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1 Introduction

Definition 1.1. Let N0 = N ∪ {0}. A numerical monoid S is a subset of N0

such that

1. 0 ∈ S,

2. s1 + s2 ∈ S for all s1, s2 ∈ S and

3. |N0 \ S| <∞.

An element a ∈ S is an atom if there does not exist nonzero b, c ∈ S such
that b+ c = a. If a1, a2, . . . , ak are the atoms of a numerical semigroup S, then
we write

S = 〈a1, a2, . . . , ak〉 = {a1n1 + a2n2 + · · ·+ aknk : n1, n2, . . . , nk ∈ N0}.

For elements n1, n2 ∈ S, we say that n1 divides n2 if n2 − n1 ∈ S.

Definition 1.2. Let S = 〈n1, n2, . . . , nk〉. We say that f = (f1, f2, . . . , fk) with
f1, f2, . . . , fk ∈ N0 is a factorization of s ∈ S if f1n1 + f2n2 + · · · + fknk = s.
The length of f is denoted |f | where |f | = f1 + f2 + · · ·+ fk. We denote the set
of all factorizations of s as Z(s).

Definition 1.3. Let S = 〈n1, n2, . . . , nk〉. Let f = (f1, f2, . . . , fk) and f̄ =
(f̄1, f̄2, . . . , f̄k) be two factorizations of s ∈ S.

• Let gcd(f, f̄) = (min{f1, f̄1},min{f2, f̄2}, . . . ,min{fk, f̄k}).

• We denote the distance between f and f̄ as d(f, f̄) where

d(f, f̄) = max{|f − gcd(f, f̄)|, |f̄ − gcd(f, f̄)|}.

• A sequence of factorizations z1, . . . , zr is an N -chain if d(zi, zi+1) ≤ N
for 1 ≤ i ≤ r − 1.
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• For s ∈ S, the catenary degree of s, denoted c(s), is the minimal N such
that there is an N -chain between any two factorizations of s.

• We define the catenary degree of S, denoted c(S), as

c(S) = sup{c(s) : s ∈ S}.

Definition 1.4. Given a numerical monoid S and an element n ∈ S, let ∇n

denote the graph whose vertex set is Z(n) and such that any two factorizations
z1, z2 ∈ Z(n) are connected by an edge only if gcd(z1, z2) 6= 0. An element
m ∈ S is a Betti element of S if ∇m is not connected.

Definition 1.5. Given a numerical monoid S = 〈n1, . . . , nk〉, let ϕ : Nk
0 → S

be given by
ϕ(x1, . . . , xk) = x1n1 + · · ·+ xknk.

A minimal presentation for S is a subset ρ ⊂ Nk
0×Nk

0 such that whenever ϕ(z) =
ϕ(z′), there exists z = z0, . . . , zr = z′ ∈ Nk

0 such that (zi, zi+1) = (ai+ui, bi+ui)
for some ui ∈ Nk

0 and either (ai, bi) ∈ ρ or (bi, ai) ∈ ρ.

Definition 1.6. Let S be a numerical monoid. Define the catenary set C(S)
of S to be

C(S) = {c(s) : s ∈ S}.

The following lemma can be found in [3].

Lemma 1.7. Let S = 〈n1, n2, n3〉 be a numerical monoid with embedding di-
mension three. Any Betti element m ∈ S can be written in the form

cini = rijnj + riknk,

where {i, j, k} = {1, 2, 3} and ci = min{k > 0 : kni ∈ 〈nj , nk〉}.

Lemma 1.8. Let S = 〈n1, n2, n3〉 be a numerical monoid with embedding di-
mension three. If, for each i ∈ {1, 2, 3}, nj , nk - cini, then |Z(cini)| = 2 for
each i. Furthermore, c(cini) = max{ci, rij + rik}, where cini = rijnj + riknk.

Proof. Suppose, for each i ∈ {1, 2, 3}, nj , nk - cini. Furthermore, suppose
|Z(cini)| > 2 for some i. Then there exist f, g, h ∈ Z(cini) such that fi = ci,
fj = 0 and fk = 0. By the minimality of ci, gi = 0 and hi = 0. This implies
that cini = gjnj + gknk = hjnj + hknk. Since nj , nk - cini, gcd(g, h) 6= 0.
Subtracting gcd(g, h) from each of g and h gives the equation snj = tnk. Since
this element is divisible by both nj and nk, it is divisible by u = lcm(nj , nk).
This gives

u

nj
nj =

u

nk
nk ≤ snj = tnk < cini.

Since the only factorization of cini involving ni is cini, u has no factorizations
involving ni. Moreover, by minimality of u, u is a Betti element whose only
factorizations are u

nj
nj and u

nk
nk. This means that cj = u

nj
, contradicting the

assumption that nk - cjnj . Therefore, |Z(cini)| = 2. The second claim follows
directly from the first.
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2 Catenary Sets Can Be Arbitrarily Large

Lemma 2.1. Let n be an odd integer. Then n and 3n− 4 are coprime. Thus,
if n ≥ 5, S = 〈n, 3n− 8, 3n− 4〉 is a numerical monoid.

Proof. Since gcd(a,ma + b) = gcd(a, b) for any a, b,m ∈ Z, we have that
gcd(n, 3n−4) = gcd(n,−4). Furthermore, n is odd and, therefore, gcd(n,−4) =
1. Thus, gcd(n, 3n− 4) = 1.

Lemma 2.2. Let n be an odd integer greater than or equal to 5 and let S =
〈n, 3n− 8, 3n− 4〉. The Betti elements of S are

u =

(
3n− 5

2

)
n, v =

(
n+ 1

2

)
(3n− 8) and w = 2(3n− 4).

Furthermore,

c(u) =
3n− 5

2
, c(v) =

3n− 9

2
and c(w) = 4.

Proof. We have

u =

(
3n− 5

2

)
n =

(
3n− 8 + 3

2

)
(n− 1) +

3n− 5

2

=

(
3n− 8

2

)
(n− 1) +

3(n− 1)

2
+

3n− 5

2

=

(
n− 1

2

)
(3n− 8) + (3n− 4),

v =

(
n+ 1

2

)
(3n− 8) =

(
3n− 8− 3

2

)
n+

3n

2
+

3n− 8

2

=

(
3n− 11

2

)
n+ (3n− 4),

and
w = 2(3n− 4) = 3n+ (3n− 8).

Suppose kn = a(3n− 8) + b(3n− 4), where 0 < k < 3n−5
2 , 0 ≤ a and 0 ≤ b.

Clearly, then, a < 3n−5
2 . Reducing modulo n, we have −8a−4b ≡ 0 mod n and,

since n is odd, 2a + b ≡ 0 mod n. Therefore, 2a + b = rn for some r ∈ Z. But
0 ≤ a and 0 ≤ b, so 0 ≤ 2a+ b = rn. Thus, 0 ≤ r. Furthermore, a and b cannot
be simultaneously zero, because 0 < k, so r 6= 0, i.e., 1 ≤ r. Now,

kn = a(3n− 8) + b(3n− 4) = a(6n− 8)− 3an+ b(3n− 4)

= 2a(3n− 4) + b(3n− 4)− 3an

= (2a+ b)(3n− 4)− 3an

= rn(3n− 4)− 3an,
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so

k = r(3n− 4)− 3a > r(3n− 4)− 3

(
3n− 5

2

)
=

(
r − 3

2

)
(3n− 4) +

3

2
.

If r ≥ 2, then k >
(
r − 3

2

)
(3n − 5) + 3

2 = (2r − 3)
(
3n−5

2

)
+ 3

2 > 3n−5
2 . By

contradiction, r < 2, so r = 1. Then 2a+ b = n, so 3a = 3
2 (n− b) and

k = 3n− 4− 3a = 3n− 4− 3

2
(n− b) = 3n− 4− 3

2
n+

3

2
b <

3n− 5

2
.

It follows that 3
2n + 3

2b − 4 < 3
2n −

5
2 , which implies that 3

2b <
3
2 , i.e., b < 1.

Thus, b = 0, so n = 2a+ b = 2a. However, n is odd. By contradiction, 3n−5
2 =

min{k > 0 : kn ∈ 〈3n− 8, 3n− 4〉}. Therefore, by Lemma 1.7, u =
(
3n−5

2

)
n is

a Betti element of S.
Now suppose k(3n − 8) = an + b(3n − 4), where 0 < k < n+1

2 , 0 ≤ a and
0 ≤ b. Clearly, then, b < n+1

2 . Reducing modulo n, we have 4b ≡ 8k mod n
and, since n is odd, b ≡ 2k mod n. Therefore, b = 2k + rn for some r ∈ Z.
Since 0 ≤ b < n+1

2 and 0 < k < n+1
2 , it follows that r = 0 or r = −1.

Furthermore, since k < n+1
2 and n is odd, k ≤ n−1

2 . Suppose r = −1. Then
0 ≤ b = 2k − n ≤ n − 1 − n = −1. By contradiction, r = 0, i.e., b = 2k. Then
an + b(3n − 4) = an + k(6n − 8) > an + k(3n − 8) ≥ k(3n − 8). Again, by
contradiction, n+1

2 = min{k > 0 : k(3n − 8) ∈ 〈n, 3n − 4〉}, so by Lemma 1.7,
v =

(
n+1
2

)
(3n− 8) is a Betti element of S.

Finally, suppose 3n− 4 = an+ b(3n− 8), where 0 ≤ a and 0 ≤ b. Reducing
modulo n, we have −4 ≡ −8b mod n or 8b − 4 ≡ 0 mod n and, since n is odd,
2b − 1 ≡ 0 mod n. Therefore, 2b − 1 = rn for some r ∈ Z. Suppose b = 0.
Then −1 = rn. But n ≥ 5 and r ∈ Z, so by contradiction, b > 0. Thus
rn = 2b − 1 > 0, implying that r ≥ 1. It follows that 2b − 1 = rn ≥ n, so
b ≥ n+1

2 . Consequently,

an+ b(3n− 8) ≥ n+ 1

2
(3n− 8) >

n(3n− 8)

2
> 2(3n− 8)

= 6n− 16

≥ 3n+ 15− 16 = 3n− 1 > 3n− 4.

By contradiction, 3n−4 6= an+b(3n−8). Therefore, 2 = min{k > 0 : k(3n−4) ∈
〈n, 3n− 8〉}, so by Lemma 1.7, w = 2(3n− 4) is a Betti element of S.

Finally, by Lemma 1.8,

c(u) = max

{
3n− 5

2
,
n− 1

2
+ 1

}
=

3n− 5

2
,

c(v) = max

{
n+ 1

2
,

3n− 11

2
+ 1

}
=

3n− 9

2

and
c(w) = max {2, 3 + 1} = 4,

as desired.
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Theorem 2.3. Let n be an odd integer greater than or equal to 5 and let S =
〈n, 3n− 8, 3n− 4〉. Then{

0, 4, n− 2, n− 1, n, . . . ,
3n− 11

2
,

3n− 9

2
,

3n− 5

2

}
⊂ C(S).

Proof. Since c(0) = 0, 0 ∈ C(S). Furthermore, by Lemma 2.2,{
4,

3n− 9

2
,

3n− 5

2

}
⊂ C(S).

Therefore, it remains to show that, if n ≥ 7, then{
n− 2, n− 1, n, . . . ,

3n− 11

2

}
⊂ C(S).

If n ≥ 7, let sk =
(
n+1
2 + k

)
(3n − 8), for 1 ≤ k ≤ n−5

2 . For a given k, we
claim that sk has exactly k + 2 distinct factorizations:

z0 =

(
0,
n+ 1

2
+ k, 0

)
and

zi =

(
3n− 5

2
− 3i, k − i+ 1, 2i− 1

)
, for 1 ≤ i ≤ k + 1.

We have

s1 =

(
n+ 3

2

)
(3n− 8)

=

(
3n− 11

2

)
n+ (3n− 8) + (3n− 4)

=

(
3n− 17

2

)
n+ 3(3n− 4).

Thus, s1 has at least three distinct factorizations:

z0 =

(
0,
n+ 3

2
, 0

)
, z1 =

(
3n− 11

2
, 1, 1

)
and z2 =

(
3n− 17

2
, 0, 3

)
.

Suppose there exists another factorization z = (p, q, r) of s1. Since 3n−17
2 <

3n− 4, 3 < n and gcd(n, 3n− 4) = 1, it follows that z2 is the only factorization
of s1 whose second entry is zero. Therefore, if q = 0, then z = z2. Otherwise,
q 6= 0 and, consequently, z′ = (p, q−1, r) is a factorization of v =

(
n+1
2

)
(3n−8),

which is a Betti element of S. Then, z′ =
(
0, n+1

2 , 0
)

or z′ =
(
3n−11

2 , 0, 1
)
, which

implies that z = z0 or z = z1. Therefore, z0, z1 and z2 are the three unique
distinct factorizations of s1.

Now assume that sk has exactly k + 2 distinct factorizations of the form
given above, for some k such that 1 ≤ k ≤ n−7

2 . The element sk+1 has at least
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k + 3 distinct factorizations:

z0 =

(
0,
n+ 1

2
+ (k + 1), 0

)
and

zi =

(
3n− 5

2
− 3i, (k + 1)− i+ 1, 2i− 1

)
, for 1 ≤ i ≤ k + 2.

Again, suppose there exists another factorization z = (p, q, r) of sk+1. Since
3n−5

2 − 3(k + 2) < 3n−5
2 − 3 = 3n−11

2 < 3n − 4, 2(k + 2) − 1 = 2k + 3 ≤
n − 7 + 3 = n − 4 < n and gcd(n, 3n − 4) = 1, it follows that zk+2 is the
only factorization of sk+1 whose second entry is zero. Therefore, if q = 0, then
z = zk+2. Otherwise, q 6= 0 and, consequently, z′ = (p, q−1, r) is a factorization
of sk. By the induction hypothesis, it follows that z′ =

(
0, n+1

2 + k, 0
)

or z′ =(
3n−5

2 − 3j, k − j + 1, 2j − 1
)

for some j such that 1 ≤ j ≤ k + 1. But that
implies that z = z0 or z = zi for some i such that 1 ≤ i ≤ k + 1. Therefore,
z0, z1, . . . , zk+2 are the k + 3 unique distinct factorizations of sk+1.

For 1 ≤ i ≤ k, d (zi, zi+1) = max{3+1, 2} = 4. For 1 ≤ i ≤ k+1, d (z0, zi) =
max

{
n+1
2 + k − (k − i+ 1), 3n−52 − 3i+ 2i− 1

}
= max{n−12 +i, 3n−72 −i}. Sup-

pose n−1
2 + i > 3n−7

2 − i. Then 2i > 3n−7−n+1
2 = 2n−6

2 = n − 3, implying
that i > n−3

2 . However, i ≤ k + 1 ≤ n−5
2 + 1 = n−3

2 . By contradiction,
n−1
2 + i ≤ 3n−7

2 − i, so d (z0, zi) = 3n−7
2 − i. Therefore, d (z0, zi) < d (z0, zj)

whenever 1 ≤ j < i ≤ k + 1. It follows that if N < d(z0, zk+1), then there
does not exist an N -chain from z0 to any other factorization of sk. Therefore,
c(sk) ≥ d(z0, zk+1) = 3n−7

2 − (k + 1) = 3n−9
2 − k. However, for 1 ≤ i ≤ k,

d (zi, zi+1) = 4 < n − 2 = 2n−4
2 = 3n−9

2 − n−5
2 ≤ 3n−9

2 − k. Thus, given
any two factorizations zi, zj of sk, with i < j, if N = 3n−9

2 − k, then there
exists an N -chain from zi to zj , namely, zi, zi+1, . . . , zj if i 6= 0, otherwise,
zj , zj+1, . . . , zk+1, z0 = zi. Therefore, c(sk) ≤ 3n−9

2 − k and, thus, c(sk) =
3n−9

2 − k. Consequently, for 1 ≤ k ≤ n−5
2 , c(sk) = 3n−9

2 − k ∈ C(S), i.e.,{
n− 2, n− 1, n, . . . ,

3n− 11

2

}
⊂ C(S),

which concludes the proof.

Corollary 2.4. There exist numerical monoids with arbitrarily large catenary
sets.

3 The Minimum Catenary Degree

Lemma 3.1. Let S = 〈n1, . . . , nk〉 be a numerical monoid. Suppose s ∈ S and
|Z(s)| ≥ 2. Let B be the set of Betti elements of S that divide s. Then, given
(f1, . . . , fk) = f ∈ Z(s), there exists g ∈ Z(s) such that

d(f, g) ≥ b = min{c(m) : m ∈ B}.
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Proof. First, we will show that there exists (h1, . . . , hk) = h ∈ Z(m) for some
m ∈ B such that hi ≤ fi for 1 ≤ i ≤ k.

Let
X = {(x1, . . . , xk) : xi ≤ fi for 1 ≤ i ≤ k}

and let
F = {x ∈ X : |Z (ϕ(x))| ≥ 2}.

Note that f ∈ F , so that F 6= ∅. Therefore, choose h ∈ F such that |h| ≤ |z|
for all z ∈ F . Let m = ϕ(h). Since h ∈ F , |Z (m)| = |Z (ϕ(h))| ≥ 2.

Suppose ∇m is connected. Then there exists a factorization j ∈ Z(m) such
that gcd(h, j) 6= 0. Let h′ = h − gcd(h, j), j′ = j − gcd(h, j) and m′ = ϕ(h′).
Then h′ ∈ Z(m′) and j′ ∈ Z(m′), so |Z(m′)| ≥ 2. It follows that h′ ∈ F .
Furthermore,

|h′| = |h− gcd(h, j)| < |h|.

However, h′ ∈ F , so |h| ≤ |h′|, implying that ∇m is not connected. Therefore,
m is a Betti element of S. Since h ∈ F , hi ≤ fi for 1 ≤ i ≤ k, i.e., f − h ∈ Nk

0 .
Thus, s−m = ϕ(f)− ϕ(h) = ϕ(f − h) ∈ S, i.e., m divides s, so m ∈ B.

Since removing edges of weight c(m) and greater disconnects the factoriza-
tion graph of m, every factorization of m is connected to another factorization
by an edge of weight greater than or equal to c(m). Therefore, there exists
j ∈ Z(m) such that d(h, j) ≥ c(m) ≥ b. Let g = j + f − h. Then

ϕ(g) = ϕ(j + f − h) = ϕ(j) + ϕ(f)− ϕ(h) = m+ s−m = s,

so g ∈ Z(s). Furthermore, d(f, g) = d(h+ f − h, j + f − h) = d(h, j) ≥ b.

Proposition 3.2. Let S be a numerical monoid and let n ∈ S. Furthermore,
let B be the set of Betti elements of S that divide n and let b = min{c(m) : m ∈
B}. If f1, f2 ∈ Z(n) and d(f1, f2) < b, then there exists f3 ∈ Z(n) such that
max {|f1|, |f2|} < |f3|.

Proof. Suppose f1, f2 ∈ Z(n) for some n ∈ S and d(f1, f2) < b. Let

f ′i = fi − gcd(f1, f2)

for i = 1, 2 and let n′ = ϕ(f ′1). Furthermore, let B′ be the set of Betti elements
of S that divide n′ and let b′ = min{c(m) : m ∈ B′}. By Lemma 3.1, there
exists f ′3 ∈ Z(n′) such that d(f ′1, f

′
3) ≥ b′. Suppose m′ ∈ B′. Then n′ −m′ ∈ S

and, since

n− n′ = ϕ(f1)− ϕ(f ′1) = ϕ(f1 − f ′1) = ϕ(gcd(f1, f2)) ∈ S,

we have n −m′ = n − n′ + n′ −m′ ∈ S. Therefore, m′ ∈ B, i.e., B′ ⊂ B. It
follows that {c(m) : m ∈ B′} ⊂ {c(m) : m ∈ B} and, thus, that

b′ = min{c(m) : m ∈ B′} ≥ min{c(m) : m ∈ B} = b.

Consequently, d(f ′1, f
′
3) ≥ b′ ≥ b.
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Since gcd(f ′1, f
′
2) = 0, then

b > d(f1, f2) = d(f ′1, f
′
2) = max {|f ′1|, |f ′2|} .

Furthermore,

b ≤ d(f ′1, f
′
3) = max

{∣∣∣∣ f ′1
gcd(f ′1, f

′
3)

∣∣∣∣ , ∣∣∣∣ f ′3
gcd(f ′1, f

′
3)

∣∣∣∣} .
But |f ′1| ≤ max{|f ′1|, |f ′2|} < b, so∣∣∣∣ f ′1

gcd(f ′1, f
′
3)

∣∣∣∣ ≤ |f ′1| < b.

Therefore,

b ≤ d(f ′1, f
′
3) =

∣∣∣∣ f ′3
gcd(f ′1, f

′
3)

∣∣∣∣ ≤ |f ′3|.
Consequently,

max{|f ′1|, |f ′2|} < b ≤ |f ′3|.
Let f3 = f ′3 + gcd(f1, f2). Since

ϕ (gcd(f1, f2)) = ϕ (f1 − f ′1) = ϕ (f1)− ϕ (f ′1) = n− n′,

then

ϕ(f3) = ϕ (f ′3 + gcd(f1, f2)) = ϕ (f ′3) + ϕ (gcd(f1, f2)) = n′ + n− n′ = n.

Therefore, f3 ∈ Z(n). Furthermore,

|fi| = |f ′i + gcd(f1, f2)|
= |f ′i |+ | gcd(f1, f2)|
≤ max{|f ′1|, |f ′2|}+ | gcd(f1, f2)|
< |f ′3|+ | gcd(f1, f2)|
= |f ′3 + gcd(f1, f2)| = |f3|

for i = 1, 2. Therefore, max{|f1|, |f2|} < |f3|.

Theorem 3.3. Let S be a numerical monoid and let s ∈ S such that |Z(s)| ≥
2. Furthermore, let B be the set of Betti elements of S that divide s and let
b = min{c(m) : m ∈ B}. Then c(s) ≥ b.

Proof. Let V ⊂ Z(s) denote the set of factorizations v of s for which there
exists v′ ∈ Z(s) with d(v, v′) < b. Suppose V = ∅. Then d(z, z′) ≥ b for
all z, z′ ∈ Z(s), and it follows that c(s) ≥ b. Otherwise, V 6= ∅, so choose
w ∈ V such that |w| ≥ |v| for all v ∈ V . Since w ∈ V , there exists w′ ∈ Z(s)
such that d(w,w′) < b. By Proposition 3.2, there exists w′′ ∈ Z(s) such that
max{|w|, |w′|} < |w′′|. Therefore, |w| ≤ max{|w|, |w′|} < |w′′|. Since |w| ≥ |v|
for all v ∈ V , it follows that w′′ 6∈ V . Consequently, d(w′′, z) ≥ b for all z ∈ Z(s).
Thus, c(s) ≥ b.
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Corollary 3.4. Let S be a numerical monoid and let s ∈ S such that c(s) > 0.
Furthermore, let B be the set of Betti elements of S and let b = min{c(m) : m ∈
B}. Then c(s) ≥ b.

Corollary 3.5. Let S be a numerical monoid and let B be the set of Betti
elements of S. Then C(S) = {0, c} if and only if c(m) = c for all m ∈ B.

4 The Single Betti Element Case

We will now investigate the case when our numerical semigroups have a single
Betti element, in order words, when c1n1 = c2n2 = c3n3. When this is the case,
our numerical semigroup is more ”well behaved” thus giving it properties not
always found in other cases. We now take a look at some of these properties.

First, by applying an ordering to our generators, we quickly see that we have
an ordering on our ci’s as well.

Lemma 4.1. Let S = 〈n1, n2, n3〉 be a numerical semigroup of embedding di-
mension three where n1 < n2 < n3 such that S has a single Betti element. Then
c1 > c2 > c3 > 1.

Proof. Since S has a single Betti element, then c1n1 = c2n2 = c3n3. First
consider c1n1 = c2n2. Since n1 < n2 then c2n2 = c1n1 < c1n2 =⇒ c2n2 <
c1n2 =⇒ c1 > c2. Similarly, c2 > c3. Also, c3 > 1 because by definition
c3 > 0 and if c3 = 1 that would imply n3 can be decomposed into n1 and
n2 atoms which would make n3 no longer an atom, a contradiction. Thus
c1 > c2 > c3 > 1.

Now, we take a closer look at the structure of the single Betti element. We
will show that if our semigroup does have exactly one Betti element, then that
Betti element has exactly 3 factorizations which we can explicitly state.

Lemma 4.2. Let S be a numerical semigroup of embedding dimension three with
a single Betti element. Then the Betti element has only three factorizations (i.e.
(c1, 0, 0), (0, c2, 0), (0, 0, c3)).

Proof. First we show that c1n1, c2n2, c3n3 are the only factorizations of the
single Betti element. So suppose,

c1n1 = a2n2 + a3n3.

where a2, a3 > 0. From this, we see that a2 < c2 and a3 < c3 because if we
suppose a2 ≥ c2, then a2n2 ≥ c2n2 = c1n1 which would force a3n3 to be non-
positive which forces a3 to be non-positive, a contradiction (if a3 = 0, then that
would force a2 = c2 which gives us c1n1 = c2n2 which isn’t a new factorization).
Now, since c1n1 = c2n2 we can write

c2n2 = a2n2 + a3n3

9



which simplifies to
(c2 − a2)n2 = a3n3.

Since c2 − a2 and a3 are positive, we have a contradiction of the minimality
condition of c2. Thus, we can’t factor the Betti element in terms of two of the
generators. Also, the Betti element can’t be factored into three generators or
else, that factorization would have an edge to every other factorization in the
Betti element’s ∇ graph, thus making it connected, which is a contradiction by
the definition of a Betti element. Thus, (c1, 0, 0), (0, c2, 0), (0, 0, c3) are the only
factorizations of the Betti element.

Given that we know what the factorizations of our Betti element is now, we
can now find out what our minimal presentation is now.

Lemma 4.3. Let S be a numerical semigroup of embedding dimension three
with a single Betti element. Then {((c1, 0, 0), (0, c2, 0)), ((c1, 0, 0), (0, 0, c3))} is
a minimal presentation for S.

Proof. From lemma 4.2 we know that the Betti element has three factorizations
(c1, 0, 0), (0, c2, 0), (0, 0, c3). Taking the pairwise dot product of each of these
gives us zero so the ∇ graph of our Betti element consists of three vertices and
no edges. Clearly, one edge is not enough to connect the graph. However, out
of the three possible edges that can be drawn, choosing any two of them will
connect the ∇ graph. Choose the edge between (c1, 0, 0) and (0, c2, 0) and also
choose the edge between (c1, 0, 0) and (0, 0, c3). These connect the ∇ graph and
this is the only Betti element so {((c1, 0, 0), (0, c2, 0)), ((c1, 0, 0), (0, 0, c3))} is a
minimal presentation.

Also with our factorizations we can easily figure out the catenary degree of
our single Betti element.

Lemma 4.4. Let S be a numerical semigroup of embedding dimension three
with a single Betti element b. Then c(b) = c1.

Proof. From lemma 4.2 we have that our Betti element has three factorizations
(c1, 0, 0), (0, c2, 0), and (0, 0, c3). We now consider the distances between these
factorizations. We will use the inequalities found in Lemma 4.1.

d((c1, 0, 0), (0, c2, 0)) = max{|(c1, 0, 0)|, |(0, c2, 0)|} = max{c1, c2} = c1

d((c1, 0, 0), (0, 0, c3)) = max{|(c1, 0, 0)|, |(0, 0, c3)|} = max{c1, c3} = c1

d((0, c2, 0), (0, 0, c3)) = max{|(0, c2, 0)|, |(0, 0, c3)|} = max{c2, c3} = c2

We now apply the algorithm for computing the catenary degree. Since c1 >
c2, we remove the two edges with weight c1 which disconnects the graph since
a single edge can not connect a graph of three vertices. Thus, c(b) = c1.
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One might recall Corollary 3.5 which states that our catenary set has a
single non-zero element when the catenary degree of all the Betti elements of
a numerical semigroup are equal. Well, this is trivially true when we have a
single Betti element, so we have the following as a result of that corollary and
the previous lemma.

Corollary 4.5. Let S be a numerical semigroup of embedding dimension three
with a single Betti element. Then C(S) = {0, c1}.

Proof. Since S has a single Betti element, it is trivial that all the Betti elements
have the same catenary degree, namely c1 according to Lemma 4.4. Thus, by
Corollary 3.5, C(S) = {0, c1}.

We introduce a lemma that gives us a quick bound on the weight of any
swap.

Lemma 4.6. Let (r, s, t) be a swap. Then w(r, s, t) ≥ max{|r|, |s|, |t|}.

Proof. Without loss of generality, let r, s ≤ 0 and t ≥ 0. Then w(r, s, t) =
max{|r + s|, |t|} = max{|r|+ |s|, |t|} ≥ max{|r|, |s|, |t|}.

An interesting question to ask is whether or not there exists edge weights
greater than the minimum nonzero catenary degree and less than the maximum
catenary degree that are not in the catenary set of a numerical semigroup and
if such edges do exist, what form do they have? In the case of the single Betti
element case, if such edges exist, they have a very predictable form as seen in
the next theorem.

Theorem 4.7. Let S be a numerical semigroup of embedding dimension three
with a single Betti element. Then all edge weights between factorizations of
elements in S less than c(S) have the form kc2 for k ∈ Z+.

Proof. Recall that all edge weights are of the form {w(xα+yβ)|x, y ∈ Z} where
α 6= β are two vector differences in the minimal presentation (i.e. a fundamental
swap). From Lemma 4.3, the minimal presentation of S is

{((c1, 0, 0), (0, c2, 0)), ((c1, 0, 0), (0, 0, c3))}.

Thus, all edge weights are of the form {w(x(c1,−c2, 0)+y(c1, 0,−c3))|x, y ∈ Z}.
Making use of Lemma 4.6, we can simplify: w(x(c1,−c2, 0) + y(c1, 0,−c3)) =
w(c1(x + y),−xc2,−yc3) ≥ |c1(x + y)|. First consider the case when x 6= −y.
Then x+ y 6= 0 so |x+ y| ≥ 1. Thus, |c1(x+ y)| = |c1||x+ y| ≥ |c1| = c1 = c(S)
(the last equality is a result of Lemma 4.5). Thus, if x 6= −y, then we get edge
weights greater than or equal to C(S). We want the edge weights less than
C(S) so this can only occur when x = −y. So considering the case when x =
−y, we have w(x(c1,−c2, 0) + y(c1, 0,−c3)) = w(x(c1,−c2, 0)− x(c1, 0,−c3)) =
w(0,−xc2, xc3) = |x|w(0,−c2, c3) = |x|max{c2, c3}. By Lemma 4.1, c2 > c3 so
|x|max{c2, c3} = |x|c2 = kc2 for some k ∈ Z+.
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It is interesting to note that one can use the above theorem to easily prove
that C(S) = {0, c1} if S is a numerical semigroup of embedding dimension three
with a single Betti element. However, since the result immediately follows from
a previous corollary, we omit this proof. We leave it as an exercise to the reader
to try to prove C(S) = {0, c1} as a result of the above theorem (Hint: One can
make use of the fact that the ci’s are pairwise coprime, a result proved later in
this section.)

Now we will look at a method of constructing these semigroups that have
a single Betti element. It is interesting to note that this construction only
generates semigroups of embedding dimension three with a single Betti element
and moreover, this construction actually generates all of them.

Theorem 4.8. The following two statements are equivalent

1. c1 > c2 > c3 > 1
c1, c2, c3 are pairwise coprime
S = 〈c2c3, c1c3, c1c2〉

2. c1n1 = c2n2 = c3n3
n1 < n2 < n3
S is numerical semigroup of embedding dimension three
ci = min{r > 0|rni ∈ 〈nj , nk〉} for
{i, j, k} = {1, 2, 3}

Proof. First, we show 1 =⇒ 2.
Clearly, c1n1 = c1(c2c3) = c2(c1c3) = c2n2 = c3(c1c2) = c3n3 so c1n1 =

c2c2 = c3n3.
Since c1 > c2, then c2n2 = c1n1 > c2n1 so simplifying gives us n2 > n1.

Similarly, n3 > n2 so n1 < n2 < n3.
Next, we show the ci’s truly are minimal. Suppose r1n1 = r2n2 + r3n3

where 0 < r < c1. Substituing, we get r1c2c3 = r2c1c3 + r3c1c2. Taking this
modulo c1, we get r1c2c3 = 0 mod c1. Thus, c1|r1c2c3. However, gcd(c1, c2) =
gcd(c1, c3) = 1 so it must be the case that c1|r a contradiction since r is less
than c1 and non-zero. Thus, c1 is minimal and similar argument can be used to
show c2, c3 are minimal.

Next, we show that S is primitive by showing gcd(n1, n2, n3) = 1. No-
tice, gcd(n1, n2, n3) = gcd(gcd(n1, n2), n3) = gcd(gcd(c2c3, c1c3), c1c2). Since
gcd(c1, c2) = 1, then gcd(c1c3, c2c3) = c3 so gcd(c3, c1) = 1 and gcd(c3, c2) = 1
imply

gcd(gcd(c2c3, c1c3), c1c2) = gcd(c3, c1c2) = 1.

Lastly, we show that this numerical semigroup is really of embedding dimen-
sion three. Suppose one of the atoms ci for i ∈ {1, 2, 3} can be decomposed into
the other two atoms. But that would imply ci = 1 a contradiction since all the
ci’s are greater than 1.

Now we show 2 =⇒ 1
First we show c1, c2, c3 are pairwise coprime. Suppose by the contrary that

they weren’t. Then, WLOG, let gcd(c1, c2) = d where d > 1. Then d|c1
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and d|c2 so we can write a1d = c1, a2d = c2 for a1, a2,∈ Z. Also, we know
a1 < c1 and a2 < c2 (we can’t have equality since d > 1). Rewriting, we
have a1 = c1

d , a2 = c2
d . Now, we divide out an equation by d and get c1n1 =

c2n2 =⇒ c1
d n1 = c2

d n2 =⇒ a1n1 = a2n2. However, a1 < c1 so this contradicts
the minimality of c1. Thus, c1, c2, c3 are pairwise coprime.

The fact that c1 > c2 > c3 > 1 follows from Lemma 4.1.
Lastly we show n1 = c2c3, n2 = c1c3, n3 = c1c2. Take the equation c1n1 =

c2n2. From that we can get c1n1 = 0 mod c2 which implies c2|c1n1. Since
gcd(c1, c2) = 1, we have c2|n1. Simarlarly, c3|n1. And since gcd(c2, c3) = 1, we
have n1 = kc2c3, k ∈ Z. Similarly, n2 = lc1c3 and n3 = mc1c2 for l,m ∈ Z.
Notice that we have to satisfy the condition c1n1 = c2n2 = c3n3. Take c1n1 =
c2n2. Plugging in n1, n2, we have c1(kc2c3) = c2(lc1c3) and after simplifying we
get k = l. Using this argument again gives us k = l = m. We know k = 1 or else
gcd(n1, n2, n3) = gcd(kc2c3, lc1c3,mc1c2) = gcd(kc2c3, kc1c3, kc1c2) ≥ k which
is a contradiction since gcd(n1, n2, n3) needs to be 1 for S to be a numerical
semigroup. Thus, n1 = c2c3, n2 = c1c3, n3 = c1c3.

We know that all numerical semigroups of embedding dimension three with a
single Betti element have a catenary set of the form {0, c}. So a natural question
to ask is whether or not, for any given c, if there exists a semigroup of embedding
dimension three that has catenary set {0, c}. For c large enough we will show
that this is actually the case. Moreover, using the construction technique above,
for c large enough, we can actually construct an explicit numerical semigroup
with the desired catenary set.

Notice that our construction uses the fact that the ci’s are all pairwise co-
prime and construction proof proves existence so this motivates the following
lemma whose purpose will become more apparent in the next theorem.

Lemma 4.9. Let n ≥ 7. Then there exists two primes x, y < n that do not
divide n.

Proof. If n is prime, then choose x = 2 and y = 3. Since n is prime, clearly xand
y do not divide it so we are done. So suppose n is not prime. Then the number
of primes less than n is the same as the number of primes less than or equal
to n which we’ll denote as π(n). Also, the number of primes less than n that
divide n is the same as the number of primes less than or equal to n that divide
n which we’ll denote as ω(n). Thus, it suffices to show that π(n)−ω(n) ≥ 2 for
n ≥ 7.

It can easily be shown that ω(n) ≤ log2 n. Suppose by the contrary that
ω(n) > log2 n. Then when we write n as a prime factorization pr11 p

r2
2 · · · p

rk
k

where k = ω(n) > log2 n. Clearly, n = pr11 p
r2
2 · · · p

rk
k ≥ p1p2 · · · pk. Also, since 2

is the smallest prime, p1p2 · · · pk ≥ 2k. Since k > log2 n, then 2k > 2log2n = n,
thus n > n, a contradiction. (It is interesting to note that if Ω(n) is the number
of primes including multiplicity, then log2(n) is the tightest possible bound since
it reaches equality for infinitely many n).

According to [6], for n ≥ 55, π(n) > n
ln(n)+2 .
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Since n ≥ 7, we can use those two bounds (π(n) > n
ln(n)+2 and ω(n) ≤ log2 n)

and write π(n) − ω(n) > n
ln(n)+2 − log2(n) for n ≥ 55. Thus, it is also true for

n ≥ 65. We want to show that n
ln(n)+2 − log2(n) ≥ 2 for n ≥ 65. First,

we claim that
√
n ≥ lnn + 2 for n ≥ 65. We show this by showing that

the derivative of the
√
n function is greater than that of the lnn + 2 function

for n ≥ 65 and also
√

65 ≥ ln(65) + 2 which guarantees that
√
n ≥ lnn for

n ≥ 65. We set the equality d
dx (
√
n) ≥ d

dx (ln(n) + 2) → 1
2n

−1
2 ≥ n−1 which

simplifies to
√
n ≥ 2 which is true for n ≥ 4. Also, one can verify with a

calculator that
√

65 ≥ ln(65) + 2, thus, we have shown
√
n ≥ ln(n) + 2 for

n ≥ 65. Since n is positive for n ≥ 65,we have
√
n ≥ ln(n) + 2 →

√
n/n ≥

(ln(n) + 2)/n → n/
√
n ≤ n/(ln(n) + 2) →

√
n ≤ n/(ln(n) + 2). From this,

we can write n
ln(n)+2 − log2(n) ≥

√
n − log2(n). We show this is an increasing

function for n ≥ 65 by showing it’s derivative is positive for n ≥ 65. Setting
the inequality: d

dx (
√
n − log2(n)) ≥ 0 → 1

2n
−1/2 − 1

n ln(2) ≥ 0 which simplifies

to n ≥ 4
(ln(2))2 ≈ 8.3. Thus, since this is an increasing function for n ≥ 4

(ln(2))2

and since
√

65− log2(65) > 2, we know
√
n− log2(n) ≥ 2 for n ≥ 65. Thus, we

know π(n)− ω(n) ≥ 2 for n ≥ 65.
We still need to show this is true for 7 ≤ n < 65. Since this is a finite

number of cases to consider, one can write a computer program to verify. We
used the program Sage which is python-based. First we defined the π(n) and
ω(n) functions,

Code 4.10.
def Pi(n):

return len([i for i in (2..n) if (i+0).is prime()])

def Omega(n):

return len([i for i in (2..n) if (i+0).is prime() and n%i==0])

Next, we check for which values of 7 ≤ n < 65 have the property that
π(n)− ω(n) < 2.

Code 4.11.
[i for i in range(7,65) if Pi(i)-Omega(i)<2]

We expect this code to return an empty list which it does. Thus, this verifies
for 7 ≤ n < 65 that π(n)− ω(n) ≥ 2 and we had shown that was true earlier as
well for n ≥ 65. Thus, π(n)− ω(n) ≥ 2 for n ≥ 7, concluding our proof.

It is interesting to note that if one wants to, they can extend this lemma
to show that for any P , for all n sufficiently large, that there exists P smaller
primes that don’t divide n.

Now that we have the lemma that we need, we can easily prove what we
claimed earlier: that for large enough c, there always exists a numerical semi-
group group of embedding dimension three such that C(S) = {0, c}.

Theorem 4.12. Let c > 2. Then there exists a numerical semigroup S in
embedding dimension 3 such that C(S) = {0, c}.
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Proof. For c < 7, we can explicity find numerical semigroups with this property
(these need to be found and stated later) so suppose c ≥ 7. Let c = c1 and
pick c2, c3 such that they are pairwise coprime and c1 > c2 > c3 > 1. It
suffices to pick c2, c3 such that they are primes less than c1 that do not divide
c1, thus satisfying the inequality and coprime conditions. By Lemma 4.9, such
c2, c3 always exists. Now let S = 〈n1, n2, n3〉 = 〈c2c3, c1c3, c1c2〉. Then by
Theorem 4.8, S is a numerical semigroup of embedding dimension 3 such that
each ci agrees with the usual definition of ci, c1n1 = c2n2 = c3n3, and n1 <
n2 < n3. Thus, from Corollary 4.5, we have that C(S) = {0, c1} = {0, c}.

5 Minimal Presentations of Subsets

We introduce the definition for a minimal presentation with respect to a subset
of the numerical semigroup. We make a slight modification found in [1].

Definition 5.1. If ρ is a minimal presentation for S′, a subset of a numerical
semigroup S (that is, ρ is a minimal system of generators of σ as a congruence),
then whenever z ∈ S′ and zσz′, there exists z0, . . . , zk ∈ Np in such a way
that z = z0σz1 . . . σzk−1σzk = z′ and (zi, zi+1) = (ai + ui, bi + ui) for some
ui ∈ Np and (ai, bi) ∈ ρ ∪ ρ−1. Moreover, no proper subset of ρ generates σ as
a congruence.

When it comes to minimal presentations of a subset of a numerical semigroup
S, it is clear it is going to be a subset of the minimal presentation of S. However,
is there ever a case where the minimal presentation of a subset of S is a proper
subset of S? The answer is yes for particular subsets.

Proposition 5.2. Let S be a numerical semigroup and let SB ⊆ S such that
B is a subset of the Betti elements of S and SB = {s ∈ S|∀b ∈ B : s− b 6∈ S}.
Let p = ∪n∈Spn be a minimal presentation of S where the pn’s are constructed
as they usually are in [1]. Then, pB = p\ ∪n∈B pn is a minimal presentation
for SB.

Proof. Suppose by the contrary that for (aj , bj) ∈ pn for n ∈ B, that (aj , bj) ∈
pB . Then there exists an element s ∈ SB such that there exists two factoriza-
tions fa and fb such that there exists a path f1 → f2 · · · → fk−1 → fk where
a = 1, b = k, and each (fi, fi+1) = (ai + ui, bi + ui) for some ui ∈ Np and
(ai, bi) ∈ pB ∪ p−1B for i = 1, 2, . . . , k − 1 and for some j ∈ {1, 2, . . . , k − 1},
(fj , fj+1) = (aj + uj , bj + uj) for some uj ∈ Np. If such an s didn’t exist, then
pB could be generated without pn which would make pB no longer minimal, a
contradiction. We can write out fj = aj + uj and fj+1 = bj + uj where aj , bj
are factorizations of n. We see that uj = fj − aj . Since uj is composed of
non-negative components, then φ(fj) − φ(aj) ∈ S =⇒ s − n ∈ S. However,
n ∈ B and s has the property that ∀n ∈ B, s − n 6∈ S, a contradiction. Thus,
pB = p\ ∪n∈B pn is a presentation for SB.
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From this point on, whenever SB is used, it will be as defined in the previous
proposition (Proposition 5.2) where B is some subset of Betti elements of S.
Also, whenever ρB is used, it is assumed to be the minimal presentation for SB.

We now see that minimal presentation of a subset of S can depend on the
Betti elements that divide the elements in that subset. Evidence from data
shows that the catenary degree of an element is bounded above by the catenary
degrees of the Betti elements that divide it. Since the catenary degree is heavily
influenced by the minimal presentation and since the minimal presentation is
dependent on the Betti elements that divide elements of the subset in question,
this provides us with enough motivation to continue with this ”sub-minimal
presentation” idea which will eventually evolve throughout this section into a
result that agrees with the generated data.

Now we show that the highest catenary degree attained in SB is bounded
by SB’s minimal presentation. The proof for this lemma is nearly identical to
the result in [1].

Lemma 5.3. Let |ρB| = max{|a||(a, b) ∈ ρB ∪ ρ−1B for some b ∈ Np}. Then
c(SB) ≤ |ρB|.

Proof. Since ρB is a minimal presentation for SB then whenever z ∈ SB and
zσz′ then there exists z0, . . . , zk ∈ Np in such a way that z = z0σz1σ . . . σzk−1σzk
and (zi, zi+1) = (ai+ui, bi+ui) for some ui ∈ Np and (ai, bi) ∈ ρB∪ρ−1B . Notice
that if (a, b) ∈ ρB∪ρ−1B then gcd(a, b) = 0. Thus, (a, b) = max{|a|, |b|}. Observe
that d(a+u, b+u) = d(a, b) so in the above chain, the distance between adjacent
elements is bounded by max{|a||(a, b) ∈ ρB ∪ ρ−1B for some b ∈ Np}.

We now introduce µB(n) which is a function that takes Betti elements and
looks at the edges that connect disconnected components. Note that this func-
tion is dependent on B.

Definition 5.4. First, we define µB(n). Let n ∈ SB be such that Gn is not
connected and let Rn

1 , . . . ,R
n
kn

be its different R-classes. We set µB(n) =
max{rn1 , . . . , rnkn

} where rni = min{|z| : z ∈ Rn
i }. We define µB(SB) =

max{µB(n)|n ∈ SB and Gn not connected }.

So in colloquial terms, we look at the shortest factorization of each discon-
nected component and then take the max over that. It is interesting to note that
if you take the factorization graph of an element and ”squish” the factorizations
based on their R-class, and keep all the edges, then the catenary degree of this
new multigraph is precisely µB(n).

We now prove a result that is similar to the result in [1] and follows nearly
a similar argument being careful of the fact that we are using minimal presen-
tations of SB for some B.

Lemma 5.5. Let SB be a subset of a numerical semigroup S constructed in the
usual manner. Then c(SB) = µB(SB).

Proof. Construct ρ in the following way. For every n ∈ SB such that Gn is
not connected, choose (z1, . . . , z

n
kn

) ∈ Rn
1 × · · · × Rn

kn
such that |zni | = rni for
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i ∈ {1, . . . , kn}. Take ρn = {(zn1 , zn2 ), (zn1 , z
n
3 ), . . . , (zn1 , z

n
kn

)}. If Gn is connected,
then set ρn = {}. Then, from an earlier lemma, we see that ρ = ∪n∈SB

ρn is a
minimal presentation for S. In view of Lemma 5.3, we deduce c(SB) ≤ µB(SB).

Let n ∈ SB be such that µB(SB) = µB(n) and assume without loss of
generality that µB(n) = |zn1 |. If c(SB) < µB(SB), then c(n) < |zn1 |, or in other
words, factorizations of n can be joined by c-chains for some c < |zn1 |. Let z = zn1
and z′ = zn2 . Since z and z′ are different factorizations of n, there must be a
chain z1, . . . , zk of factorizations of n with z1 = z, zk = z′ and d(zi, zi+1) ≤ c.
As z and z′ are in different R classes, there exists i ∈ {1, . . . , k} such that
z = z1, . . . , zi ∈ Rn

1 and zi+1 6∈ Rn
1 . From the definition of R-class, this in

particular implies that supp(zi) ∩ supp(zi+1) is empty. Hence, d(zi, zi+1) =
max{|zi|, |zi+1|}. As zi ∈ Rn

i and |zni | = rn1 = min{|z| : z ∈ Rn
1}, we get

that |zn1 | ≤ |zi|. But then we obtain |zn1 | ≤ max{|zi|, |zi+1|} = d(zi, zi+1) ≤ c,
contradicting that c < |zn1 |.

Finally, we show the main result of this section: that the catenary degree of
an element is bounded above by the catenary degrees of the Betti elements that
divide it.

Theorem 5.6. Let SB be a subset of a numerical semigroup S constructed in the
usual manner and let s ∈ SB. Then, c(s) ≤ max{c(b)|b is a Betti element in SB}.

Proof. Let b ∈ SB such that µB(SB) = µ(b). Recall that by definition of µ, b
must be a Betti element. Suppose that c(b) < µ(b). It was shown in Lemma 5.5
that this leads to a contradiction. Thus, c(b) ≥ µ(b). So, by Lemma 5.5,
c(SB) = µB(SB) = µ(b) ≤ c(b). However, b ∈ SB so it is not possible for
c(SB) < c(b), thus it must be the case that c(SB) = c(b). For any other Betti
element b′ ∈ SB, c(b′) ≤ c(b) otherwise if c(b′) > c(b) then c(SB) = c(b) < c(b′)
a contradiction. Thus, c(SB) = max{b|b is a Betti element in SB}. For any
element s ∈ SB, c(s) ≤ c(SB) thus

c(s) ≤ c(SB) = max{b|b is a Betti element in SB},

as desired.

Moreover, by picking B = ∅, we prove the known result that the highest
catenary degree of a numerical semigroup is always attained at a Betti element.

Corollary 5.7. Let S be a numerical semigroup and let s ∈ S. Then c(s) ≤
max{c(b)|b is a Betti element in S}

Proof. Let B = ∅. Then SB = {s ∈ S|∀b ∈ B : s − b 6∈ S} = {s ∈ S|∀b ∈ ∅ :
s − b 6∈ S} = {s ∈ S} = S. Since S can be written as SB where B is a subset
of the Betti elements in S, then c(s) ≤ max{b|b is a Betti element in S} follows
from Theorem 5.6.
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6 Thriftiness and Catenary Inequalities

This section needs some work. It was originally assumed that

c(cini) = max{ci, rij + rik}

but that isn’t always the case. Thus, some of the proofs involving thriftiness
are no longer correct as they use an old definition of thriftiness that was defined
using the catenary degree (which was assumed to be that maximum). Any
comments on this issue will appear in red text like this in addition to proofs
that need to be repaired.

We will now look into the idea of thrifiness. One of biggest problems in
computing catenary degrees in a abstract sense is that sometimes we can do a
swap with respect to one generator whose weight is less than the weight of the
”cheapest” fundamental swap with respect to that same generator. In other
words, even if we choose our minimal presentation carefully, the fundamental
swaps that arise from that aren’t necessarily the cheapest swaps. The reason
that these cheaper or ”thrifty” swaps become as issue is because they allow
one to construct ”shortcuts” in the paths between factorizations connected by
fundamental swaps.

Since issues arise from thrify swaps, can we gain any immediate results if
we assume the semigroups we are looking at are not thrifty? The answer is yes.
Although many of the results in this section use the thriftiness hypothesis in
their respective proofs, we believe many of these results still hold regardless of
thriftiness so showing that is a possibility for future work.

We begin with a concise definition of thriftiness.

Definition 6.1. Let S = 〈n1, n2, n3〉 be a numerical semigroup of embedding
dimension three and let {i, j, k} = {1, 2, 3}. Consider the element cini = rijnj +
riknk. There may be many choices for the r’s so choose rij and rik such that
rij + rik is minimized. Denote wi = max{ci, rij + rik}, i.e., let wi be the
cheapest weight of a fundamental swap involving the factorization cini. We call
a semigroup ni-thrifty if there exists a d ∈ Z+ with d 6= ci there exists x, y ∈ N
where dni = xnj + ynk and max{d, x+ y} ≤ wi. If max{d, x+ y} < wi, we call
the semigroup strictly ni-thrifty.

We can use a little bit of graph theory sometimes to get a bound on the
catenary. The following lemma gives us a technique to obtain a bound on the
catenary degree by observing the edges emanating from a single factorization.

Lemma 6.2. Let s be in a numerical semigroup S. Let f be a factorization of
s. Then c(s) ≥ min{E} where E is the set of edge weights emanating from f .

Proof. If the algorithm for computing catenary degree were allowed to run, then
when e := min{E} all the edges from f is removed thus making it disconnected
from the rest of the graph. However, it’s possible the graph might have already
been disconnected earlier in the algorithm. Thus, c(s) ≥ min{E}.
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Given that the ci’s are minimal it would be alarming if the catenary de-
gree could somehow be less than the ci’s themselves. Luckily, we are always
guaranteed by the following lemma that this never occurs.

Theorem 6.3. Let S = 〈n1, n2, n3〉 be a numerical semigroup of embedding
dimension three. Let s ∈ S. Then c(s) ≥ min{c1, c2, c3}.

Proof. First, let {i, j, k} = {1, 2, 3}. Consider the types of swaps that can occur
between two factorizations. In embedding dimension three, the only swaps that
can occur is swapping ni-type atoms for nj-type and nk-type atoms. Suppose
between factorizations f1 and f2 of s we swap x ni-atoms for y nj-atoms and z
nk-atoms. Then d(f1, f2) = max{x, y+ z} ≥ x. Note that x ≥ ci by minimality
of ci. And ci ≥ min{c1, c2, c3}. Thus, d(f1, f2) ≥ min{c1, c2, c3}. But, f1 and
f2 were chosen arbitrarily so this is true between any two factorizations, thus
all edges are of weight greater than or equal to min{c1, c2, c3} thus making it
impossible for the catenary degree to be less than min{c1, c2, c3}. Therefore,
c(s) ≥ min{c1, c2, c3}.

If we look at elements that are only supported in certain components can
we give bounds on its catenary degree using only the ci’s that pertain to those
components? The answer according to the following lemma is yes in the case
where we look at the catenary degree of multiplies of generators.

Lemma 6.4. Let k ∈ N. c(kni) ≥ ci or c(kni) = 0 for i = 1, 2, 3.

Proof. WLOG, let i = 1. If c(kn1) has only one factorization, then c(kn1) = 0
so suppose c(kn1) has more than one factorization. We know that (k, 0, 0) is
at least one factorization. The only type of swap we can make is swapping x
n1-atoms for y n2-atoms and z n3-atoms where x ≤ k. We also note that x ≥ c1
or else x would violate the minimality of c1. The weight edge of such a swap
would be max{x, y + z} ≥ x. Thus, all edge weights from (k, 0, 0) are ≥ x.
However, x is always greater than c1, so all the edge weights from (k, 0, 0) are
≥ c1, i.e., min{E} ≥ c1 where E is as in Lemma 6.2. Thus, by Lemma 6.2,
c(kn1) ≥ min{E} ≥ c1.

Using thriftiness, we can get a similar result to Lemma 6.4 that is in terms
of the catenary degree of the corresponding Betti element.

Lemma 6.5. Let i = 1, 2 or 3 and let S = 〈n1, n2, n3〉 be a numerical semigroup
of embedding dimension three such that it is not strictly ni thrifty. Let k ∈ N.
Then c(kni) ≥ c(cini) or c(kni) = 0.

Proof. WLOG, let i = 1. If c(kn1) has only one factorization, then c(kn1) = 0
so suppose c(kn1) has more than one factorization. We know that (k, 0, 0) is
at least one factorization. The only type of swap we can make is swapping x
n1-atoms for y n2-atoms and z n3-atoms where x ≤ k. We also note that x ≥ c1
or else x would violate the minimality of c1. The weight edge of such a swap
would be max{x, y + z}. By the non strictly n1 thriftiness of S, max{x, y +
z} ≥ c(cini). Thus, every edge weight emanating from (k, 0, 0) is ≥ c(cini),
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i.e., min{E} ≥ c(cini) where E is as in Lemma 6.2. Thus, by Lemma 6.2,
c(kn1) ≥ min{E} ≥ c(cini).

We can combine the previous result (Lemma 6.5) and the fact that the
highest catenary degree is attained at a Betti element (Lemma 5.7) to get the
following result.

Theorem 6.6. Let S = 〈n1, n2, n3〉 with n1 < n2 < n3 be a numerical semi-
group with of embedding dimension three. Let i be such that

max{c(c1n1), c(c2n2), c(c3n3)} = c(cini).

Let k ∈ N. If S is not strictly ni-thrifty, then c(kni) = c(cini) or c(kni) = 0.

Proof. Suppose that S is not strictly ni-thrifty. By (Lemma 6.5), c(kni) ≥
c(cini) or c(kni) = 0. Suppose that c(kni) > c(cini). However, we know
that c(S) = c(max{c(c1n1), c(c2n2), c(c3n3)}) by Lemma 5.7. Thus, c(kni) >
c(cini) = c(max{c(c1n1), c(c2n2), c(c3n3)}) = c(S) but c(kni) > c(S) is a con-
tradiction. Thus, it must be that c(kni) = c(cini) or 0.

Consider the case where we have a numerical semigroup of embedding di-
mension three with three distinct Betti elements. Now suppose that we knew
the catenary degree of two of those Betti elements. Can the catenary degree of
the third be anything? The answer is no, as the following lemma suggests that
the catenary degrees of the three Betti elements bound each other in a triangle
inequality sort of manner.

Lemma 6.7. Let S = 〈n1, n2, n3〉 be a numerical semigroup of embedding di-
mension three where |C(B)| = 3 where B is the set of Betti elements. Then for
{i, j, k} = {1, 2, 3}, c(cini) < c(cjnj) + c(cknk).

Proof. Without loss of generality, let i = 1, j = 2, k = 3. So we want to show
c(c1n1) < c(c2n2) + c(c3n3). Since the three Betti elements are distinct, we
know the following is true:

c1 = r21 + r31,

c2 = r12 + r32,

c3 = r13 + r23.

We will rearrange these formulas for convenience later:

c1 = r21 + r31,

r12 = c2 − r32,

r13 = c3 − r23.

We know that c(c1n1) = max{c1, r12 + r13} by Lemma 1.8. We use the set
of above equations to substitute and we get

max{c1, r12 + r13} = max{r21 + r31, c2 − r32 + c3 − r23}.
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First, suppose max{r21 + r31, c2 − r32 + c3 − r23} = r21 + r31. We have

c(c1n1) = max{c1, r12 + r13} = max{r21 + r31, c2 − r32 + c3 − r23}
= r21 + r31 < (r21 + r23) + (r31 + r32)

≤ max{c2, r21 + r23}+ max{c3, r31 + r32}
= c(c2n2) + c(c3n3).

Now, suppose max{r21 + r31, c2 − r32 + c3 − r23} = c2 − r32 + c3 − r23. Then

c(c1n1) = max{c1, r12 + r13} = max{r21 + r31, c2 − r32 + c3 − r23}
= c2 − r32 + c3 − r23 < c2 + c3

≤ max{c2, r21 + r23}+ max{c3, r31 + r32}
= c(c2n2) + c(c3n3).

Thus, in either case, c(c1n1) < c(c2n2) + c(c3n3).

7 Conjectures, Problems and Examples

Below we have our list of current outstanding conjectures. In what follows, let
S be a numerical monoid of embedding dimension three.

Conjecture 7.1. Let

G = {cni : ci ≤ c ≤ c(S), 1 ≤ i ≤ 3} .

It follows that C(G) = C(S).

Conjecture 7.2. Let s ∈ S. Then there exists a generator ni that can be
subtracted from s such that c(s− ni) ≥ c(s). Similarly, there exists a generator
nj that can be subtracted from s such that 0 < c(s− ni) ≤ c(s).

Conjecture 7.3. Let S have three distinct Betti elements with distinct catenary
degrees where cini and cjnj are the Betti elements with the higher catenary
degree and the cknk is the other Betti element. Then the periodicity starts at

max{Ap(S, cini) ∩Ap(S, cjnj) ∩ N\Ap(S, cknk)}.

There are similar results if the Betti elements or catenary degrees of Betti ele-
ments coincide.

Conjecture 7.4. Let S be a numerical semigroup such that it is not ni-thrifty
and cini is the only Betti element that has catenary degree that achieves the
lowest nonzero catenary degree of S. Then there are a finite number of elements
that hit the smallest nonzero catenary degree.

Problem 7.5. Characterize those monoids S in which the set of elements whose
catenary degree is the minimum nonzero value in C(S) is symmetric.
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A proof of the following conjecture should not be difficult.

Conjecture 7.6. Let S be a numerical semigroup of embedding dimension three
with a single Betti element. Then every element has a triangle number of fac-
torizations.

Conjecture 7.7. Let S = 〈4, 6, 4n + 1〉. Then C(S) = {0, 3, cn} for some cn,
and cn < cn+1.

Conjecture 7.8. There is at most one nonzero catenary degree which is achieved
by finitely many elements.

The following examples each demonstrate some interesting behavior. The
descriptions given are not rigorous.

Example 7.9. S = 〈12, 27, 29〉 has 2 Betti elements, and the one with the
higher catenary degree has dropdowns after it.

Example 7.10. S = 〈11, 29, 32〉 has a dropdown of a different height.

Example 7.11. For S = 〈11, 13, 19〉, the set of elements whose catenary degree
is the minimum nonzero value in C(S) is not symmetric. Also, there exists an
element with three factorizations that hits the least non-zero catenary degree.

Example 7.12. S = 〈7, 11, 17〉 has three distinct Betti elements, but only two
nonzero possible catenary degrees.

Example 7.13. S = 〈11, 31, 37〉 has minimum catenary degree occurring at the
greatest, rather than least, Betti element.

Example 7.14. S = 〈9, 40, 47〉 has eventual catenary degree period of 9 · 40.

Example 7.15. For S = 〈17, 41, 43, 59, 61〉, the catenary degree of the monoid
is 8 and is achieved at exactly one element, namely 208.

8 Code Appendix

load ( ’/ media/ s f Desktop / NumericalSemigroup . sage ’ )

de f getCatDegrees ( s , n ) :
l = [ ]
m = [ ]
f o r t in range (1 , n) :

i f s . Contains ( t ) :
l . append ( s . CatenaryDegree ( t ) )
#pr in t ( t , s . CatenaryDegree ( t ) ) , s .

F a c t o r i z a t i o n s ( t )
m. append ( ( t , s . CatenaryDegree ( t ) ) )

#show ( l i s t p l o t (m) )
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re turn ( l i s t p l o t (m) , Set ( l ) )

de f getCatDegrees2 ( s ) :
ca tSet = {0}
r = ge tRe l a t i on s ( s )
a = r [ 0 ]
b = r [ 1 ]
c = r [ 2 ]
p r i n t a , b , c
weightDict = {weight ( a ) : a , weight (b) : b , weight ( c ) :

c}
x = weightDict [ max( weight ( a ) , weight (b) , weight ( c ) ) ]

#l e t x be the tup l e with h i ghe s t weight
y = weightDict [ min ( weight ( a ) , weight (b) , weight ( c ) ) ]

#l e t y be the tup l e with lowest weight
p r i n t x , y
catSet . add ( weight ( x ) )
catSet . add ( weight ( y ) )
catSet . add ( weight ( tupleAdd (x , y ) ) )
k = 1
currentWeight = weight ( tupleAdd (x , y ) )
whi l e currentWeight > weight ( tupleAdd (x , tupleMult ( k

+1, y ) ) ) :
p r i n t k
catSet . add ( weight ( tupleAdd (x , tupleMult ( k+1, y ) ) ) )
currentWeight = weight ( tupleAdd (x , tupleMult ( k+1,

y ) ) )
k += 1

return catSet

de f s o r t F a c t o r i z a t i o n s ( s , n ) :
l = [ ]
m = [ ]
p = [ ]
f o r t in range (1 , n) :

i f s . Contains ( t ) :
i f l en ( s . F a c t o r i z a t i o n s ( t ) ) == 1 :

l . append ( t )
e l i f l en ( s . LengthSet ( t ) ) == 1 :

m. append ( t )
e l s e :

p . append ( t )
re turn l ,m, p

de f CatDegreesEmbDimThree ( ) :
l ength = len ( NumSemigroups )
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count = 0
f o r s in NumSemigroups :

count += 1
i f tup l e ( s . gens ) in TestedSemigroups . keys ( ) :

p r i n t s . gens , TestedSemigroups [ tup l e ( s . gens ) ]
cont inue

l = [ ]
f o r t in range (1 , 5∗ s . f r ob ) :

i f s . Contains ( t ) :
l . append ( s . CatenaryDegree ( t ) )

l = Set ( l )
p r i n t s . gens , l
i f count % 300 == 0 :

p r i n t s t r ( 1 0 0 .∗ ( count / l ength ) )+”%”
TestedSemigroups [ tup l e ( s . gens ) ] = l

de f g e tRe l a t i on s ( s ) :
p r e s en t a t i on = s . MinimalPresentat ion ( )
t u p l e s = [ ]
f o r i in p r e s e n ta t i o n :

tup l e = tupleAdd ( i [ 0 ] , tupleMult (−1 , i [ 1 ] ) )
count = 0
f o r j in tup l e :

i f j < 0 :
count += 1

i f count == 1 :
tup l e = tupleMult (−1 , tup l e )

t u p l e s . append ( tup l e )
re turn t u p l e s

de f tupleAdd ( t1 , t2 ) :
r e turn tup l e ( [ t1 [ i ]+ t2 [ i ] f o r i in range (0 , 3 ) ] )

de f tupleMult (n , t ) :
r e turn tup l e ( [ n∗ t [ i ] f o r i in range (0 , 3 ) ] )

de f weight ( t ) :
pos = 0
neg = 0
f o r i in range (0 , 3 ) :

i f t [ i ] > 0 :
pos += t [ i ]

e l s e :
neg += −t [ i ]

r e turn max( pos , neg )
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de f getEquat ions (S) :
e = [ 0 , 0 , 0 ]
p r e s e n t a t i o n s = S . MinimalPresentat ion ( )
f o r pres in p r e s e n t a t i o n s :

f o r index , tup l e in enumerate ( pres ) :
i f tup l e [ 1 ] == 0 and tup l e [ 2 ] == 0 :

t1 = tup l e
t2 = pres [ ( index +1)%2]
e [ 0 ] = s t r ( t1 [ 0 ] ) +”∗”+ s t r (S . gens [ 0 ] ) +” =

”+s t r ( t2 [ 1 ] ) +”∗”+ s t r (S . gens [ 1 ] ) +” +
”+s t r ( t2 [ 2 ] ) +”∗”+ s t r (S . gens [ 2 ] )

i f tup l e [ 0 ] == 0 and tup l e [ 2 ] == 0 :
t1 = tup l e
t2 = pres [ ( index +1)%2]
e [ 1 ] = s t r ( t1 [ 1 ] ) +”∗”+ s t r (S . gens [ 1 ] ) +” =

”+s t r ( t2 [ 0 ] ) +”∗”+ s t r (S . gens [ 0 ] ) +” +
”+s t r ( t2 [ 2 ] ) +”∗”+ s t r (S . gens [ 2 ] )

i f tup l e [ 0 ] == 0 and tup l e [ 1 ] == 0 :
t1 = tup l e
t2 = pres [ ( index +1)%2]
e [ 2 ] = s t r ( t1 [ 2 ] ) +”∗”+ s t r (S . gens [ 2 ] ) +” =

”+s t r ( t2 [ 0 ] ) +”∗”+ s t r (S . gens [ 0 ] ) +” +
”+s t r ( t2 [ 1 ] ) +”∗”+ s t r (S . gens [ 1 ] )

r e turn s t r ( e [ 0 ] ) +”\n”+s t r ( e [ 1 ] ) +”\n”+s t r ( e [ 2 ] )

de f g c d t e s t (n) :
coprime = n . c o p r i m e i n t e g e r s (n)
i = 1
j = 2
whi le i < l en ( coprime ) :

j = i+1
whi le j < l en ( coprime ) :

i f gcd ( i , j ) == 1 :
re turn ( coprime [ i ] , coprime [ j ] )

j += 1
i += 1

return f a l s e

References
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[3] P.A. Garćıa-Sánchez and J.C. Rosales, Numerical semigroups, vol. 20, De-
velopments in Mathematics, Springer-Verlag, 2009.

[4] S. T. Chapman, M. Corrales, A. Miller, C. Miller, D. Phatel, The catenary
and tame degrees on a numerical monoid are eventually periodic

[5] C. O’Neil, Sage Wrapper for Numerical Semigroups, http://math.duke.

edu/~musicman/numsgps

[6] B. Rosser, Explicit bounds for some functions of prime numbers, American
Journal of Mathematics 63, 211-232

26

http://www.gap-system.org/Manuals/pkg/numericalsgps/doc/manual.pdf
http://www.gap-system.org/Manuals/pkg/numericalsgps/doc/manual.pdf
http://math.duke.edu/~musicman/numsgps
http://math.duke.edu/~musicman/numsgps

	Introduction
	Catenary Sets Can Be Arbitrarily Large
	The Minimum Catenary Degree
	The Single Betti Element Case
	Minimal Presentations of Subsets
	Thriftiness and Catenary Inequalities
	Conjectures, Problems and Examples
	Code Appendix

