Figure 2.5. Images with high turbulence, Figures 2.3, 2.4, lead to an un-
satisfactory result with the LRF approach. Because the image is shifting too much
there are many edges and figures that do not line up which is why there is still high
distortion in the final synthetic image. In order to improve this method the next
step will be looking at the deformation flows and seeing if we can utilize those in
any manner.

Chapter 2 Gilles REU Group 13



Image Processing and Restoration 2.2

Figure 2.5: Barchart6Circle Frame1, Average, LRF a = 4

2.2 SSIM and MSE

Two metrics to measure the quality of the resulting images are mean-squared error
(MSE) and structural similarity index (SSIM). We used the MSE and SSIM func-
tions in Matlab to compare our images with the ground truths of each image.

The mean-squared error is a simple way to measure the quality of an image in
comparison to a reference image. The MSE compares each pixel of the input image
to the corresponding pixel in the reference image, calculating the difference between
their intensities. The difference is then squared and the average of the squared
intensities yields the mean-squared error.

MSE =
1

n

n∑
i=1

(I− IR)2, (2.4)

where I is the intensity of the input image and IR is the intensity of the reference
image. As the formula suggests, a lower MSE is desired, as it indicates that there
is less difference between the input image and reference image.

As opposed to mean-squared error, the structural similarity index does not just
measure absolute error but looks at the luminance, contrast, and structure of the
image. The luminance measurement of the images is estimated by comparing the
mean intensities of the image signals. Then the mean intensity is removed from
each signal, and the contrast measurement is calculated by comparing the standard
deviation of the resulting signals. Lastly, the signals are normalized, and the struc-
ture measurement is defined by the correlation between the normalized signals. The
formulas for each of these comparisons are found in [3]. Finally, the components are
combined to get the SSIM:

SSIM(I,IR) = [`(I, IR)]α · [c(I, IR)]β · [s(I, IR)]γ (2.5)

where [`(I, IR)] is the luminance comparison, [c(I, IR)] is the contrast comparison,
and [s(I, IR)] is the structure comparison. The parameters α, β, γ adjust the impor-
tance of each measurement. The default for these values is α = β = γ = 1. The
output of the SSIM will be between -1 and 1, with a value of 1 meaning that there
is no difference between the input and reference images.

14 Chapter 2 Gilles REU Group



2.3 Image Processing and Restoration

Although MSE is easier to calculate and has a clear physical meaning, there are
advantages of SSIM that justify using it. One advantage of using SSIM over MSE
is that if the images are not aligned, the MSE may give an inaccurate measurement
of the image quality. Also, MSE does not measure characteristics that are perceived
in the human visual system. SSIM, however, aims to weight different aspects of the
error according to how well they are seen by humans. The primary advantage of the
SSIM is that it takes into account the geometry of the image.

2.3 Deformation flow and stabilization

2.3.1 Deformation flow explained

When working with a sequence of images it is possible that the original location of
a certain pixel may translate from frame to frame. This is always the case when
dealing with sequences involving movement, but also the case when images endure
atmospheric turbulence. If the pixels are not in the same location in the following
frame, In(x, y) 6= In+1(x, y), then we can stabilize our images and find the deforma-
tion flow, φ, by solving

In(x, y) = In+1(x+ εxn , y + εyn),

where φn := (εxn , εyn). We can also determine the deformation flow with
respect to a reference frame, ϕ. The reference frame used is either the temporal me-
dian or temporal average of the sequence. Those two choices are used because they
give a reasonable shape of the how the sequence would appear without turbulence.
Figure 2.6 illustrates the two different flow options.

Figure 2.6: Deformation flow chart

2.3.2 Importance

Once the deformation flows are obtained the sequence can then be stabilized to a
reference image or from frame to frame. There is also more that can be gained from
acquiring the deformation flow. When looking at a vector field we can see that there
are certain regions with an inward flow and an outward flow, for example Figure 2.7.

Chapter 2 Gilles REU Group 15
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Figure 2.7: Deformation flow vector fields

At locations with outward flow we can expect there to be a zooming in effect
while at locations with inward flow we expect there to be a zooming out effect. To
determine the type of zoom that is occurring we can look at the divergence.{

div(x, y) > 0 : zooming in
div(x, y) < 0 : zooming out

2.3.3 Deformation flow methods used

In the context of the work done later we had only used two methods for estimating
the deformation flow. We had used the Lucas-Kanade[14] (LK) method and Demon’s
Algorithm[10]. Both methods perform slightly differently which can be illustrated
by their deformation flows in Figure 2.8. For that reason we will see how that
difference impacts our results. In Figure 2.9 we can see how the LK method and
Demon’s algorithm perform to stabilize the sequence in regards to the temporal
average reference frame.

Figure 2.8: ϕ Deformation flow frame 1, LK method and Demon’s algorithm

2.3.4 Comparing deformation flow methods

We can see that the Demon’s algorithm performs significantly better with respect to
the LK method. In regards of running time the LK method runs drastically quicker.

16 Chapter 2 Gilles REU Group



2.3 Image Processing and Restoration

Figure 2.9: Fr 1: LK stabilized to reference, frame 1, Demon’s stabilized to reference

The LK method was also used in part with the Mao-Gilles method to further stabilize
the sequence which has comparable results to the Demon’s algorithm.

2.3.5 Mao-Gilles method

The final technique used in this report was developed in [13]. The authors model
the observed images as a version of the true image after being blurred and distorted,
with the addition of noise.

fi(x) = Di(H(u(x))) + noise (2.6)

Here, fi(x) is the observed image, u(x) is the true image, H is a blurring kernel, and
Di is an operator that geometrically distorts the image. Geometric distortions are
often modeled using optical flow algorithms. Many methods calculate optical flow
from frame to frame; this method calculates the optical flow between each frame,
fi(x), and a reference image, denoting the optical flow vectors as ϕi. With ϕi fixed,
the deformation vectors can be treated as a linear operator on u(x), and the general
model becomes:

fi = ϕi(u) + noise, ∀i (2.7)

After including a regularization term, denoted J(u), usually nonlocal total variation,
ϕi can be estimated by minimizing the following equation:

min
u

J(u) s.t. fi = ϕi(u) + noise, ∀i (2.8)

The image is then stabilized by applying the inverse flows, ϕ−1, to the input images.
Full details of the implementation can be found in [13]. When using the method
to stabilize images, the optical flows are calculated and the inverse flow vectors
are applied to the distorted frames, resulting in an image that looks more like the
reference image.

2.3.6 Comparing stabilization methods

Both the imregdemons and the Mao-Gilles algorithms can be used to stabilize im-
ages. Both methods can calculate optical flows between a reference image or frame-
to-frame. Both also remove most of the geometric distortions. However, the image
produced by imregdemons is slightly steadier and the imregdemons algorithm is
much faster than the Mao-Gilles algorithm. On the other hand, the output of the

Chapter 2 Gilles REU Group 17



Image Processing and Restoration 2.4

imregdemons algorithm is often noisier than the images produced by the Mao-Gilles
algorithm and the imregdemons algorithm can result in artifacts near the edges of
the frames which are not observed with the Mao-Gilles algorithm. Another issue
for concern is when applying the imregdemons algorithm the stabilized image does
not correctly adjust for shifted pixels along the border which leads to black noise on
the edges. The choice of which stabilization method to use depends on the specific
application; both are shown in most of the following sections.

2.4 Method 1

2.4.1 Notation

u is the restored image, or the estimate of the true image
{fn} is the sequence of input images
{φn} is the optical flow from frame to frame (flow from fn to fn+1)
{ϕn} is the optical flow between a reference frame (usually the temporal mean) and
fn
{Dn} is the divergence for each optical flow (can be calculated using either φ or ϕ)
{Bn} is the binary divergence map (1 if Dn(x) > 0, 0 otherwise)
{Dn,+} is the divergence map for optical flow n, but with Dn(x) < 0 set to 0
K is the total number of frames in the input sequence
· (x) refers to the xth pixel in that image (linear indexing)

2.4.2 Divergence map (frame to frame, φ)

For k ∈ {1, . . . , K}

uk+1 = (1−R) ∗Dk(x)) ∗ uk(x) +R ∗Dk(x) ∗ fk(φ−1(x)) (2.9)

Initialize u0 with the temporal median of the input sequence. The parameter R
controls how much weight is put on the current image uk(x) versus fk(x), the cur-
rent input frame. When R = 1, each new frame completely wipes out the current
uk(x); when R = 0, the input frames have no effect on updating the image, i.e.
uk+1(x) = uk(x). In the gilles1fun function, this was produced using the method
‘div’, with ref ‘NN’, indicating it was calculated without respect to a reference
image. The method was repeated using images stabilized with the Mao-Gilles algo-
rithm and using optical flows calculated using the MATLAB function imregdemons.
The method is demonstrated below using sample images.

Since this method, using the unadjusted divergence, gives results very different
from those of the other methods (the output is usually a gray or white box, depending
on the value of R), it is noted here that the most likely cause is the outliers in the
divergence map. The outliers have large positive or negative values which cause a
few pixels to have a very different intensity than the average; when the image is
scaled to be displayed on a screen, most of the pixels, which are not outliers and
are close to the average, get scaled to a mid-range intensity and most of the image
appears as gray.
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SSIM = 0.1026 SSIM = 0.1489

Figure 2.10: Divergence: R = 0.5 | R = 0.1

0.1595 0.1595

Figure 2.11: Divergence, stabilized with Mao-Gilles: R = 0.5 | R = 0.1

0.0938 0.1491

Figure 2.12: Divergence, φ from imregdemons: R = 0.5 | R = 0.1
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0.1101 0.1145

Figure 2.13: Binary divergence: R = 1 | R = 0.5

0.1234

Figure 2.14: Binary divergence: R = 0.1

2.4.3 Binary divergence map (frame to frame, φ)

For k ∈ {1, . . . , K}

uk+1 = (1−R) ∗Bk(x)) ∗ uk(x) +R ∗Bk(x) ∗ fk(φ−1(x)) (2.10)

Initialize u0 with the temporal median of the input sequence. The parameter R
performs the same function as before. In the gilles1fun function, this was produced
using the method ‘divBinary’, with ref ‘NN’, indicating it was calculated without
respect to a reference image. The method was repeated using images stabilized with
the Mao-Gilles algorithm and using optical flows calculated using the MATLAB
function imregdemons. The method is demonstrated below using sample images.

0.1669 0.1676

Figure 2.15: Binary divergence, stabilized with Mao-Gilles: R = 1 | R = 0.5
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0.1707

Figure 2.16: Binary divergence, stabilized with Mao-Gilles: R = 0.1

0.1038 0.1067

Figure 2.17: Binary divergence, φ from imregdemons: R = 1 | R = 0.5

0.1141

Figure 2.18: Binary divergence, φ from imregdemons: R = 0.1
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0.1440 0.1455

Figure 2.19: Scaled positive divergence: R = 1 | R = 0.5

0.1470

Figure 2.20: Scaled positive divergence: R = 0.1

2.4.4 Scaled positive divergence map (frame to frame, φ)

First, scale {Dn,+} between 0 and 1. Then, for k ∈ {1, . . . , K}

uk+1 = (1−R) ∗Dk,+(x)) ∗ uk(x) +R ∗Dk,+(x) ∗ fk(φ−1(x)) (2.11)

Initialize u0 with the temporal median of the input sequence. The parameter R
performs the same function as before. In the gilles1fun function, this was produced
using the method ‘divScaledpos’, with ref ‘NN’, indicating it was calculated without
respect to a reference image. The method was repeated using images stabilized with
the Mao-Gilles algorithm and using optical flows calculated using the MATLAB
function imregdemons. The method is demonstrated below using sample images.

0.1644 0.1646

Figure 2.21: Scaled positive divergence, stabilized with Mao-Gilles: R = 1 | R = 0.5
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0.1649

Figure 2.22: Scaled positive divergence, stabilized with Mao-Gilles: R = 0.1

0.0992 0.1066

Figure 2.23: Scaled positive divergence, φ from imregdemons: R = 1 | R = 0.5

0.1323

Figure 2.24: Scaled positive divergence, φ from imregdemons: R = 0.1
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0.1118 0.1145

Figure 2.25: Binary divergence, φ−1 applied to D and fk: R = 1 | R = 0.5

0.1219

Figure 2.26: Binary divergence, φ−1 applied to D and fk: R = 0.1

2.4.5 Binary divergence map, φ−1 applied to divergence and
input frames

This method applies φ−1 only to the input frames. Then, for k ∈ {1, . . . , K}

uk+1 = (1−R ∗Bk(φ
−1(x))) ∗ uk(x) +R ∗Bk(φ

−1(x)) ∗ fk(φ−1(x)) (2.12)

Initialize u0 with the temporal median of the input sequence. The parameter R
performs the same function as before. In the gilles1fun function, this was produced
using the method ‘binaryBoth’, with ref ‘NN’, indicating it was calculated without
respect to a reference image. The method was repeated using images stabilized with
the Mao-Gilles algorithm and using optical flows calculated using the MATLAB
function imregdemons. The method is demonstrated below using sample images.

2.4.6 Divergence map (w.r.t. reference image), ϕ

For k ∈ {1, . . . , K}

uk+1 = (1−R) ∗Dk(x)) ∗ uk(x) +R ∗Dk(x) ∗ fk(ϕ−1(x)) (2.13)

Initialize u0 with the temporal median of the input sequence. As before, the pa-
rameter R controls how much weight is put on the current input frame, fk.In the
gilles1fun function, this was produced using the method ‘div’, with ref ‘YY’, indicat-
ing it was calculated with respect to a reference image. The method was repeated
using images stabilized with the Mao-Gilles algorithm and using optical flows cal-
culated using the MATLAB function imregdemons. The method is demonstrated
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0.1544 0.1548

Figure 2.27: Binary divergence, φ−1 applied to D and fk, stabilized with Mao-Gilles:
R = 1 | R = 0.5

0.1579

Figure 2.28: Binary divergence, φ−1 applied to D and fk, stabilized with Mao-Gilles:
R = 0.1

0.0942 0.0950

Figure 2.29: Binary divergence, φ−1 applied to D and fk, φ from imregdemons: R
= 1 | R = 0.5

0.1010

Figure 2.30: Binary divergence, φ−1 applied to D and fk, φ from imregdemons: R
= 0.1
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0.1143 0.1479

Figure 2.31: Divergence (ϕ): R = 0.5 | R = 0.1

0.1559 0.1592

Figure 2.32: Divergence (ϕ), stabilized with Mao-Gilles: R = 0.5 | R = 0.1

below using sample images.

As before, we note here the unusual results the unadjusted divergence produces,
due to outliers in the divergence map. For a full explanation, please see section 2.4.2

2.4.7 Binary divergence map (w.r.t. reference image, ϕ)

For k ∈ {1, . . . , K}

uk+1 = (1−R ∗Bk(x)) ∗ uk(x) +R ∗Bk(x) ∗ fk(ϕ−1(x)) (2.14)

Initialize u0 with the temporal median of the input sequence. The parameter R
performs the same function as before. In the gilles1fun function, this was produced
using the method ‘divBinary’, with ref ‘YY’, indicating it was calculated with re-
spect to a reference image. The method was repeated using images stabilized with

0.0937 0.1491

Figure 2.33: Divergence, ϕ from imregdemons: R = 0.5 | R = 0.1
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0.1402 0.1422

Figure 2.34: Binary divergence (ϕ): R = 1 | R = 0.5

0.1483

Figure 2.35: Binary divergence (ϕ): R = 0.1

the Mao-Gilles algorithm and using optical flows calculated using the MATLAB
function imregdemons. The method is demonstrated below using sample images.

2.4.8 Scaled positive divergence map (w.r.t. reference im-
age, ϕ)

For k ∈ {1, . . . , K}

uk+1 = (1−R ∗Dk,+(x)) ∗ uk(x) +R ∗Dk,+(x) ∗ fk(ϕ−1(x)) (2.15)

Initialize u0 with the temporal median of the input sequence. The parameter R
performs the same function as before. In the gilles1fun function, this was produced
using the method ‘divScaledpos’, with ref ‘YY’, indicating it was calculated with

0.1689 0.1690

Figure 2.36: Binary divergence (ϕ), stabilized with Mao-Gilles: R = 1 | R = 0.5
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0.1698

Figure 2.37: Binary divergence (ϕ), stabilized with Mao-Gilles: R = 0.1

0.1029 0.1055

Figure 2.38: Binary divergence, ϕ from imregdemons: R = 1 | R = 0.5

0.1178

Figure 2.39: Binary divergence, ϕ from imregdemons: R = 0.1
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0.1497 0.1509

Figure 2.40: Scaled positive divergence (ϕ): R = 1 | R = 0.5

0.1524

Figure 2.41: Scaled positive divergence (ϕ): R = 0.1

respect to a reference image. The method was repeated using images stabilized with
the Mao-Gilles algorithm and using optical flows calculated using the MATLAB
function imregdemons. The method is demonstrated below using sample images.

2.4.9 Binary divergence map, ϕ−1 applied to divergence and
input frames

This method applies ϕ−1 only to the input frames. Then, for k ∈ {1, . . . , K}

uk+1 = (1−R ∗Bk(ϕ
−1(x))) ∗ uk(x) +R ∗Bk(ϕ

−1(x)) ∗ fk(ϕ−1(x)) (2.16)

Initialize u0 with the temporal median of the input sequence. The parameter R
performs the same function as before. In the gilles1fun function, this was produced

0.1585 0.1589

Figure 2.42: Scaled positive divergence (ϕ), stabilized with Mao-Gilles: R = 1 | R
= 0.5
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0.1594

Figure 2.43: Scaled positive divergence (ϕ), stabilized with Mao-Gilles: R = 0.1

0.1027 0.1107

Figure 2.44: Scaled positive divergence (ϕ): R = 1 | R = 0.5

0.1389

Figure 2.45: Scaled positive divergence (ϕ): R = 0.1
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0.1403 0.1421

Figure 2.46: Binary divergence, ϕ−1 applied to D and fk: R = 1 | R = 0.5

0.1482

Figure 2.47: Binary divergence, ϕ−1 applied to D and fk: R = 0.1

using the method ‘binaryBoth’, with ref ‘YY’, indicating it was calculated with re-
spect to a reference image. The method was repeated using images stabilized with
the Mao-Gilles algorithm and using optical flows calculated using the MATLAB
function imregdemons. The method is demonstrated below using sample images.

2.4.10 Binary map (w.r.t reference image, ϕ), iterate and
update optical flows

Initialize u0(x) with the temporal median of the input sequence, and use the binary
divergence map to create a fused image according to the following equation (the

0.1559 0.1561

Figure 2.48: Binary divergence, ϕ−1 applied to D and fk, stabilized with Mao-Gilles:
R = 1 | R = 0.5
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0.1569

Figure 2.49: Binary divergence, ϕ−1 applied to D and fk, stabilized with Mao-Gilles:
R = 0.1

0.0945 0.0948

Figure 2.50: Binary divergence, ϕ−1 applied to D and fk, ϕ from imregdemons: R
= 1 | R = 0.5

0.1052

Figure 2.51: Binary divergence, ϕ−1 applied to D and fk, ϕ from imregdemons: R
= 0.1
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0.1401 0.1207

Figure 2.52: Eq 2.17 R = 1; 1 iteration | 25 iterations

0.1482 0.1377

Figure 2.53: Eq 2.17 R = 0.1; 1 iteration | 25 iterations

same method as in 2.4.7):

uk+1 = (1−R ∗Bk(x)) ∗ uk(x) +R ∗Bk(x) ∗ fk(ϕ−1(x)) (2.17)

Then calculate the new optical flows, ϕ, with respect to uk(x) and repeat the it-
eration, using the updated optical flows. As before, the parameter R controls how
much weight is put on the current input frame, fk. Surprisingly, more iterations
seemed to make the image worse, as seen in the SSIM values in section 2.4.13. This
is u7 in the Matlab script gilles1. The method is demonstrated below using sample
images.

2.4.11 Binary divergence map (w.r.t reference image, ϕ),
updating optical flows, and applying ϕ−1 to both the
binary map and to the input frames

Initialize u0(x) with the temporal median of the input sequence, and use the binary
divergence map, with ϕ−1 applied to both the divergence and the input frames, to
create a fused image according to the following equation (the same method as in
2.4.9):

uk+1 = (1−R ∗Bk(ϕ
−1(x))) ∗ uk(x) +R ∗Bk(ϕ

−1(x)) ∗ fk(ϕ−1(x)) (2.18)

Then calculate the new optical flows, ϕ, with respect to uk(x) and repeat the itera-
tion, using the updated optical flows. The parameter R performs the same function
as before. As before, more iterations seemed to make the image worse. This is u8
in the Matlab script gilles1. The method is demonstrated below using sample images.
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0.1402 0.1199

Figure 2.54: Eq 2.18 R = 1; 1 iteration | 25 iterations

0.1481 0.1365

Figure 2.55: Eq 2.18 R = 0.1; 1 iteration | 25 iterations

2.4.12 Flip and scale divergence, and update and iterate
flows (w.r.t. reference image, ϕ)

Create a divergence metric, {Dn,m} that favors divergence near 0 instead of large
divergence. {Dn,m} is described by the following equation:

{Dn,m} = ||Bn| − 1| (2.19)

Then use {Dn,m} instead of the divergence map.
Initialize u0 with the temporal median of the input sequence.
Then, iterate to create uk(x), according to the following formula:

uk+1 = (1−R ∗Bk(ϕ
−1(x))) ∗ uk(x) +R ∗Bk(ϕ

−1(x)) ∗ fk(ϕ−1(x)) (2.20)

For each iteration, calculate the optical flows ϕ with respect to the new reference
image, uk, and recalculate the divergence, {Dn,m}. The parameter R performs the
same function as before. This is u9 in the Matlab script in gilles1. The method is
demonstrated below using sample images.

2.4.13 Results and comparisons

The SSIM values allow quantitative comparisons between the images created by the
methods tested here. The Mao-Gilles algorithm is used to calculate the optical flows
used in creating the divergence maps in all methods except where imregdemons is
specified. By comparing the SSIM values, it is clear that the Mao-Gilles optical flow
vectors are much more effective than imregdemons in these methods. Stabilizing the
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0.1364 0.1241

Figure 2.56: Eq 2.20 R = 1; 1 iteration | 25 iterations

0.1454 0.1378

Figure 2.57: Eq 2.20 R = 0.1; 1 iteration | 25 iterations

sequence before applying the methods also significantly improves the results. Cal-
culating φ−1 and ϕ−1 with respect to a reference image rather than frame to frame
also generally improves the results. Results are also better when a smaller value of
R, such as 0.1 rather than 1, is used. Finally, by comparing the plain divergence, bi-
nary divergence, scaled positive divergence, and applying φ−1 or ϕ−1 to the binary
divergence map and the input frames, we see that the scaled positive divergence
usually gives the best results. We also see that updating the optical flows does not
improve results; the SSIM values decrease as the number of iterations increases.

The SSIM values were all obtained by comparing the output of the method
described with a ground truth image. Note that the SSIM value of the temporal
median of the unstabilized sequence is 0.1532, and the SSIM of the temporal median
of the stabilized sequence is 0.1597. These methods only improve on the temporal
median when applied to the stabilized sequence.

8cm

2.4.14 Adding divergence as weights to lucky-region fusion
IMQ

The same lucky-imaging technique presented above is modified here to incorporate
divergence. The method is reviewed for clarity. First, the image quality map, M(x),
is created:

M(r) =

ˆ
J(r′)G(r − r′)dr′ (2.21)
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Ground truth Temporal median (unstabilized)
SSIM = 1 SSIM = 0.1532

R = 1 R = 0.5 R = 0.1
Divergence (φ) 0.1026 0.1489
Binary Divergence (φ) 0.1101 0.1145 0.1234
Scaled Positive Divergence (φ) 0.1440 0.1455 0.1470
φ−1 to D and fk(x) 0.1118 0.1145 0.1219

Divergence (ϕ) 0.1143 0.1479
Binary Divergence (ϕ) 0.1402 0.1422 0.1483
Scaled Positive Divergence (ϕ) 0.1498 0.1509 0.1524
ϕ−1 to D and fk(x) 0.1403 0.1421 0.1482

Table 2.1: SSIM Values for Unstabilized Sequences

R = 1 R = 0.5 R = 0.1
Divergence (φ) 0.1595 0.1595
Binary Divergence (φ) 0.1549 0.1554 0.1581
Scaled Positive Divergence (φ) 0.1644 0.1646 0.1649
φ−1 to D and fk(x) 0.1544 0.1548 0.1579

Divergence (ϕ) 0.1559 0.1592
Binary Divergence (ϕ) 0.1560 0.1561 0.1569
Scaled Positive Divergence (ϕ) 0.1585 0.1589 0.1594
ϕ−1 to D and fk(x) 0.1559 0.1561 0.1569

Table 2.2: SSIM Values for Stabilized Sequences

R = 1 R = 0.5 R = 0.1
Divergence (φ) 0.0938 0.1491
Binary Divergence (φ) 0.1038 0.1067 0.1141
Scaled Positive Divergence (φ) 0.0992 0.1066 0.1323
φ−1 to D and fk(x) 0.0942 0.0950 0.1010

Divergence (ϕ) 0.0937 0.1491
Binary Divergence (ϕ) 0.1029 0.1055 0.1178
Scaled Positive Divergence (ϕ) 0.1027 0.1107 0.1389
ϕ−1 to D and fk(x) 0.0945 0.0948 0.1052

Table 2.3: SSIM Values for Sequences Using imregdemons
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# of iterations R = 1 R = 0.1
Binary Divergence (ϕ) 1 0.1401 0.1482
Binary Divergence (ϕ) 25 0.1207 0.1377
ϕ−1 to D and fk(x) 1 0.1402 0.1481
ϕ−1 to D and fk(x) 25 0.1199 0.1365

Flipped Divergence (ϕ) 1 0.1364 0.1454
Flipped Divergence (ϕ) 25 0.1241 0.1378

Table 2.4: SSIM Values for Sequences, Iterate and Update Flows

J(r) =
| 5 I(r, t)|´
I(r, t)dr

(2.22)

G(r, a) = exp(−x
2 + y2

a2
) (2.23)

Here, I(r) is the image, and r = (x, y) denotes the current pixel. G(r, a) is a Gaus-
sian blur kernel with kernel size a, and J(r) is the image quality metric, which
detects sharp edges.

Then use the image quality map, M(r) to create the synthetic image, Is(r).

∂Is(r, t)

∂t
= −k∆(r, t)[Is(r, t)− I(r, tn)] (2.24)

∆(r, t) =

{
M(r, tn)−Ms(r, t) for M(r, tn) > Ms(r, t)

0 otherwise
(2.25)

I(n+1)
s = [1−∆n(r)]Ins (r) + ∆n(r)In(r) (2.26)

Eq. 2.24 describes the evolution of the image over time. Eq. 2.25 gives the weight
for each pixel. Eq. 2.26 describes how the fused image is updated according to the
weight on the current image, ∆(x, t).

Divergence is incorporated by adding an extra weight D to ∆(x, t); equation 2.26
is updated to be:

I(n+1)
s = [1−D ∗∆n(x)]Ins (x) +D ∗∆n(x)In(x) (2.27)

We determine D from the divergence. First, we use just the plain divergence map,
where D = div(φ) or D = div(ϕ). Then we use a binary divergence map, where
D = 1 for pixels with positive divergence in the current frame, and D = 0 for pixels
with negative divergence in the current frame. We also use a divergence map with
only the positive divergence, with the values scaled between 0 and 1, which deter-
mines D at each pixel. We also use a divergence metric that favors divergence near
0 and penalizes divergence far from 0 to determine D, by taking the absolute value
of the divergence, scaling it between 0 and 1, subtracting 1, and flipping it by taking
the absolute value a second time. These divergence maps were all calculated using
φ, the optical flow between frames. Finally, we repeat these algorithms, replacing
the optical flows used to calculate divergence with ϕ, the optical flow between each
frame and a reference image. We use two kernel sizes, a = 6 and a = 10. The
method was repeated using images from a sequence stabilized with the MATLAB
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function imregdemons. We also include SSIM values (comparing each image to the
ground truth) for every method. All of this is in the Google Drive in the Matlab
script luckyDivergenceFun.m

By visually comparing the images as well as the SSIM values, it can be seen that
the different divergence maps do not have a significant impact on the quality of the
reconstructed image. The kernel size also has a much smaller impact than in the
original lucky-imaging method. On the other hand, stabilizing the images before
applying the algorithm seems to improve the quality of the reconstructed image.

2.4.15 Results and comparisons

The SSIM values allow us to quantitatively compare the methods shown above. As
in the previous section, the SSIM values were calculated using the ground truth
image shown in the ground truth image in section 2.4.13. The SSIM values between
the ground truth and the temporal median of the unstabilized sequence and the
temporal median of the stabilized sequence are 0.1532 and 0.1597, respectively.

After comparing the SSIM values, it is clear that the images produced by the
methods outlined above produce the temporal average. The SSIM values are all the
same, with no difference depending on the kernel size, and they match the SSIM
values between temporal median and the ground truth. The SSIM values between
the images produced here and the temporal median (unstabilized or stabilized, as
appropriate), are 1. These methods are not very effective; they take longer and
involve a lot of extra calculations to produce the temporal median, which is actually
one of the fastest, easiest ways to stabilize an image, and a method we had hoped
to improve on.

a = 6 a = 10
Divergence (φ) 0.1532 0.1532
Binary Divergence (φ) 0.1532 0.1532
Scaled Positive Divergence (φ) 0.1532 0.1532
Flipped Divergence (φ) 0.1532 0.1532

a = 6 a = 10
Divergence (ϕ) 0.1532 0.1532
Binary Divergence (ϕ) 0.1532 0.1532
Scaled Positive Divergence (ϕ) 0.1532 0.1532
Flipped Divergence (ϕ) 0.1532 0.1532

Table 2.5: Lucky Divergence Applied to Unstabilized Sequence
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a = 6 a = 10
Divergence (φ) 0.1597 0.1597
Binary Divergence (φ) 0.1597 0.1597
Scaled Positive Divergence (φ) 0.1597 0.1597
Flipped Divergence (φ) 0.1597 0.1597

a = 6 a = 10
Divergence (ϕ) 0.1597 0.1597
Binary Divergence (ϕ) 0.1597 0.1597
Scaled Positive Divergence (ϕ) 0.1597 0.1597
Flipped Divergence (ϕ) 0.1597 0.1597

Table 2.6: Lucky Divergence Applied to Sequence Stabilized with Mao-Gilles Algo-
rithm

a = 6 a = 10
Divergence (φ) 0.1532 0.1532
Binary Divergence (φ) 0.1532 0.1532
Scaled Positive Divergence (φ) 0.1532 0.1532
Flipped Divergence (φ) 0.1532 0.1532

a = 6 a = 10
Divergence (ϕ) 0.1532 0.1532
Binary Divergence (ϕ) 0.1532 0.1532
Scaled Positive Divergence (ϕ) 0.1532 0.1532
Flipped Divergence (ϕ) 0.1532 0.1532

Table 2.7: Lucky Divergence Applied to Unstabilized Sequence, with φ and ϕ from
imregdemons

2.5 Method 2

Our second method will stray away from the LRF method and rather focus solely
on the deformation flows to obtain a fused synthetic image. We obtain the synthetic
image by first stabilizing each frame in our sequence to a reference frame. In this
case the reference was the temporal average of the sequence. After each frame has
been shifted the maximum temporal divergence is found for each location. The pixel
located at r = (x, y), with the maximum temporal divergence is then selected to
be the pixel used for the final synthetic image at location r = (x, y). This can be
expressed as

u(r) = f{argmax
n

Dn(ϕ
−1
k (r))}(ϕ

−1
k (r))

Rather than taking the argmax, the argmedian may also be taken. In both cases
only values with positive divergence are considered. The intuition is that those
regions with positive divergence will have some scale of zooming in which could
translate to higher quality images.
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The method was tested on two sequences: one sequence without a ground truth
which shows how the method performs visually, another sequence from OTIS dataset
with a ground truth to see how it performs under the SSIM.

Demons Argmax Demons Argmedian

Demons Argmedian Filtered LK Argmedian Filtered

LK Argmax LK Argmedian

Figure 2.58: Results for method 2

From Figures 2.58, 2.59 we can see that both methods yielded the similar results
for either deformation method. The argmax method led to random artifacts near
edges as well as missing pixels in low texture regions. The barchart sequence has
extra elements in between the bars. These extra artifacts are reduced when using
the argmedian and the image quality improves greatly. With the argmedian there
is still the issue of “grainy” edges. This is apparent on the last two bars from the
right.

After examining Table 2.8 above we can see that the Demons method outper-
formed the LK method. This result was expected after seeing visually how the
deformation flows for the LK method stabilized the sequence. In the case of apply-
ing the median filter the results were dependent on which method was used. When
applying the median filter to the demons algorithm the results had worsened. Al-
though some noise was removed the image was blurred which in turn lowered the
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Demons Argmax Demons Argmedian

LK Argmax LK Argmedian

Figure 2.59: Results for method 2 using Barchart6

Method Demons LK

Average 0.2009 0.2009
Argmax 0.2024 0.1682
Argmax Filtered 0.1995 0.1726
Argmed 0.2085 0.1720
Argmed Filtered 0.2051 0.1783

Table 2.8: SSIM values for method 2

SSIM value. On the other hand, the LK method improved.

2.6 Method 3

2.6.1 Binary map (φ)

The third method we tested uses the equation

u(x) =
N∑
n=1

Bn(φ−1n (x))fn(φ−1n (x)). (2.28)

This method is performed in the GillesMethod3 script. Results were produced using
the original deformed sequence as the input sequence (fn) and was repeated with the
stabilized sequence (using the Mao Gilles Stabilization function and imregdemons
function) as the input sequence.
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Figure 2.60: Barchart1: Unstabilized (left) and stabilized (right)

2.6.2 Divergence map (φ)

Since using the binary divergence map did not give good results, method 3 was
repeated using the divergence map instead,

u(x) =
N∑
n=1

Dn(φ−1n (x))fn(φ−1n (x)). (2.29)

This method is performed in the GillesMethod3 script. Results were produced us-
ing the original deformed sequence as the input sequence (fn) and was also repeated
with the stabilized sequence (using the Mao Gilles Stabilization function and im-
regdemons function) as the input sequence. The results are very good geometrically.

Figure 2.61: Barchart1: Unstabilized (left) and stabilized (right)
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Figure 2.62: Barchart29JUN4box: Frame 15 of original sequence (left) and Method
3 stabilized (right)

Figure 2.63: Steps100m: Frame 15 of original sequence (left) and Method 3 stabilized
(right)

2.6.3 Divergence map (ϕ)

Lastly, we repeated the equation using the optical flows between each frame and a
reference image instead of the optical flows from frame to frame. The equation is as
shown:

u(x) =
N∑
n=1

Dn(ϕ−1n (x))fn(ϕ−1n (x)) (2.30)

This method is performed in the GillesMethod3 script. Results were produced us-
ing the original deformed sequence as the input sequence (fn) and was also repeated
with the stabilized sequence (using the Mao Gilles Stabilization function and im-
regdemons function) as the input sequence. The results are almost identical to the
previous equation when using optical flows from frame to frame.
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Figure 2.64: Barchart1: Unstabilized (left) and stabilized (right)

2.7 Image fusion future work

One topic to explore in the future is to analyze the varying deformation flows. We
used the optical flows from frame to frame (φ) and the optical flows from the frames
to a reference image (ϕ), however, other deformation flows, such as B-Spline, Horn-
Schunck, etc., should be analyzed to verify that the best one is used. Another topic
to pursue is the use of a blur deconvolution method. Our image fusion algorithms
improved the geometry of the images, however the resulting images were still affected
by blur. Combining a blur deconvolution method with the image fusion methods
could significantly improve the quality of the images. Lastly, the image quality
metrics used, mean-squared error and structural similarity index, require ground
truths of each image as references. It would be helpful to have an image quality
metric that did not require having the ground truths, so that the method could be
used and evaluated on any image.

2.8 Using Zoom in Super-Resolution

2.8.1 Chaudhuri and Manjunath algorithm

A possible next step in incorporating divergence into image processing is using it
as an indicator for the amount that an area has been zoomed. Intuition suggests
that areas with a positive divergence may be zoomed in, while areas with negative
divergence are zoomed out.

Previous research has investigated the use of zoom as a cue in super-resolution.
Most super-resolution techniques depend on sub-pixel shifts between low-resolution
frames, so that each frame contains new information. The information from each
frame is then combined to form a single high-resolution frame. Research on motion-
free super-resolution considers the use of cues other than motion, such as zoom, in
super-resolving images.

In [7], the authors present a method for super-resolving images using zoom as a
cue. The method combines several images, ranging from Y1 to YK , where Y1 has the
widest field of view but the lowest resolution and YK has the smallest field of view
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but the greatest resolution. Between each image Yn and Yn+1 there’s a zoom factor
rn, and the total zoom factor between Y1 and YK is r1r2 . . . rk−1. The goal is to con-
struct a super-resolved image Z with the field of view of Y1 and the resolution of YK .

After converting each image Ym of size M1xM2 to a lexicographically ordered
vector of size M1M2x1, we can model each image as a noisy, decimated version of
the super-resolved image YK .

ym = DmRmzαm + nm, m = 1, . . . , K (2.31)

ym is the observed image and zαm is the super-resolved image, with a shift α from
the optical center given by αm, where αm = (αmx , αmy) and zαm = z(x − αmx , y −
αmy). Rm is a cropping operator that crops zαm to the field of view of ym, and
Dm is a decimation operator that reduces the resolution of the cropped zαm to the
resolution of ym.

Given the set of ym, m = 1, . . . , K the high-resolution image z can be modeled
as a Markov Random Field (MRF). The high-resolution image is estimated using
maximum a posteriori (MAP) techniques.

ẑ = arg max
z

P (z|y1, y2, . . . , yk)

It is possible to show that the this can be reformulated as

ẑ = arg max
z

[ k∑
m=1

||ym −DmRmzαm||2

2σ2
+ U(z)

]
(2.32)

where U(z) is a regularization term. The full details are given in [7].

[7] gives several possible regularization terms. The first, the `2-norm, tends to
over-smooth the image. However, using the `2-norm makes the minimization con-
vex, allowing the function to be optimized using gradient descent, which allows a
very fast optimization in most cases. In order to avoid over-smoothing, the authors
suggest an alternative regularization term using line fields. Since this makes the
function non-convex, they suggest simulated annealing in order to minimize. How-
ever, this method was not implemented here, since it’s too slow.

The original method, first presented in [7], requires the zoom factors to be known
integers. The authors expand the method to allow for unknown rational zoom in
[5]. The zoom factor is estimated basically by guess-and-check. The image is suc-
cessively resized by a series of possible zoom factors (using the MATLAB function
imresize), the shift, αm, is determined by block-matching, and calculating the error
between the zoomed-in observation and the corresponding portion of the resized
original image. The factor which produces the lowest error between the two images
is taken as the zoom factor.

2.8.2 Implementing Chaudhuri and Manjunath algorithm

Eq. 2.32 is demonstrated below using an image with known integer zoom factors,
as presented in [7]. The initial estimate was created by resizing the widest field
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of view by 4, the zoom factor between it and the highest resolution image. Then
the center was replaced with the appropriately resized images with greater zoom.
For the final, center zoomed-in piece, no resizing was needed since it is already at
the highest resolution. Note that the center parts of the initial estimate are sharper
than the center of Y1. The gradient descent algorithm was then implemented as in
[9].

Figure 2.65: Original image (ground truth),
256 × 256 pixels

The super-resolved image is sharper near the center, where there is more infor-
mation from the zoomed-in frames. Also note that some of the edges have been
over-smoothed, most likely as a result of using the `2-norm.

2.8.3 Incorporating divergence into Chaudhuri and Manju-
nath algorithm

After implementing the algorithm from [5], the algorithm was altered to allow
the incorporation of divergence. After calculating the divergence, the sections with
divergence above a certain threshold, usually 0.2 for unstabilized images and 0.1
for stabilized images, were smoothed using morphological opening and closing, and
labeled as objects.
For each object, the zoom was estimated as in [5]. All of the objects that were
zoomed by a given factor were then fused into one frame. For example, there might
be a frame zoomed at a factor of 1.2 with 3 sections fused into the resized frame,
and another similar frame containing the fused sections with a zoom factor of 2).
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Decimated by 4 Decimated by 2, cropped Undecimated, cropped
Zoom factor = 0 Zoom factor = 2 Zoom factor = 4

Figure 2.66: Input frames for minimization, all 64 × 64 pixels

Initial Estimate Super-resolved Image

Figure 2.67: 256 × 256 pixels

Those frames are then used as the observations Ym, m = 1, . . . , K, and the following
equation is minimized as before.

ẑ = arg max
z

[ K∑
m=1

||ym −DmRmzαm ||2

2σ2
+ U(z)

]
(2.33)

Again, U(z) is a regularization term. In these examples, the `2-norm was used for
speed of minimization but using another regularization term might better preserve
discontinuities. For the following examples, the parameter σ2, which estimates noise
in the image, was set to 0.8, and λ, the parameter controlling the weight on the
regularization term, was set to 80.

2.8.4 Unstabilized sequence examples

We compared the super-resolved image with a state-of-the-art super-resolution al-
gorithm by S̆roubek from [11]. The algorithm deconvolves and super-resolves the
images in one step, so the super-resolved frames shown above were deconvolved
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without super-resolution using S̆roubek’s algorithm in order to compare them with
the image produced by deconvolving and super-resolving using S̆roubek’s method.
When using the The results of the algorithm incorporating divergence and zoom
compare favorably with the results of the S̆roubek algorithm. The output from
S̆roubek’s algorithm shows cross-hatching, especially near the edges between the
black and white sections, which is not evident in the output of the algorithm which
depends on divergence.

2.8.5 Stabilized sequence examples

As in the previous section, we compare the results of our super-resolution algorithm
with S̆roubek’s state-of-the-art deconvolution and super-resolution algorithm. Note
that we were not able to achieve as great a degree of super-resolution using the
stabilized sequence (increasing resolution from 256 × 256 to 384 × 384 instead of
to 2048 × 2048). When comparing these results, the output of S̆roubek’s algorithm
does not show as significant cross-hatching as in the unstabilized sequence, probably
because it was super-resolved at a lower factor. S̆roubek’s algorithm does have the
advantage of being significantly faster than the algorithm incorporating divergence,
for both the stabilized and the unstabilized sequence.

Stabilizing the sequence reduced the divergence as well as reducing the amount
of zoom, so the maximum zoom in most frames of the sequence was a factor of 1.5
rather than 8 in the stabilized sequence. Since S̆roubek’s algorithm only accepts in-
teger values for super-resolution factors, the images super-resolved using divergence
and zoom were resized to 521 × 512 pixels (equivalent to a zoom factor of 2 instead
of the original zoom factor of 1.5) using MATLAB imresize. Imresize fills in pixels
using cubic interpolation.

These experiments demonstrate that it is important to find a balance between
stabilizing the sequence enough to reduce geometric distortions while not over-
stabilizing the sequence. The unstabilized sequence allowed super-resolution by a
factor of 8, which is greater than most applications would require. However, stabiliz-
ing the sequence reduces the amount of divergence. If the sequence were extremely
stabilized, there would be no divergence and no zoom to use in the super-resolution
algorithm.

2.8.6 Future work

Future work could examine the effect of different regularization terms as well as
methods of faster and more efficient methods of minimizing the function, especially
with non-convex regularization terms. Further work might also be done on the effects
of the parameters, σ2 and λ. Finally, future work on determining better methods to
estimate the zoom factor would be interesting and could be very useful.
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Chapter 3

Motion Detection Algorithms

3.1 Turbulence-free motion detection

One important element of motion detection is differentiating between an object in
motion, and elements of a stable background. This distinction allows for detec-
tion of a moving target, or object of interest. In his 2014 paper, Chen proposed
an algorithm to distinguish between stationary elements of a frame (background),
and objects moving across a frame (foreground). Our first major trial implemented
Chen’s algorithm on both original and turbulent image sequences.

Chen’s algorithm features a method in which a background image is iteratively
composed from a selected n number of images. Once a background frame is de-
termined, Chen’s algorithm cycles through each image in the original sequence,
and selects sections of pixels which do not match the corresponding space in the
background image. A pixel is determined as different, depending upon a declared
threshold. If the pixel’s value differs from the background image’s corresponding
pixel value by a number greater than the threshold, the pixel is labeled as fore-
ground. These foreground pixels are reassigned a value of 1 (showing as white),
while all other pixels are reassigned a value of 0 (showing as black). Through a
sequence of images, this can show an object (foreground) moving across the frame
(background).
Chen’s algorithm calls to first determine a composite background image for the
sequence. First, a value α is declared, between 0 and 1. The algorithm cycles
through the given sequence, updating the background image with each frame, and
using α to determine the weight of each new frame Ik, on the current composite
image Bk. The algorithm sets the initial background image to be the mean of the
first three frames, then cycles through the sequence, updating this initial frame with
each following image. We used an α value of .97, meaning that we gave very little
weight to each new frame, updating the background image only slightly.

Bk(
−→x ) = α · Bk−1(

−→x ) + (1− α) · Ik(−→x ) (3.1)

Once a background sequence is determined, the algorithm calls to cycle through the
original sequence, comparing each frame to its corresponding background frame.
A difference sequence is constructed for each frame, where each pixel’s value is
subtracted from the background frame’s corresponding pixel.
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Diffk(
−→x ) = |Ik(−→x )− Bk(

−→x )| (3.2)

Next, a threshold value is determined for each frame. This threshold value is given
by the median difference in the frame’s difference sequence,multiplied by a scalar
referred to as gain, and added to an offset value.

T(−→x ) = Gain ·mediank[Diffk(
−→x )] + Offset (3.3)

We used the gain value at 3, as done in the Chen paper. The offset that worked
best was .05, as also suggested in the Chen paper.
Finally, the difference sequence is compared to the threshold sequence.

Fk(
−→x ) =

{
1, Diffk(

−→x ) > T(−→x )

0, otherwise
(3.4)

If the difference in pixel values is greater than the threshold, this pixel is set to 1,
turning the pixel white. In turn, if the difference is less than the threshold, the pixel
is set to 0, turning it black. In this way, when the sequence is played, white groups
of pixels show object moving across the frame, while the steady background is seen
as black.

(a) Frame from the original freeway se-
quence.

(b) Original frame, with Chen’s algorithm
applied.

Figure 3.1: Comparison of a turbulence-free frame.

This algorithm worked well to show movement across a frame in a non-distorted se-
quence, as seen in Figures 3.1a and 3.1b. Once turbulence was simulated, however,
the difference between background and foreground was less distinct (see Figures 3.2a
and 3.2b). Many false areas of movement were identified, due to the turbulence
from frame to frame.

For this reason, our next step was to first control the turbulence in the sequence,
then run the motion algorithm on the stabilized sequence. We used Gaussian crops,
box crops, and mitigation on the optical flows, in attempts to initially stabilize the
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(a) Frame from the simulated turbulent
freeway sequence.

(b) Simulated Turbulence frame, with
Chen’s algorithm applied.

Figure 3.2: Comparison of a simulated turbulence frame.

sequences. While each of these worked reasonably well on a sequence with simulated
turbulence, none were powerful enough to significantly stabilize sequences with true
turbulence.

3.2 Gaussian filter

Proposed is a method to remove image turbulence from a set of images utilizing
properties of the Fourier transform and the Gaussian kernel.

3.2.1 Method

Let I be the 3-D array containing an image sequence. A 1-D Fourier transform is
taken for each pixel of the image sequence with respect to time.

I(x, y, t)
Fourier

======⇒
Transform

Î(x, y, ξ)

A new matrix G of equal dimension to I is created. Let hG(t) be the Gaussian kernel
in the 1-D case. G is filled such that,

∀x, y G(x, y, t) = hG(t),

then G and Î are pointwise multiplied to make a new matrix ÎG. It is assumed
that the turbulence in the image is of high oscillation with respect to time, while
the true image has low oscillation. Therefore, with this pointwise multiplication,
the high oscillatory motion should be dampened, while the low oscillatory motion
remain intact. The matrix ÎG is then sent back to the time domain by a 1-D inverse
Fourier transform with respect to ξ.

ÎG(x, y, ξ)
Inverse

======⇒
Transform

Ī(x, y, t)
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Figure 3.3: Above: A pixel with respect to time from I and a Pixel from G
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3.2.2 Results

After implementation of the method, it proved useful as a background for motion
detection. The method was tested on image sequences containing simulated turbu-
lence and faired well as a background image. When applied to a sequence of images
containing real turbulence, the method did not perform as well as a background
image.

3.3 Image decomposition

3.3.1 Chambolle projector

The total variation (TV) of a blurred image represents the difference between said
image f and the ‘true,’ unblurred image. One can represent the TV as

J(u) =
∑

1≤i,j≤N

|(∇u)i,j|. (3.5)

In the above equation u represents the structural component of the image in ques-
tion. In [4] Antonin Chambolle finds a function that minimizes the functional

J(u) + (2λ)−1||f − u||2, (3.6)

where f is the original image and λ is a constant. The minimizer of Equation 3.6
above is given by

û = f − πλK(f). (3.7)

The author then proposes the following algorithm to calculate the above nonlinear
projector πλK , which by the theorem below converges:

• Begin at p0=0.

• Iterate the following: pn+1
i,j =

pni,j+τ(∇(divpn−f/λ))i,j
1+τ |(∇(divpn−f/λ))i,j |

The following theorem, proven in [4], provides the importance of this algorithm.

Theorem 1. If τ ≤ 1/8, then λ div pn −−−→
n→∞

πλK(f).

We now have a method for calculating the projector πλK in Equation 3.7, an al-
gorithm that in practice rapidly converges. We will refer to πλK as the Chambolle
projector.

3.3.2 Two-dimensional Aujol algorithm

One can generally consider a clean image as a linear combination of structures
and textures: f = u + v. In particular, the structure and texture of an image
are oscillatory, with textures modeled as highly-oscillating functions. Many image
decomposition algorithms exist that have shown the effectiveness and convergence
of structure-texture models in separating these parts of an image (see [2]).
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The aforementioned structure-texture algorithms have been used to show that
the noise and texture components are similar. Further, in [2] Jean-Francois Aujol
et al. use the Chambolle projector to minimize the functional

J(u) + J∗(v/µ) + (2λ)−1||f − u− v||2, (3.8)

where µ and λ are constants, and J∗(v/µ) behaves as the dual of the TV. Based
on the convergence shown in [2] the function is first minimized with respect to
textures, then with respect to structures. The minimizers of Equation 3.8, through
the projector outlined in [4] are given by

û = f − v − πλK(f − v), v̂ = πµK(f − u)

Since these functions do not yield an analytic solution, Aujol et al. propose the
following algorithm to calculate the structure and texture components:

1. u0 = v0 = 0.

2. vn+1 = πµK(f − un).

3. un+1 = f − vn+1 − πλK(f − vn+1).

4. Stop when max(|un+1 − un|,|vn+1 − vn|) ≤ ε.

We will refer to the algorithm above as the Aujol algorithm. Examples of the
structure-texture separation are included in Figure 3.5 below, with values λ = 1 and
µ = 0.1.

(a) The original Barbara
image.

(b) The Barbara image
structures.

(c) The Barbara image
textures.

Figure 3.5: The Barbara image decomposition.

3.3.3 Three-dimensional extension of Aujol algorithm

Given the previous work above, we seek to apply the structure-texture decomposition
to a sequence of images. In particular our goal is to verify that turbulence mostly
separates with the texture component of a sequence of images. Since atmospheric
turbulence is highly oscillatory, like the texture component, it ought to separate
from the structure and reveal most of the underlying structure of an image sequence
when applied. In a sequence of moving objects with distortion due to turbulence,
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our separation must take the two types of motion. Although possible to apply the
Aujol algorithm to each individual image in the sequence, the distinction between
real motion and turbulent motion would be lost in such a process.

The recent work of [8] builds upon the decomposition algorithm of [2]. By aug-
menting the Chambolle projector to include information on the time evolution of
the sequence, effectively turning the 2D projector into a 3D projector (with time
scale parameter 1/β), the Aujol algorithm then produces two sequences: the struc-
ture, showing real motion in the sequence, and the texture-noise, containing the
oscillatory behavior of the atmospheric turbulence.

Figure 3.6: A frame in the toy car sequence.

We have applied the spacetime Chambolle projection algorithm in combination with
the Aujol algorithm to a sequence of turbulent images that depict a small toy car
moving across a football field at San Diego State University. Figure 3.6 shows a
sample frame from this sequence. Due to the heat rising from the field, there is
a temperature gradient on the field that creates atmospheric turbulence visible in
the original sequence. This turbulence makes the sequence ideal for testing the
effectiveness of our algorithm, which we will refer to as the Gilles algorithm.

3.3.4 Decomposition results

To test the algorithm we use the optical flow of the sequence, which detects all
motion in the sequence whether due to turbulence or real motion, as our input
sequence. Once the algorithm has completed its run, the output structure sequence
is viewed in the Slicer application on MATLAB to determine if the real motion of
the toy car is visible in the sequence, as shown in Figure 3.7.

Figure 3.7: The optical flow of the previous frame.

Examples of the Slicer output are shown in Figures 3.8, 3.9 and 3.10. For this
particular run of the algorithm, λ = .075, µ = 1.2, and β = 0.8. As the frame
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number increases along the vertical axis of the Slicer images, the broad red streak
across the structure portion of the decomposition represents the straight-line motion
of the toy from the right side to the left side of the frame.

Figure 3.8: The optical flow of the sequence, with car slice at height 60px.

Figure 3.9: Structure portion of the sequence, with car slice at height 60px.

Figure 3.10: Texture portion of the sequence, with car slice at height 60px.
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Conclusion

This paper presents the culmination of the San Diego Sate University Research
for Undergraduate findings for the Summer of 2016. First, OTIS was introduced,
demonstrating the practicality and use of a common source dataset. Second, the
paper presented methods for static image restoration. Various methods involving
deformation flow and divergence were implemented. Finally, methods of motion
detection, such as foreground detection and cartoon-image decomposition were uti-
lized. The results produced from this program will be carried on as a basis for
research at San Diego Sate and other educational establishments.
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