The catenary degrees of elements in numerical monoids of embedding dimension three

Christopher O'Neill, Reuben Tate and Gautam Webb

August 8, 2014

1 Introduction

Definition 1.1. Let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. A numerical monoid S is a subset of \mathbb{N}_{0} such that

1. $0 \in S$,
2. $s_{1}+s_{2} \in S$ for all $s_{1}, s_{2} \in S$ and
3. $\left|\mathbb{N}_{0} \backslash S\right|<\infty$.

An element $a \in S$ is an atom if there does not exist nonzero $b, c \in S$ such that $b+c=a$. If $a_{1}, a_{2}, \ldots, a_{k}$ are the atoms of a numerical semigroup S, then we write

$$
S=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle=\left\{a_{1} n_{1}+a_{2} n_{2}+\cdots+a_{k} n_{k}: n_{1}, n_{2}, \ldots, n_{k} \in \mathbb{N}_{0}\right\} .
$$

For elements $n_{1}, n_{2} \in S$, we say that n_{1} divides n_{2} if $n_{2}-n_{1} \in S$.
Definition 1.2. Let $S=\left\langle n_{1}, n_{2}, \ldots, n_{k}\right\rangle$. We say that $f=\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ with $f_{1}, f_{2}, \ldots, f_{k} \in \mathbb{N}_{0}$ is a factorization of $s \in S$ if $f_{1} n_{1}+f_{2} n_{2}+\cdots+f_{k} n_{k}=s$. The length of f is denoted $|f|$ where $|f|=f_{1}+f_{2}+\cdots+f_{k}$. We denote the set of all factorizations of s as $Z(s)$.
Definition 1.3. Let $S=\left\langle n_{1}, n_{2}, \ldots, n_{k}\right\rangle$. Let $f=\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ and $\bar{f}=$ $\left(\bar{f}_{1}, \bar{f}_{2}, \ldots, \bar{f}_{k}\right)$ be two factorizations of $s \in S$.

- Let $\operatorname{gcd}(f, \bar{f})=\left(\min \left\{f_{1}, \bar{f}_{1}\right\}, \min \left\{f_{2}, \bar{f}_{2}\right\}, \ldots, \min \left\{f_{k}, \bar{f}_{k}\right\}\right)$.
- We denote the distance between f and \bar{f} as $d(f, \bar{f})$ where

$$
d(f, \bar{f})=\max \{|f-\operatorname{gcd}(f, \bar{f})|,|\bar{f}-\operatorname{gcd}(f, \bar{f})|\} .
$$

- A sequence of factorizations z_{1}, \ldots, z_{r} is an N-chain if $d\left(z_{i}, z_{i+1}\right) \leq N$ for $1 \leq i \leq r-1$.
- For $s \in S$, the catenary degree of s, denoted $c(s)$, is the minimal N such that there is an N-chain between any two factorizations of s.
- We define the catenary degree of S, denoted $c(S)$, as

$$
c(S)=\sup \{c(s): s \in S\}
$$

Definition 1.4. Given a numerical monoid S and an element $n \in S$, let ∇_{n} denote the graph whose vertex set is $Z(n)$ and such that any two factorizations $z_{1}, z_{2} \in Z(n)$ are connected by an edge only if $\operatorname{gcd}\left(z_{1}, z_{2}\right) \neq 0$. An element $m \in S$ is a Betti element of S if ∇_{m} is not connected.
Definition 1.5. Given a numerical monoid $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$, let $\varphi: \mathbb{N}_{0}^{k} \rightarrow S$ be given by

$$
\varphi\left(x_{1}, \ldots, x_{k}\right)=x_{1} n_{1}+\cdots+x_{k} n_{k}
$$

A minimal presentation for S is a subset $\rho \subset \mathbb{N}_{0}^{k} \times \mathbb{N}_{0}^{k}$ such that whenever $\varphi(z)=$ $\varphi\left(z^{\prime}\right)$, there exists $z=z_{0}, \ldots, z_{r}=z^{\prime} \in \mathbb{N}_{0}^{k}$ such that $\left(z_{i}, z_{i+1}\right)=\left(a_{i}+u_{i}, b_{i}+u_{i}\right)$ for some $u_{i} \in \mathbb{N}_{0}^{k}$ and either $\left(a_{i}, b_{i}\right) \in \rho$ or $\left(b_{i}, a_{i}\right) \in \rho$.
Definition 1.6. Let S be a numerical monoid. Define the catenary set $C(S)$ of S to be

$$
C(S)=\{c(s): s \in S\}
$$

The following lemma can be found in 3.
Lemma 1.7. Let $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ be a numerical monoid with embedding dimension three. Any Betti element $m \in S$ can be written in the form

$$
c_{i} n_{i}=r_{i j} n_{j}+r_{i k} n_{k}
$$

where $\{i, j, k\}=\{1,2,3\}$ and $c_{i}=\min \left\{k>0: k n_{i} \in\left\langle n_{j}, n_{k}\right\rangle\right\}$.
Lemma 1.8. Let $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ be a numerical monoid with embedding dimension three. If, for each $i \in\{1,2,3\}, n_{j}, n_{k} \nmid c_{i} n_{i}$, then $\left|Z\left(c_{i} n_{i}\right)\right|=2$ for each i. Furthermore, $c\left(c_{i} n_{i}\right)=\max \left\{c_{i}, r_{i j}+r_{i k}\right\}$, where $c_{i} n_{i}=r_{i j} n_{j}+r_{i k} n_{k}$.

Proof. Suppose, for each $i \in\{1,2,3\}, n_{j}, n_{k} \nmid c_{i} n_{i}$. Furthermore, suppose $\left|Z\left(c_{i} n_{i}\right)\right|>2$ for some i. Then there exist $f, g, h \in Z\left(c_{i} n_{i}\right)$ such that $f_{i}=c_{i}$, $f_{j}=0$ and $f_{k}=0$. By the minimality of $c_{i}, g_{i}=0$ and $h_{i}=0$. This implies that $c_{i} n_{i}=g_{j} n_{j}+g_{k} n_{k}=h_{j} n_{j}+h_{k} n_{k}$. Since $n_{j}, n_{k} \nmid c_{i} n_{i}, \operatorname{gcd}(g, h) \neq 0$. Subtracting $\operatorname{gcd}(g, h)$ from each of g and h gives the equation $s n_{j}=t n_{k}$. Since this element is divisible by both n_{j} and n_{k}, it is divisible by $u=\operatorname{lcm}\left(n_{j}, n_{k}\right)$. This gives

$$
\frac{u}{n_{j}} n_{j}=\frac{u}{n_{k}} n_{k} \leq s n_{j}=t n_{k}<c_{i} n_{i} .
$$

Since the only factorization of $c_{i} n_{i}$ involving n_{i} is $c_{i} n_{i}, u$ has no factorizations involving n_{i}. Moreover, by minimality of u, u is a Betti element whose only factorizations are $\frac{u}{n_{j}} n_{j}$ and $\frac{u}{n_{k}} n_{k}$. This means that $c_{j}=\frac{u}{n_{j}}$, contradicting the assumption that $n_{k} \nmid c_{j} n_{j}$. Therefore, $\left|Z\left(c_{i} n_{i}\right)\right|=2$. The second claim follows directly from the first.

2 Catenary Sets Can Be Arbitrarily Large

Lemma 2.1. Let n be an odd integer. Then n and $3 n-4$ are coprime. Thus, if $n \geq 5, S=\langle n, 3 n-8,3 n-4\rangle$ is a numerical monoid.

Proof. Since $\operatorname{gcd}(a, m a+b)=\operatorname{gcd}(a, b)$ for any $a, b, m \in \mathbb{Z}$, we have that $\operatorname{gcd}(n, 3 n-4)=\operatorname{gcd}(n,-4)$. Furthermore, n is odd and, therefore, $\operatorname{gcd}(n,-4)=$ 1. Thus, $\operatorname{gcd}(n, 3 n-4)=1$.

Lemma 2.2. Let n be an odd integer greater than or equal to 5 and let $S=$ $\langle n, 3 n-8,3 n-4\rangle$. The Betti elements of S are

$$
u=\left(\frac{3 n-5}{2}\right) n, v=\left(\frac{n+1}{2}\right)(3 n-8) \text { and } w=2(3 n-4) .
$$

Furthermore,

$$
c(u)=\frac{3 n-5}{2}, c(v)=\frac{3 n-9}{2} \text { and } c(w)=4
$$

Proof. We have

$$
\begin{aligned}
u=\left(\frac{3 n-5}{2}\right) n & =\left(\frac{3 n-8+3}{2}\right)(n-1)+\frac{3 n-5}{2} \\
& =\left(\frac{3 n-8}{2}\right)(n-1)+\frac{3(n-1)}{2}+\frac{3 n-5}{2} \\
& =\left(\frac{n-1}{2}\right)(3 n-8)+(3 n-4), \\
v=\left(\frac{n+1}{2}\right)(3 n-8) & =\left(\frac{3 n-8-3}{2}\right) n+\frac{3 n}{2}+\frac{3 n-8}{2} \\
& =\left(\frac{3 n-11}{2}\right) n+(3 n-4),
\end{aligned}
$$

and

$$
w=2(3 n-4)=3 n+(3 n-8)
$$

Suppose $k n=a(3 n-8)+b(3 n-4)$, where $0<k<\frac{3 n-5}{2}, 0 \leq a$ and $0 \leq b$. Clearly, then, $a<\frac{3 n-5}{2}$. Reducing modulo n, we have $-8 a-4 b \equiv 0 \bmod n$ and, since n is odd, $2 a+b \equiv 0 \bmod n$. Therefore, $2 a+b=r n$ for some $r \in \mathbb{Z}$. But $0 \leq a$ and $0 \leq b$, so $0 \leq 2 a+b=r n$. Thus, $0 \leq r$. Furthermore, a and b cannot be simultaneously zero, because $0<k$, so $r \neq 0$, i.e., $1 \leq r$. Now,

$$
\begin{aligned}
k n=a(3 n-8)+b(3 n-4) & =a(6 n-8)-3 a n+b(3 n-4) \\
& =2 a(3 n-4)+b(3 n-4)-3 a n \\
& =(2 a+b)(3 n-4)-3 a n \\
& =r n(3 n-4)-3 a n,
\end{aligned}
$$

SO

$$
k=r(3 n-4)-3 a>r(3 n-4)-3\left(\frac{3 n-5}{2}\right)=\left(r-\frac{3}{2}\right)(3 n-4)+\frac{3}{2}
$$

If $r \geq 2$, then $k>\left(r-\frac{3}{2}\right)(3 n-5)+\frac{3}{2}=(2 r-3)\left(\frac{3 n-5}{2}\right)+\frac{3}{2}>\frac{3 n-5}{2}$. By contradiction, $r<2$, so $r=1$. Then $2 a+b=n$, so $3 a=\frac{3}{2}(n-b)$ and

$$
k=3 n-4-3 a=3 n-4-\frac{3}{2}(n-b)=3 n-4-\frac{3}{2} n+\frac{3}{2} b<\frac{3 n-5}{2} .
$$

It follows that $\frac{3}{2} n+\frac{3}{2} b-4<\frac{3}{2} n-\frac{5}{2}$, which implies that $\frac{3}{2} b<\frac{3}{2}$, i.e., $b<1$. Thus, $b=0$, so $n=2 a+b=2 a$. However, n is odd. By contradiction, $\frac{3 n-5}{2}=$ $\min \{k>0: k n \in\langle 3 n-8,3 n-4\rangle\}$. Therefore, by Lemma 1.7. $u=\left(\frac{3 n-5}{2}\right) n$ is a Betti element of S.

Now suppose $k(3 n-8)=a n+b(3 n-4)$, where $0<k<\frac{n+1}{2}, 0 \leq a$ and $0 \leq b$. Clearly, then, $b<\frac{n+1}{2}$. Reducing modulo n, we have $4 b \equiv 8 k \bmod n$ and, since n is odd, $b \equiv 2 k \bmod n$. Therefore, $b=2 k+r n$ for some $r \in \mathbb{Z}$. Since $0 \leq b<\frac{n+1}{2}$ and $0<k<\frac{n+1}{2}$, it follows that $r=0$ or $r=-1$. Furthermore, since $k<\frac{n+1}{2}$ and n is odd, $k \leq \frac{n-1}{2}$. Suppose $r=-1$. Then $0 \leq b=2 k-n \leq n-1-n=-1$. By contradiction, $r=0$, i.e., $b=2 k$. Then $a n+b(3 n-4)=a n+k(6 n-8)>a n+k(3 n-8) \geq k(3 n-8)$. Again, by contradiction, $\frac{n+1}{2}=\min \{k>0: k(3 n-8) \in\langle n, 3 n-4\rangle\}$, so by Lemma 1.7. $v=\left(\frac{n+1}{2}\right)(3 n-8)$ is a Betti element of S.

Finally, suppose $3 n-4=a n+b(3 n-8)$, where $0 \leq a$ and $0 \leq b$. Reducing modulo n, we have $-4 \equiv-8 b \bmod n$ or $8 b-4 \equiv 0 \bmod n$ and, since n is odd, $2 b-1 \equiv 0 \bmod n$. Therefore, $2 b-1=r n$ for some $r \in \mathbb{Z}$. Suppose $b=0$. Then $-1=r n$. But $n \geq 5$ and $r \in \mathbb{Z}$, so by contradiction, $b>0$. Thus $r n=2 b-1>0$, implying that $r \geq 1$. It follows that $2 b-1=r n \geq n$, so $b \geq \frac{n+1}{2}$. Consequently,

$$
\begin{aligned}
a n+b(3 n-8) \geq \frac{n+1}{2}(3 n-8) & >\frac{n(3 n-8)}{2} \\
& >2(3 n-8) \\
& =6 n-16 \\
& \geq 3 n+15-16=3 n-1>3 n-4
\end{aligned}
$$

By contradiction, $3 n-4 \neq a n+b(3 n-8)$. Therefore, $2=\min \{k>0: k(3 n-4) \in$ $\langle n, 3 n-8\rangle\}$, so by Lemma 1.7, $w=2(3 n-4)$ is a Betti element of S.

Finally, by Lemma 1.8 .

$$
\begin{aligned}
& c(u)=\max \left\{\frac{3 n-5}{2}, \frac{n-1}{2}+1\right\}=\frac{3 n-5}{2} \\
& c(v)=\max \left\{\frac{n+1}{2}, \frac{3 n-11}{2}+1\right\}=\frac{3 n-9}{2}
\end{aligned}
$$

and

$$
c(w)=\max \{2,3+1\}=4
$$

as desired.

Theorem 2.3. Let n be an odd integer greater than or equal to 5 and let $S=$ $\langle n, 3 n-8,3 n-4\rangle$. Then

$$
\left\{0,4, n-2, n-1, n, \ldots, \frac{3 n-11}{2}, \frac{3 n-9}{2}, \frac{3 n-5}{2}\right\} \subset C(S)
$$

Proof. Since $c(0)=0,0 \in C(S)$. Furthermore, by Lemma 2.2 ,

$$
\left\{4, \frac{3 n-9}{2}, \frac{3 n-5}{2}\right\} \subset C(S)
$$

Therefore, it remains to show that, if $n \geq 7$, then

$$
\left\{n-2, n-1, n, \ldots, \frac{3 n-11}{2}\right\} \subset C(S)
$$

If $n \geq 7$, let $s_{k}=\left(\frac{n+1}{2}+k\right)(3 n-8)$, for $1 \leq k \leq \frac{n-5}{2}$. For a given k, we claim that s_{k} has exactly $k+2$ distinct factorizations:

$$
\begin{aligned}
& z_{0}=\left(0, \frac{n+1}{2}+k, 0\right) \text { and } \\
& z_{i}=\left(\frac{3 n-5}{2}-3 i, k-i+1,2 i-1\right), \text { for } 1 \leq i \leq k+1
\end{aligned}
$$

We have

$$
\begin{aligned}
s_{1} & =\left(\frac{n+3}{2}\right)(3 n-8) \\
& =\left(\frac{3 n-11}{2}\right) n+(3 n-8)+(3 n-4) \\
& =\left(\frac{3 n-17}{2}\right) n+3(3 n-4)
\end{aligned}
$$

Thus, s_{1} has at least three distinct factorizations:

$$
z_{0}=\left(0, \frac{n+3}{2}, 0\right), z_{1}=\left(\frac{3 n-11}{2}, 1,1\right) \text { and } z_{2}=\left(\frac{3 n-17}{2}, 0,3\right)
$$

Suppose there exists another factorization $z=(p, q, r)$ of s_{1}. Since $\frac{3 n-17}{2}<$ $3 n-4,3<n$ and $\operatorname{gcd}(n, 3 n-4)=1$, it follows that z_{2} is the only factorization of s_{1} whose second entry is zero. Therefore, if $q=0$, then $z=z_{2}$. Otherwise, $q \neq 0$ and, consequently, $z^{\prime}=(p, q-1, r)$ is a factorization of $v=\left(\frac{n+1}{2}\right)(3 n-8)$, which is a Betti element of S. Then, $z^{\prime}=\left(0, \frac{n+1}{2}, 0\right)$ or $z^{\prime}=\left(\frac{3 n-11}{2}, 0,1\right)$, which implies that $z=z_{0}$ or $z=z_{1}$. Therefore, z_{0}, z_{1} and z_{2} are the three unique distinct factorizations of s_{1}.

Now assume that s_{k} has exactly $k+2$ distinct factorizations of the form given above, for some k such that $1 \leq k \leq \frac{n-7}{2}$. The element s_{k+1} has at least
$k+3$ distinct factorizations:

$$
\begin{aligned}
& z_{0}=\left(0, \frac{n+1}{2}+(k+1), 0\right) \text { and } \\
& z_{i}=\left(\frac{3 n-5}{2}-3 i,(k+1)-i+1,2 i-1\right), \text { for } 1 \leq i \leq k+2 .
\end{aligned}
$$

Again, suppose there exists another factorization $z=(p, q, r)$ of s_{k+1}. Since $\frac{3 n-5}{2}-3(k+2)<\frac{3 n-5}{2}-3=\frac{3 n-11}{2}<3 n-4,2(k+2)-1=2 k+3 \leq$ $n-7+3=n-4<n$ and $\operatorname{gcd}(n, 3 n-4)=1$, it follows that z_{k+2} is the only factorization of s_{k+1} whose second entry is zero. Therefore, if $q=0$, then $z=z_{k+2}$. Otherwise, $q \neq 0$ and, consequently, $z^{\prime}=(p, q-1, r)$ is a factorization of s_{k}. By the induction hypothesis, it follows that $z^{\prime}=\left(0, \frac{n+1}{2}+k, 0\right)$ or $z^{\prime}=$ $\left(\frac{3 n-5}{2}-3 j, k-j+1,2 j-1\right)$ for some j such that $1 \leq j \leq k+1$. But that implies that $z=z_{0}$ or $z=z_{i}$ for some i such that $1 \leq i \leq k+1$. Therefore, $z_{0}, z_{1}, \ldots, z_{k+2}$ are the $k+3$ unique distinct factorizations of s_{k+1}.

For $1 \leq i \leq k, d\left(z_{i}, z_{i+1}\right)=\max \{3+1,2\}=4$. For $1 \leq i \leq k+1, d\left(z_{0}, z_{i}\right)=$ $\max \left\{\frac{n+1}{2}+k-(k-i+1), \frac{3 n-5}{2}-3 i+2 i-1\right\}=\max \left\{\frac{n-1}{2}+i, \frac{3 n-7}{2}-i\right\}$. Suppose $\frac{n-1}{2}+i>\frac{3 n-7}{2}-i$. Then $2 i>\frac{3 n-7-n+1}{2}=\frac{2 n-6}{2}=n-3$, implying that $i>\frac{n-3}{2}$. However, $i \leq k+1 \leq \frac{n-5}{2}+1=\frac{n-3}{2}$. By contradiction, $\frac{n-1}{2}+i \leq \frac{3 n-7}{2}-i$, so $d\left(z_{0}, z_{i}\right)=\frac{3 n-7}{2}-i$. Therefore, $d\left(z_{0}, z_{i}\right)<d\left(z_{0}, z_{j}\right)$ whenever $1 \leq j<i \leq k+1$. It follows that if $N<d\left(z_{0}, z_{k+1}\right)$, then there does not exist an N-chain from z_{0} to any other factorization of s_{k}. Therefore, $c\left(s_{k}\right) \geq d\left(z_{0}, z_{k+1}\right)=\frac{3 n-7}{2}-(k+1)=\frac{3 n-9}{2}-k$. However, for $1 \leq i \leq k$, $d\left(z_{i}, z_{i+1}\right)=4<n-2=\frac{2 n-4}{2}=\frac{3 n-9}{2}-\frac{n-5}{2} \leq \frac{3 n-9}{2}-k$. Thus, given any two factorizations z_{i}, z_{j} of s_{k}, with $i<j$, if $N=\frac{3 n-9}{2}-k$, then there exists an N-chain from z_{i} to z_{j}, namely, $z_{i}, z_{i+1}, \ldots, z_{j}$ if $i \neq 0$, otherwise, $z_{j}, z_{j+1}, \ldots, z_{k+1}, z_{0}=z_{i}$. Therefore, $c\left(s_{k}\right) \leq \frac{3 n-9}{2}-k$ and, thus, $c\left(s_{k}\right)=$ $\frac{3 n-9}{2}-k$. Consequently, for $1 \leq k \leq \frac{n-5}{2}, c\left(s_{k}\right)=\frac{3 n-9}{2}-k \in C(S)$, i.e.,

$$
\left\{n-2, n-1, n, \ldots, \frac{3 n-11}{2}\right\} \subset C(S),
$$

which concludes the proof.
Corollary 2.4. There exist numerical monoids with arbitrarily large catenary sets.

3 The Minimum Catenary Degree

Lemma 3.1. Let $S=\left\langle n_{1}, \ldots, n_{k}\right\rangle$ be a numerical monoid. Suppose $s \in S$ and $|Z(s)| \geq 2$. Let B be the set of Betti elements of S that divide s. Then, given $\left(f_{1}, \ldots, f_{k}\right)=f \in Z(s)$, there exists $g \in Z(s)$ such that

$$
d(f, g) \geq b=\min \{c(m): m \in B\} .
$$

Proof. First, we will show that there exists $\left(h_{1}, \ldots, h_{k}\right)=h \in Z(m)$ for some $m \in B$ such that $h_{i} \leq f_{i}$ for $1 \leq i \leq k$.

Let

$$
X=\left\{\left(x_{1}, \ldots, x_{k}\right): x_{i} \leq f_{i} \text { for } 1 \leq i \leq k\right\}
$$

and let

$$
F=\{x \in X:|Z(\varphi(x))| \geq 2\}
$$

Note that $f \in F$, so that $F \neq \emptyset$. Therefore, choose $h \in F$ such that $|h| \leq|z|$ for all $z \in F$. Let $m=\varphi(h)$. Since $h \in F,|Z(m)|=|Z(\varphi(h))| \geq 2$.

Suppose ∇_{m} is connected. Then there exists a factorization $j \in Z(m)$ such that $\operatorname{gcd}(h, j) \neq 0$. Let $h^{\prime}=h-\operatorname{gcd}(h, j), j^{\prime}=j-\operatorname{gcd}(h, j)$ and $m^{\prime}=\varphi\left(h^{\prime}\right)$. Then $h^{\prime} \in Z\left(m^{\prime}\right)$ and $j^{\prime} \in Z\left(m^{\prime}\right)$, so $\left|Z\left(m^{\prime}\right)\right| \geq 2$. It follows that $h^{\prime} \in F$. Furthermore,

$$
\left|h^{\prime}\right|=|h-\operatorname{gcd}(h, j)|<|h| .
$$

However, $h^{\prime} \in F$, so $|h| \leq\left|h^{\prime}\right|$, implying that ∇_{m} is not connected. Therefore, m is a Betti element of S. Since $h \in F, h_{i} \leq f_{i}$ for $1 \leq i \leq k$, i.e., $f-h \in \mathbb{N}_{0}^{k}$. Thus, $s-m=\varphi(f)-\varphi(h)=\varphi(f-h) \in S$, i.e., m divides s, so $m \in B$.

Since removing edges of weight $c(m)$ and greater disconnects the factorization graph of m, every factorization of m is connected to another factorization by an edge of weight greater than or equal to $c(m)$. Therefore, there exists $j \in Z(m)$ such that $d(h, j) \geq c(m) \geq b$. Let $g=j+f-h$. Then

$$
\varphi(g)=\varphi(j+f-h)=\varphi(j)+\varphi(f)-\varphi(h)=m+s-m=s
$$

so $g \in Z(s)$. Furthermore, $d(f, g)=d(h+f-h, j+f-h)=d(h, j) \geq b$.
Proposition 3.2. Let S be a numerical monoid and let $n \in S$. Furthermore, let B be the set of Betti elements of S that divide n and let $b=\min \{c(m): m \in$ $B\}$. If $f_{1}, f_{2} \in Z(n)$ and $d\left(f_{1}, f_{2}\right)<b$, then there exists $f_{3} \in Z(n)$ such that $\max \left\{\left|f_{1}\right|,\left|f_{2}\right|\right\}<\left|f_{3}\right|$.

Proof. Suppose $f_{1}, f_{2} \in Z(n)$ for some $n \in S$ and $d\left(f_{1}, f_{2}\right)<b$. Let

$$
f_{i}^{\prime}=f_{i}-\operatorname{gcd}\left(f_{1}, f_{2}\right)
$$

for $i=1,2$ and let $n^{\prime}=\varphi\left(f_{1}^{\prime}\right)$. Furthermore, let B^{\prime} be the set of Betti elements of S that divide n^{\prime} and let $b^{\prime}=\min \left\{c(m): m \in B^{\prime}\right\}$. By Lemma 3.1. there exists $f_{3}^{\prime} \in Z\left(n^{\prime}\right)$ such that $d\left(f_{1}^{\prime}, f_{3}^{\prime}\right) \geq b^{\prime}$. Suppose $m^{\prime} \in B^{\prime}$. Then $n^{\prime}-m^{\prime} \in S$ and, since

$$
n-n^{\prime}=\varphi\left(f_{1}\right)-\varphi\left(f_{1}^{\prime}\right)=\varphi\left(f_{1}-f_{1}^{\prime}\right)=\varphi\left(\operatorname{gcd}\left(f_{1}, f_{2}\right)\right) \in S
$$

we have $n-m^{\prime}=n-n^{\prime}+n^{\prime}-m^{\prime} \in S$. Therefore, $m^{\prime} \in B$, i.e., $B^{\prime} \subset B$. It follows that $\left\{c(m): m \in B^{\prime}\right\} \subset\{c(m): m \in B\}$ and, thus, that

$$
b^{\prime}=\min \left\{c(m): m \in B^{\prime}\right\} \geq \min \{c(m): m \in B\}=b
$$

Consequently, $d\left(f_{1}^{\prime}, f_{3}^{\prime}\right) \geq b^{\prime} \geq b$.

Since $\operatorname{gcd}\left(f_{1}^{\prime}, f_{2}^{\prime}\right)=0$, then

$$
b>d\left(f_{1}, f_{2}\right)=d\left(f_{1}^{\prime}, f_{2}^{\prime}\right)=\max \left\{\left|f_{1}^{\prime}\right|,\left|f_{2}^{\prime}\right|\right\}
$$

Furthermore,

$$
b \leq d\left(f_{1}^{\prime}, f_{3}^{\prime}\right)=\max \left\{\left|\frac{f_{1}^{\prime}}{\operatorname{gcd}\left(f_{1}^{\prime}, f_{3}^{\prime}\right)}\right|,\left|\frac{f_{3}^{\prime}}{\operatorname{gcd}\left(f_{1}^{\prime}, f_{3}^{\prime}\right)}\right|\right\}
$$

But $\left|f_{1}^{\prime}\right| \leq \max \left\{\left|f_{1}^{\prime}\right|,\left|f_{2}^{\prime}\right|\right\}<b$, so

$$
\left|\frac{f_{1}^{\prime}}{\operatorname{gcd}\left(f_{1}^{\prime}, f_{3}^{\prime}\right)}\right| \leq\left|f_{1}^{\prime}\right|<b
$$

Therefore,

$$
b \leq d\left(f_{1}^{\prime}, f_{3}^{\prime}\right)=\left|\frac{f_{3}^{\prime}}{\operatorname{gcd}\left(f_{1}^{\prime}, f_{3}^{\prime}\right)}\right| \leq\left|f_{3}^{\prime}\right|
$$

Consequently,

$$
\max \left\{\left|f_{1}^{\prime}\right|,\left|f_{2}^{\prime}\right|\right\}<b \leq\left|f_{3}^{\prime}\right|
$$

Let $f_{3}=f_{3}^{\prime}+\operatorname{gcd}\left(f_{1}, f_{2}\right)$. Since

$$
\varphi\left(\operatorname{gcd}\left(f_{1}, f_{2}\right)\right)=\varphi\left(f_{1}-f_{1}^{\prime}\right)=\varphi\left(f_{1}\right)-\varphi\left(f_{1}^{\prime}\right)=n-n^{\prime}
$$

then

$$
\varphi\left(f_{3}\right)=\varphi\left(f_{3}^{\prime}+\operatorname{gcd}\left(f_{1}, f_{2}\right)\right)=\varphi\left(f_{3}^{\prime}\right)+\varphi\left(\operatorname{gcd}\left(f_{1}, f_{2}\right)\right)=n^{\prime}+n-n^{\prime}=n
$$

Therefore, $f_{3} \in Z(n)$. Furthermore,

$$
\begin{aligned}
\left|f_{i}\right| & =\left|f_{i}^{\prime}+\operatorname{gcd}\left(f_{1}, f_{2}\right)\right| \\
& =\left|f_{i}^{\prime}\right|+\left|\operatorname{gcd}\left(f_{1}, f_{2}\right)\right| \\
& \leq \max \left\{\left|f_{1}^{\prime}\right|,\left|f_{2}^{\prime}\right|\right\}+\left|\operatorname{gcd}\left(f_{1}, f_{2}\right)\right| \\
& <\left|f_{3}^{\prime}\right|+\left|\operatorname{gcd}\left(f_{1}, f_{2}\right)\right| \\
& =\left|f_{3}^{\prime}+\operatorname{gcd}\left(f_{1}, f_{2}\right)\right|=\left|f_{3}\right|
\end{aligned}
$$

for $i=1,2$. Therefore, $\max \left\{\left|f_{1}\right|,\left|f_{2}\right|\right\}<\left|f_{3}\right|$.
Theorem 3.3. Let S be a numerical monoid and let $s \in S$ such that $|Z(s)| \geq$ 2. Furthermore, let B be the set of Betti elements of S that divide s and let $b=\min \{c(m): m \in B\}$. Then $c(s) \geq b$.

Proof. Let $V \subset Z(s)$ denote the set of factorizations v of s for which there exists $v^{\prime} \in Z(s)$ with $d\left(v, v^{\prime}\right)<b$. Suppose $V=\emptyset$. Then $d\left(z, z^{\prime}\right) \geq b$ for all $z, z^{\prime} \in Z(s)$, and it follows that $c(s) \geq b$. Otherwise, $V \neq \emptyset$, so choose $w \in V$ such that $|w| \geq|v|$ for all $v \in V$. Since $w \in V$, there exists $w^{\prime} \in Z(s)$ such that $d\left(w, w^{\prime}\right)<b$. By Proposition 3.2, there exists $w^{\prime \prime} \in Z(s)$ such that $\max \left\{|w|,\left|w^{\prime}\right|\right\}<\left|w^{\prime \prime}\right|$. Therefore, $|w| \leq \max \left\{|w|,\left|w^{\prime}\right|\right\}<\left|w^{\prime \prime}\right|$. Since $|w| \geq|v|$ for all $v \in V$, it follows that $w^{\prime \prime} \notin V$. Consequently, $d\left(w^{\prime \prime}, z\right) \geq b$ for all $z \in Z(s)$. Thus, $c(s) \geq b$.

Corollary 3.4. Let S be a numerical monoid and let $s \in S$ such that $c(s)>0$. Furthermore, let B be the set of Betti elements of S and let $b=\min \{c(m): m \in$ $B\}$. Then $c(s) \geq b$.

Corollary 3.5. Let S be a numerical monoid and let B be the set of Betti elements of S. Then $C(S)=\{0, c\}$ if and only if $c(m)=c$ for all $m \in B$.

4 The Single Betti Element Case

We will now investigate the case when our numerical semigroups have a single Betti element, in order words, when $c_{1} n_{1}=c_{2} n_{2}=c_{3} n_{3}$. When this is the case, our numerical semigroup is more "well behaved" thus giving it properties not always found in other cases. We now take a look at some of these properties.

First, by applying an ordering to our generators, we quickly see that we have an ordering on our c_{i} 's as well.

Lemma 4.1. Let $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ be a numerical semigroup of embedding dimension three where $n_{1}<n_{2}<n_{3}$ such that S has a single Betti element. Then $c_{1}>c_{2}>c_{3}>1$.

Proof. Since S has a single Betti element, then $c_{1} n_{1}=c_{2} n_{2}=c_{3} n_{3}$. First consider $c_{1} n_{1}=c_{2} n_{2}$. Since $n_{1}<n_{2}$ then $c_{2} n_{2}=c_{1} n_{1}<c_{1} n_{2} \Longrightarrow c_{2} n_{2}<$ $c_{1} n_{2} \Longrightarrow c_{1}>c_{2}$. Similarly, $c_{2}>c_{3}$. Also, $c_{3}>1$ because by definition $c_{3}>0$ and if $c_{3}=1$ that would imply n_{3} can be decomposed into n_{1} and n_{2} atoms which would make n_{3} no longer an atom, a contradiction. Thus $c_{1}>c_{2}>c_{3}>1$.

Now, we take a closer look at the structure of the single Betti element. We will show that if our semigroup does have exactly one Betti element, then that Betti element has exactly 3 factorizations which we can explicitly state.

Lemma 4.2. Let S be a numerical semigroup of embedding dimension three with a single Betti element. Then the Betti element has only three factorizations (i.e. $\left.\left(c_{1}, 0,0\right),\left(0, c_{2}, 0\right),\left(0,0, c_{3}\right)\right)$.

Proof. First we show that $c_{1} n_{1}, c_{2} n_{2}, c_{3} n_{3}$ are the only factorizations of the single Betti element. So suppose,

$$
c_{1} n_{1}=a_{2} n_{2}+a_{3} n_{3}
$$

where $a_{2}, a_{3}>0$. From this, we see that $a_{2}<c_{2}$ and $a_{3}<c_{3}$ because if we suppose $a_{2} \geq c_{2}$, then $a_{2} n_{2} \geq c_{2} n_{2}=c_{1} n_{1}$ which would force $a_{3} n_{3}$ to be nonpositive which forces a_{3} to be non-positive, a contradiction (if $a_{3}=0$, then that would force $a_{2}=c_{2}$ which gives us $c_{1} n_{1}=c_{2} n_{2}$ which isn't a new factorization). Now, since $c_{1} n_{1}=c_{2} n_{2}$ we can write

$$
c_{2} n_{2}=a_{2} n_{2}+a_{3} n_{3}
$$

which simplifies to

$$
\left(c_{2}-a_{2}\right) n_{2}=a_{3} n_{3} .
$$

Since $c_{2}-a_{2}$ and a_{3} are positive, we have a contradiction of the minimality condition of c_{2}. Thus, we can't factor the Betti element in terms of two of the generators. Also, the Betti element can't be factored into three generators or else, that factorization would have an edge to every other factorization in the Betti element's ∇ graph, thus making it connected, which is a contradiction by the definition of a Betti element. Thus, $\left(c_{1}, 0,0\right),\left(0, c_{2}, 0\right),\left(0,0, c_{3}\right)$ are the only factorizations of the Betti element.

Given that we know what the factorizations of our Betti element is now, we can now find out what our minimal presentation is now.

Lemma 4.3. Let S be a numerical semigroup of embedding dimension three with a single Betti element. Then $\left\{\left(\left(c_{1}, 0,0\right),\left(0, c_{2}, 0\right)\right),\left(\left(c_{1}, 0,0\right),\left(0,0, c_{3}\right)\right)\right\}$ is a minimal presentation for S.

Proof. From lemma 4.2 we know that the Betti element has three factorizations $\left(c_{1}, 0,0\right),\left(0, c_{2}, 0\right),\left(0,0, c_{3}\right)$. Taking the pairwise dot product of each of these gives us zero so the ∇ graph of our Betti element consists of three vertices and no edges. Clearly, one edge is not enough to connect the graph. However, out of the three possible edges that can be drawn, choosing any two of them will connect the ∇ graph. Choose the edge between $\left(c_{1}, 0,0\right)$ and $\left(0, c_{2}, 0\right)$ and also choose the edge between $\left(c_{1}, 0,0\right)$ and $\left(0,0, c_{3}\right)$. These connect the ∇ graph and this is the only Betti element so $\left\{\left(\left(c_{1}, 0,0\right),\left(0, c_{2}, 0\right)\right),\left(\left(c_{1}, 0,0\right),\left(0,0, c_{3}\right)\right)\right\}$ is a minimal presentation.

Also with our factorizations we can easily figure out the catenary degree of our single Betti element.

Lemma 4.4. Let S be a numerical semigroup of embedding dimension three with a single Betti element b. Then $c(b)=c_{1}$.
Proof. From lemma 4.2 we have that our Betti element has three factorizations $\left(c_{1}, 0,0\right),\left(0, c_{2}, 0\right)$, and $\left(0,0, c_{3}\right)$. We now consider the distances between these factorizations. We will use the inequalities found in Lemma 4.1 .

$$
\begin{aligned}
& d\left(\left(c_{1}, 0,0\right),\left(0, c_{2}, 0\right)\right)=\max \left\{\left|\left(c_{1}, 0,0\right)\right|,\left|\left(0, c_{2}, 0\right)\right|\right\}=\max \left\{c_{1}, c_{2}\right\}=c_{1} \\
& d\left(\left(c_{1}, 0,0\right),\left(0,0, c_{3}\right)\right)=\max \left\{\left|\left(c_{1}, 0,0\right)\right|,\left|\left(0,0, c_{3}\right)\right|\right\}=\max \left\{c_{1}, c_{3}\right\}=c_{1} \\
& d\left(\left(0, c_{2}, 0\right),\left(0,0, c_{3}\right)\right)=\max \left\{\left|\left(0, c_{2}, 0\right)\right|,\left|\left(0,0, c_{3}\right)\right|\right\}=\max \left\{c_{2}, c_{3}\right\}=c_{2}
\end{aligned}
$$

We now apply the algorithm for computing the catenary degree. Since $c_{1}>$ c_{2}, we remove the two edges with weight c_{1} which disconnects the graph since a single edge can not connect a graph of three vertices. Thus, $c(b)=c_{1}$.

One might recall Corollary 3.5 which states that our catenary set has a single non-zero element when the catenary degree of all the Betti elements of a numerical semigroup are equal. Well, this is trivially true when we have a single Betti element, so we have the following as a result of that corollary and the previous lemma.

Corollary 4.5. Let S be a numerical semigroup of embedding dimension three with a single Betti element. Then $C(S)=\left\{0, c_{1}\right\}$.

Proof. Since S has a single Betti element, it is trivial that all the Betti elements have the same catenary degree, namely c_{1} according to Lemma 4.4 Thus, by Corollary 3.5. $C(S)=\left\{0, c_{1}\right\}$.

We introduce a lemma that gives us a quick bound on the weight of any swap.

Lemma 4.6. Let (r, s, t) be a swap. Then $w(r, s, t) \geq \max \{|r|,|s|,|t|\}$.
Proof. Without loss of generality, let $r, s \leq 0$ and $t \geq 0$. Then $w(r, s, t)=$ $\max \{|r+s|,|t|\}=\max \{|r|+|s|,|t|\} \geq \max \{|r|,|s|,|t|\}$.

An interesting question to ask is whether or not there exists edge weights greater than the minimum nonzero catenary degree and less than the maximum catenary degree that are not in the catenary set of a numerical semigroup and if such edges do exist, what form do they have? In the case of the single Betti element case, if such edges exist, they have a very predictable form as seen in the next theorem.

Theorem 4.7. Let S be a numerical semigroup of embedding dimension three with a single Betti element. Then all edge weights between factorizations of elements in S less than $c(S)$ have the form $k c_{2}$ for $k \in \mathbb{Z}^{+}$.

Proof. Recall that all edge weights are of the form $\{w(x \alpha+y \beta) \mid x, y \in \mathbb{Z}\}$ where $\alpha \neq \beta$ are two vector differences in the minimal presentation (i.e. a fundamental swap). From Lemma 4.3, the minimal presentation of S is

$$
\left\{\left(\left(c_{1}, 0,0\right),\left(0, c_{2}, 0\right)\right),\left(\left(c_{1}, 0,0\right),\left(0,0, c_{3}\right)\right)\right\}
$$

Thus, all edge weights are of the form $\left\{w\left(x\left(c_{1},-c_{2}, 0\right)+y\left(c_{1}, 0,-c_{3}\right)\right) \mid x, y \in \mathbb{Z}\right\}$. Making use of Lemma 4.6, we can simplify: $w\left(x\left(c_{1},-c_{2}, 0\right)+y\left(c_{1}, 0,-c_{3}\right)\right)=$ $w\left(c_{1}(x+y),-x c_{2},-y c_{3}\right) \geq\left|c_{1}(x+y)\right|$. First consider the case when $x \neq-y$. Then $x+y \neq 0$ so $|x+y| \geq 1$. Thus, $\left|c_{1}(x+y)\right|=\left|c_{1}\right||x+y| \geq\left|c_{1}\right|=c_{1}=c(S)$ (the last equality is a result of Lemma 4.5. Thus, if $x \neq-y$, then we get edge weights greater than or equal to $C(S)$. We want the edge weights less than $C(S)$ so this can only occur when $x=-y$. So considering the case when $x=$ $-y$, we have $w\left(x\left(c_{1},-c_{2}, 0\right)+y\left(c_{1}, 0,-c_{3}\right)\right)=w\left(x\left(c_{1},-c_{2}, 0\right)-x\left(c_{1}, 0,-c_{3}\right)\right)=$ $w\left(0,-x c_{2}, x c_{3}\right)=|x| w\left(0,-c_{2}, c_{3}\right)=|x| \max \left\{c_{2}, c_{3}\right\}$. By Lemma 4.1, $c_{2}>c_{3}$ so $|x| \max \left\{c_{2}, c_{3}\right\}=|x| c_{2}=k c_{2}$ for some $k \in \mathbb{Z}^{+}$.

It is interesting to note that one can use the above theorem to easily prove that $C(S)=\left\{0, c_{1}\right\}$ if S is a numerical semigroup of embedding dimension three with a single Betti element. However, since the result immediately follows from a previous corollary, we omit this proof. We leave it as an exercise to the reader to try to prove $C(S)=\left\{0, c_{1}\right\}$ as a result of the above theorem (Hint: One can make use of the fact that the c_{i} 's are pairwise coprime, a result proved later in this section.)

Now we will look at a method of constructing these semigroups that have a single Betti element. It is interesting to note that this construction only generates semigroups of embedding dimension three with a single Betti element and moreover, this construction actually generates all of them.

Theorem 4.8. The following two statements are equivalent

```
1. \(c_{1}>c_{2}>c_{3}>1\)
    \(c_{1}, c_{2}, c_{3}\) are pairwise coprime
    \(S=\left\langle c_{2} c_{3}, c_{1} c_{3}, c_{1} c_{2}\right\rangle\)
2. \(c_{1} n_{1}=c_{2} n_{2}=c_{3} n_{3}\)
    \(n_{1}<n_{2}<n_{3}\)
    \(S\) is numerical semigroup of embedding dimension three
    \(c_{i}=\min \left\{r>0 \mid r n_{i} \in\left\langle n_{j}, n_{k}\right\rangle\right\}\) for
    \(\{i, j, k\}=\{1,2,3\}\)
```

Proof. First, we show $1 \Longrightarrow 2$.
Clearly, $c_{1} n_{1}=c_{1}\left(c_{2} c_{3}\right)=c_{2}\left(c_{1} c_{3}\right)=c_{2} n_{2}=c_{3}\left(c_{1} c_{2}\right)=c_{3} n_{3}$ so $c_{1} n_{1}=$ $c_{2} c_{2}=c_{3} n_{3}$.

Since $c_{1}>c_{2}$, then $c_{2} n_{2}=c_{1} n_{1}>c_{2} n_{1}$ so simplifying gives us $n_{2}>n_{1}$. Similarly, $n_{3}>n_{2}$ so $n_{1}<n_{2}<n_{3}$.

Next, we show the c_{i} 's truly are minimal. Suppose $r_{1} n_{1}=r_{2} n_{2}+r_{3} n_{3}$ where $0<r<c_{1}$. Substituing, we get $r_{1} c_{2} c_{3}=r_{2} c_{1} c_{3}+r_{3} c_{1} c_{2}$. Taking this modulo c_{1}, we get $r_{1} c_{2} c_{3}=0 \bmod c_{1}$. Thus, $c_{1} \mid r_{1} c_{2} c_{3}$. However, $\operatorname{gcd}\left(c_{1}, c_{2}\right)=$ $\operatorname{gcd}\left(c_{1}, c_{3}\right)=1$ so it must be the case that $c_{1} \mid r$ a contradiction since r is less than c_{1} and non-zero. Thus, c_{1} is minimal and similar argument can be used to show c_{2}, c_{3} are minimal.

Next, we show that S is primitive by showing $\operatorname{gcd}\left(n_{1}, n_{2}, n_{3}\right)=1$. Notice, $\operatorname{gcd}\left(n_{1}, n_{2}, n_{3}\right)=\operatorname{gcd}\left(\operatorname{gcd}\left(n_{1}, n_{2}\right), n_{3}\right)=\operatorname{gcd}\left(\operatorname{gcd}\left(c_{2} c_{3}, c_{1} c_{3}\right), c_{1} c_{2}\right)$. Since $\operatorname{gcd}\left(c_{1}, c_{2}\right)=1$, then $\operatorname{gcd}\left(c_{1} c_{3}, c_{2} c_{3}\right)=c_{3}$ so $\operatorname{gcd}\left(c_{3}, c_{1}\right)=1$ and $\operatorname{gcd}\left(c_{3}, c_{2}\right)=1$ imply

$$
\operatorname{gcd}\left(\operatorname{gcd}\left(c_{2} c_{3}, c_{1} c_{3}\right), c_{1} c_{2}\right)=\operatorname{gcd}\left(c_{3}, c_{1} c_{2}\right)=1
$$

Lastly, we show that this numerical semigroup is really of embedding dimension three. Suppose one of the atoms c_{i} for $i \in\{1,2,3\}$ can be decomposed into the other two atoms. But that would imply $c_{i}=1$ a contradiction since all the c_{i} 's are greater than 1.

Now we show $2 \Longrightarrow 1$
First we show c_{1}, c_{2}, c_{3} are pairwise coprime. Suppose by the contrary that they weren't. Then, WLOG, let $\operatorname{gcd}\left(c_{1}, c_{2}\right)=d$ where $d>1$. Then $d \mid c_{1}$
and $d \mid c_{2}$ so we can write $a_{1} d=c_{1}, a_{2} d=c_{2}$ for $a_{1}, a_{2}, \in \mathbb{Z}$. Also, we know $a_{1}<c_{1}$ and $a_{2}<c_{2}$ (we can't have equality since $d>1$). Rewriting, we have $a_{1}=\frac{c_{1}}{d}, a_{2}=\frac{c_{2}}{d}$. Now, we divide out an equation by d and get $c_{1} n_{1}=$ $c_{2} n_{2} \Longrightarrow \frac{c_{1}}{d} n_{1}=\frac{c_{2}}{d} n_{2} \Longrightarrow a_{1} n_{1}=a_{2} n_{2}$. However, $a_{1}<c_{1}$ so this contradicts the minimality of c_{1}. Thus, c_{1}, c_{2}, c_{3} are pairwise coprime.

The fact that $c_{1}>c_{2}>c_{3}>1$ follows from Lemma 4.1.
Lastly we show $n_{1}=c_{2} c_{3}, n_{2}=c_{1} c_{3}, n_{3}=c_{1} c_{2}$. Take the equation $c_{1} n_{1}=$ $c_{2} n_{2}$. From that we can get $c_{1} n_{1}=0 \bmod c_{2}$ which implies $c_{2} \mid c_{1} n_{1}$. Since $\operatorname{gcd}\left(c_{1}, c_{2}\right)=1$, we have $c_{2} \mid n_{1}$. Simarlarly, $c_{3} \mid n_{1}$. And since $\operatorname{gcd}\left(c_{2}, c_{3}\right)=1$, we have $n_{1}=k c_{2} c_{3}, k \in \mathbb{Z}$. Similarly, $n_{2}=l c_{1} c_{3}$ and $n_{3}=m c_{1} c_{2}$ for $l, m \in \mathbb{Z}$. Notice that we have to satisfy the condition $c_{1} n_{1}=c_{2} n_{2}=c_{3} n_{3}$. Take $c_{1} n_{1}=$ $c_{2} n_{2}$. Plugging in n_{1}, n_{2}, we have $c_{1}\left(k c_{2} c_{3}\right)=c_{2}\left(l c_{1} c_{3}\right)$ and after simplifying we get $k=l$. Using this argument again gives us $k=l=m$. We know $k=1$ or else $\operatorname{gcd}\left(n_{1}, n_{2}, n_{3}\right)=\operatorname{gcd}\left(k c_{2} c_{3}, l c_{1} c_{3}, m c_{1} c_{2}\right)=\operatorname{gcd}\left(k c_{2} c_{3}, k c_{1} c_{3}, k c_{1} c_{2}\right) \geq k$ which is a contradiction since $\operatorname{gcd}\left(n_{1}, n_{2}, n_{3}\right)$ needs to be 1 for S to be a numerical semigroup. Thus, $n_{1}=c_{2} c_{3}$, $n_{2}=c_{1} c_{3}, n_{3}=c_{1} c_{3}$.

We know that all numerical semigroups of embedding dimension three with a single Betti element have a catenary set of the form $\{0, c\}$. So a natural question to ask is whether or not, for any given c, if there exists a semigroup of embedding dimension three that has catenary set $\{0, c\}$. For c large enough we will show that this is actually the case. Moreover, using the construction technique above, for c large enough, we can actually construct an explicit numerical semigroup with the desired catenary set.

Notice that our construction uses the fact that the c_{i} 's are all pairwise coprime and construction proof proves existence so this motivates the following lemma whose purpose will become more apparent in the next theorem.

Lemma 4.9. Let $n \geq 7$. Then there exists two primes $x, y<n$ that do not divide n.

Proof. If n is prime, then choose $x=2$ and $y=3$. Since n is prime, clearly x and y do not divide it so we are done. So suppose n is not prime. Then the number of primes less than n is the same as the number of primes less than or equal to n which we'll denote as $\pi(n)$. Also, the number of primes less than n that divide n is the same as the number of primes less than or equal to n that divide n which we'll denote as $\omega(n)$. Thus, it suffices to show that $\pi(n)-\omega(n) \geq 2$ for $n \geq 7$.

It can easily be shown that $\omega(n) \leq \log _{2} n$. Suppose by the contrary that $\omega(n)>\log _{2} n$. Then when we write n as a prime factorization $p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}}$ where $k=\omega(n)>\log _{2} n$. Clearly, $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{k}^{r_{k}} \geq p_{1} p_{2} \cdots p_{k}$. Also, since 2 is the smallest prime, $p_{1} p_{2} \cdots p_{k} \geq 2^{k}$. Since $k>\log _{2} n$, then $2^{k}>2^{\log _{2} n}=n$, thus $n>n$, a contradiction. (It is interesting to note that if $\Omega(n)$ is the number of primes including multiplicity, then $\log _{2}(n)$ is the tightest possible bound since it reaches equality for infinitely many n).

According to [6], for $n \geq 55, \pi(n)>\frac{n}{\ln (n)+2}$.

Since $n \geq 7$, we can use those two bounds $\left(\pi(n)>\frac{n}{\ln (n)+2}\right.$ and $\left.\omega(n) \leq \log _{2} n\right)$ and write $\pi(n)-\omega(n)>\frac{n}{\ln (n)+2}-\log _{2}(n)$ for $n \geq 55$. Thus, it is also true for $n \geq 65$. We want to show that $\frac{n}{\ln (n)+2}-\log _{2}(n) \geq 2$ for $n \geq 65$. First, we claim that $\sqrt{n} \geq \ln n+2$ for $n \geq 65$. We show this by showing that the derivative of the \sqrt{n} function is greater than that of the $\ln n+2$ function for $n \geq 65$ and also $\sqrt{65} \geq \ln (65)+2$ which guarantees that $\sqrt{n} \geq \ln n$ for $n \geq 65$. We set the equality $\frac{d}{d x}(\sqrt{n}) \geq \frac{d}{d x}(\ln (n)+2) \rightarrow \frac{1}{2} n^{\frac{-1}{2}} \geq n^{-1}$ which simplifies to $\sqrt{n} \geq 2$ which is true for $n \geq 4$. Also, one can verify with a calculator that $\sqrt{65} \geq \ln (65)+2$, thus, we have shown $\sqrt{n} \geq \ln (n)+2$ for $n \geq 65$. Since n is positive for $n \geq 65$, we have $\sqrt{n} \geq \ln (n)+2 \rightarrow \sqrt{n} / n \geq$ $(\ln (n)+2) / n \rightarrow n / \sqrt{n} \leq n /(\ln (n)+2) \rightarrow \sqrt{n} \leq n /(\ln (n)+2)$. From this, we can write $\frac{n}{\ln (n)+2}-\log _{2}(n) \geq \sqrt{n}-\log _{2}(n)$. We show this is an increasing function for $n \geq 65$ by showing it's derivative is positive for $n \geq 65$. Setting the inequality: $\frac{d}{d x}\left(\sqrt{n}-\log _{2}(n)\right) \geq 0 \rightarrow \frac{1}{2} n^{-1 / 2}-\frac{1}{n \ln (2)} \geq 0$ which simplifies to $n \geq \frac{4}{(\ln (2))^{2}} \approx 8.3$. Thus, since this is an increasing function for $n \geq \frac{4}{(\ln (2))^{2}}$ and since $\sqrt{65}-\log _{2}(65)>2$, we know $\sqrt{n}-\log _{2}(n) \geq 2$ for $n \geq 65$. Thus, we know $\pi(n)-\omega(n) \geq 2$ for $n \geq 65$.

We still need to show this is true for $7 \leq n<65$. Since this is a finite number of cases to consider, one can write a computer program to verify. We used the program Sage which is python-based. First we defined the $\pi(n)$ and $\omega(n)$ functions,

```
Code 4.10.
def Pi(n):
    return len([i for i in (2..n) if (i+0).is_prime()])
def Omega(n):
    return len([i for i in (2..n) if (i+0).is_prime() and n%i==0])
```

Next, we check for which values of $7 \leq n<65$ have the property that $\pi(n)-\omega(n)<2$.

Code 4.11.

[i for i in range (7,65) if $\mathrm{Pi}(i)-O m e g a(i)<2]$
We expect this code to return an empty list which it does. Thus, this verifies for $7 \leq n<65$ that $\pi(n)-\omega(n) \geq 2$ and we had shown that was true earlier as well for $n \geq 65$. Thus, $\pi(n)-\omega(n) \geq 2$ for $n \geq 7$, concluding our proof.

It is interesting to note that if one wants to, they can extend this lemma to show that for any P, for all n sufficiently large, that there exists P smaller primes that don't divide n.

Now that we have the lemma that we need, we can easily prove what we claimed earlier: that for large enough c, there always exists a numerical semigroup group of embedding dimension three such that $C(S)=\{0, c\}$.

Theorem 4.12. Let $c>2$. Then there exists a numerical semigroup S in embedding dimension 3 such that $C(S)=\{0, c\}$.

Proof. For $c<7$, we can explicity find numerical semigroups with this property (these need to be found and stated later) so suppose $c \geq 7$. Let $c=c_{1}$ and pick c_{2}, c_{3} such that they are pairwise coprime and $c_{1}>c_{2}>c_{3}>1$. It suffices to pick c_{2}, c_{3} such that they are primes less than c_{1} that do not divide c_{1}, thus satisfying the inequality and coprime conditions. By Lemma 4.9, such c_{2}, c_{3} always exists. Now let $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle=\left\langle c_{2} c_{3}, c_{1} c_{3}, c_{1} c_{2}\right\rangle$. Then by Theorem 4.8, S is a numerical semigroup of embedding dimension 3 such that each c_{i} agrees with the usual definition of $c_{i}, c_{1} n_{1}=c_{2} n_{2}=c_{3} n_{3}$, and $n_{1}<$ $n_{2}<n_{3}$. Thus, from Corollary 4.5. we have that $C(S)=\left\{0, c_{1}\right\}=\{0, c\}$.

5 Minimal Presentations of Subsets

We introduce the definition for a minimal presentation with respect to a subset of the numerical semigroup. We make a slight modification found in 1 .

Definition 5.1. If ρ is a minimal presentation for S^{\prime}, a subset of a numerical semigroup S (that is, ρ is a minimal system of generators of σ as a congruence), then whenever $z \in S^{\prime}$ and $z \sigma z^{\prime}$, there exists $z_{0}, \ldots, z_{k} \in \mathbb{N}^{p}$ in such a way that $z=z_{0} \sigma z_{1} \ldots \sigma z_{k-1} \sigma z_{k}=z^{\prime}$ and $\left(z_{i}, z_{i+1}\right)=\left(a_{i}+u_{i}, b_{i}+u_{i}\right)$ for some $u_{i} \in \mathbb{N}^{p}$ and $\left(a_{i}, b_{i}\right) \in \rho \cup \rho^{-1}$. Moreover, no proper subset of ρ generates σ as a congruence.

When it comes to minimal presentations of a subset of a numerical semigroup S, it is clear it is going to be a subset of the minimal presentation of S. However, is there ever a case where the minimal presentation of a subset of S is a proper subset of S ? The answer is yes for particular subsets.

Proposition 5.2. Let S be a numerical semigroup and let $S_{\mathfrak{B}} \subseteq S$ such that \mathfrak{B} is a subset of the Betti elements of S and $S_{\mathfrak{B}}=\{s \in S \mid \forall b \in \mathfrak{B}: s-b \notin S\}$. Let $p=\cup_{n \in S} p_{n}$ be a minimal presentation of S where the p_{n} 's are constructed as they usually are in [1]. Then, $p_{\mathfrak{B}}=p \backslash \cup_{n \in \mathfrak{B}} p_{n}$ is a minimal presentation for $S_{\mathfrak{B}}$.

Proof. Suppose by the contrary that for $\left(a_{j}, b_{j}\right) \in p_{n}$ for $n \in \mathfrak{B}$, that $\left(a_{j}, b_{j}\right) \in$ $p_{\mathfrak{B}}$. Then there exists an element $s \in S_{\mathfrak{B}}$ such that there exists two factorizations f_{a} and f_{b} such that there exists a path $f_{1} \rightarrow f_{2} \cdots \rightarrow f_{k-1} \rightarrow f_{k}$ where $a=1, b=k$, and each $\left(f_{i}, f_{i+1}\right)=\left(a_{i}+u_{i}, b_{i}+u_{i}\right)$ for some $u_{i} \in \mathbb{N}^{p}$ and $\left(a_{i}, b_{i}\right) \in p_{\mathfrak{B}} \cup p_{\mathfrak{B}}^{-1}$ for $i=1,2, \ldots, k-1$ and for some $j \in\{1,2, \ldots, k-1\}$, $\left(f_{j}, f_{j+1}\right)=\left(a_{j}+u_{j}, b_{j}+u_{j}\right)$ for some $u_{j} \in \mathbb{N}^{p}$. If such an s didn't exist, then $p_{\mathfrak{B}}$ could be generated without p_{n} which would make $p_{\mathfrak{B}}$ no longer minimal, a contradiction. We can write out $f_{j}=a_{j}+u_{j}$ and $f_{j+1}=b_{j}+u_{j}$ where a_{j}, b_{j} are factorizations of n. We see that $u_{j}=f_{j}-a_{j}$. Since u_{j} is composed of non-negative components, then $\phi\left(f_{j}\right)-\phi\left(a_{j}\right) \in S \Longrightarrow s-n \in S$. However, $n \in \mathfrak{B}$ and s has the property that $\forall n \in \mathfrak{B}, s-n \notin S$, a contradiction. Thus, $p_{\mathfrak{B}}=p \backslash \cup_{n \in \mathfrak{B}} p_{n}$ is a presentation for $S_{\mathfrak{B}}$.

From this point on, whenever $S_{\mathfrak{B}}$ is used, it will be as defined in the previous proposition (Proposition 5.2 where \mathfrak{B} is some subset of Betti elements of S. Also, whenever $\rho_{\mathfrak{B}}$ is used, it is assumed to be the minimal presentation for $S_{\mathfrak{B}}$.

We now see that minimal presentation of a subset of S can depend on the Betti elements that divide the elements in that subset. Evidence from data shows that the catenary degree of an element is bounded above by the catenary degrees of the Betti elements that divide it. Since the catenary degree is heavily influenced by the minimal presentation and since the minimal presentation is dependent on the Betti elements that divide elements of the subset in question, this provides us with enough motivation to continue with this "sub-minimal presentation" idea which will eventually evolve throughout this section into a result that agrees with the generated data.

Now we show that the highest catenary degree attained in $S_{\mathfrak{B}}$ is bounded by $S_{\mathfrak{B}}$'s minimal presentation. The proof for this lemma is nearly identical to the result in [1].

Lemma 5.3. Let $\left|\rho_{\mathfrak{B}}\right|=\max \left\{|a| \mid(a, b) \in \rho_{\mathfrak{B}} \cup \rho_{\mathfrak{B}}^{-1}\right.$ for some $\left.b \in \mathbb{N}^{p}\right\}$. Then $c\left(S_{\mathfrak{B}}\right) \leq\left|\rho_{\mathfrak{B}}\right|$.

Proof. Since $\rho_{\mathfrak{B}}$ is a minimal presentation for $S_{\mathfrak{B}}$ then whenever $z \in S_{\mathfrak{B}}$ and $z \sigma z^{\prime}$ then there exists $z_{0}, \ldots, z_{k} \in \mathbb{N}^{p}$ in such a way that $z=z_{0} \sigma z_{1} \sigma \ldots \sigma z_{k-1} \sigma z_{k}$ and $\left(z_{i}, z_{i+1}\right)=\left(a_{i}+u_{i}, b_{i}+u_{i}\right)$ for some $u_{i} \in \mathbb{N}^{p}$ and $\left(a_{i}, b_{i}\right) \in \rho_{\mathfrak{B}} \cup \rho_{\mathfrak{B}}^{-1}$. Notice that if $(a, b) \in \rho_{\mathfrak{B}} \cup \rho_{\mathfrak{B}}^{-1}$ then $\operatorname{gcd}(a, b)=0$. Thus, $(a, b)=\max \{|a|,|b|\}$. Observe that $d(a+u, b+u)=d(a, b)$ so in the above chain, the distance between adjacent elements is bounded by $\max \left\{|a| \mid(a, b) \in \rho_{\mathfrak{B}} \cup \rho_{\mathfrak{B}}^{-1}\right.$ for some $\left.b \in \mathbb{N}^{p}\right\}$.

We now introduce $\mu_{\mathfrak{B}}(n)$ which is a function that takes Betti elements and looks at the edges that connect disconnected components. Note that this function is dependent on \mathfrak{B}.

Definition 5.4. First, we define $\mu_{\mathfrak{B}}(n)$. Let $n \in S_{\mathfrak{B}}$ be such that G_{n} is not connected and let $\mathfrak{R}_{1}^{n}, \ldots, \mathfrak{R}_{k_{n}}^{n}$ be its different \mathfrak{R}-classes. We set $\mu_{\mathfrak{B}}(n)=$ $\max \left\{r_{1}^{n}, \ldots, r_{k_{n}}^{n}\right\}$ where $r_{i}^{n}=\min \left\{|z|: z \in \mathfrak{R}_{i}^{n}\right\}$. We define $\mu_{\mathfrak{B}}\left(S_{\mathfrak{B}}\right)=$ $\max \left\{\mu_{\mathfrak{B}}(n) \mid n \in S_{\mathfrak{B}}\right.$ and G_{n} not connected $\}$.

So in colloquial terms, we look at the shortest factorization of each disconnected component and then take the max over that. It is interesting to note that if you take the factorization graph of an element and "squish" the factorizations based on their \mathfrak{R}-class, and keep all the edges, then the catenary degree of this new multigraph is precisely $\mu_{\mathfrak{B}}(n)$.

We now prove a result that is similar to the result in [1] and follows nearly a similar argument being careful of the fact that we are using minimal presentations of $S_{\mathfrak{B}}$ for some \mathfrak{B}.
Lemma 5.5. Let $S_{\mathfrak{B}}$ be a subset of a numerical semigroup S constructed in the usual manner. Then $c\left(S_{\mathfrak{B}}\right)=\mu_{\mathfrak{B}}\left(S_{\mathfrak{B}}\right)$.

Proof. Construct ρ in the following way. For every $n \in S_{\mathfrak{B}}$ such that G_{n} is not connected, choose $\left(z_{1}, \ldots, z_{k_{n}}^{n}\right) \in \mathfrak{R}_{1}^{n} \times \cdots \times \mathfrak{R}_{k_{n}}^{n}$ such that $\left|z_{i}^{n}\right|=r_{i}^{n}$ for
$i \in\left\{1, \ldots, k_{n}\right\}$. Take $\rho_{n}=\left\{\left(z_{1}^{n}, z_{2}^{n}\right),\left(z_{1}^{n}, z_{3}^{n}\right), \ldots,\left(z_{1}^{n}, z_{k_{n}}^{n}\right)\right\}$. If G_{n} is connected, then set $\rho_{n}=\{ \}$. Then, from an earlier lemma, we see that $\rho=\cup_{n \in S_{\mathfrak{B}}} \rho_{n}$ is a minimal presentation for S. In view of Lemma 5.3, we deduce $c\left(S_{\mathfrak{B}}\right) \leq \mu_{\mathfrak{B}}\left(S_{\mathfrak{B}}\right)$.

Let $n \in S_{\mathfrak{B}}$ be such that $\mu_{\mathfrak{B}}\left(S_{\mathfrak{B}}\right)=\mu_{\mathfrak{B}}(n)$ and assume without loss of generality that $\mu_{\mathfrak{B}}(n)=\left|z_{1}^{n}\right|$. If $c\left(S_{\mathfrak{B}}\right)<\mu_{\mathfrak{B}}\left(S_{\mathfrak{B}}\right)$, then $c(n)<\left|z_{1}^{n}\right|$, or in other words, factorizations of n can be joined by c-chains for some $c<\left|z_{1}^{n}\right|$. Let $z=z_{1}^{n}$ and $z^{\prime}=z_{2}^{n}$. Since z and z^{\prime} are different factorizations of n, there must be a chain z_{1}, \ldots, z_{k} of factorizations of n with $z_{1}=z, z_{k}=z^{\prime}$ and $d\left(z_{i}, z_{i+1}\right) \leq c$. As z and z^{\prime} are in different \mathfrak{R} classes, there exists $i \in\{1, \ldots, k\}$ such that $z=z_{1}, \ldots, z_{i} \in \Re_{1}^{n}$ and $z_{i+1} \notin \mathfrak{R}_{1}^{n}$. From the definition of \mathfrak{R}-class, this in particular implies that $\operatorname{supp}\left(z_{i}\right) \cap \operatorname{supp}\left(z_{i+1}\right)$ is empty. Hence, $d\left(z_{i}, z_{i+1}\right)=$ $\max \left\{\left|z_{i}\right|,\left|z_{i+1}\right|\right\}$. As $z_{i} \in \mathfrak{R}_{i}^{n}$ and $\left|z_{i}^{n}\right|=r_{1}^{n}=\min \left\{|z|: z \in \mathfrak{R}_{1}^{n}\right\}$, we get that $\left|z_{1}^{n}\right| \leq\left|z_{i}\right|$. But then we obtain $\left|z_{1}^{n}\right| \leq \max \left\{\left|z_{i}\right|,\left|z_{i+1}\right|\right\}=d\left(z_{i}, z_{i+1}\right) \leq c$, contradicting that $c<\left|z_{1}^{n}\right|$.

Finally, we show the main result of this section: that the catenary degree of an element is bounded above by the catenary degrees of the Betti elements that divide it.

Theorem 5.6. Let $S_{\mathfrak{B}}$ be a subset of a numerical semigroup S constructed in the usual manner and let $s \in S_{\mathfrak{B}}$. Then, $c(s) \leq \max \left\{c(b) \mid b\right.$ is a Betti element in $\left.S_{\mathfrak{B}}\right\}$.

Proof. Let $b \in S_{\mathfrak{B}}$ such that $\mu_{\mathfrak{B}}\left(S_{\mathfrak{B}}\right)=\mu(b)$. Recall that by definition of μ, b must be a Betti element. Suppose that $c(b)<\mu(b)$. It was shown in Lemma 5.5 that this leads to a contradiction. Thus, $c(b) \geq \mu(b)$. So, by Lemma 5.5. $c\left(S_{\mathfrak{B}}\right)=\mu_{\mathfrak{B}}\left(S_{\mathfrak{B}}\right)=\mu(b) \leq c(b)$. However, $b \in S_{\mathfrak{B}}$ so it is not possible for $c\left(S_{\mathfrak{B}}\right)<c(b)$, thus it must be the case that $c\left(S_{\mathfrak{B}}\right)=c(b)$. For any other Betti element $b^{\prime} \in S_{\mathfrak{B}}, c\left(b^{\prime}\right) \leq c(b)$ otherwise if $c\left(b^{\prime}\right)>c(b)$ then $c\left(S_{\mathfrak{B}}\right)=c(b)<c\left(b^{\prime}\right)$ a contradiction. Thus, $c\left(S_{\mathfrak{B}}\right)=\max \left\{b \mid b\right.$ is a Betti element in $\left.S_{\mathfrak{B}}\right\}$. For any element $s \in S_{\mathfrak{B}}, c(s) \leq c\left(S_{\mathfrak{B}}\right)$ thus

$$
c(s) \leq c\left(S_{\mathfrak{B}}\right)=\max \left\{b \mid b \text { is a Betti element in } S_{\mathfrak{B}}\right\}
$$

as desired.
Moreover, by picking $\mathfrak{B}=\emptyset$, we prove the known result that the highest catenary degree of a numerical semigroup is always attained at a Betti element.

Corollary 5.7. Let S be a numerical semigroup and let $s \in S$. Then $c(s) \leq$ $\max \{c(b) \mid b$ is a Betti element in $S\}$

Proof. Let $\mathfrak{B}=\emptyset$. Then $S_{\mathfrak{B}}=\{s \in S \mid \forall b \in \mathfrak{B}: s-b \notin S\}=\{s \in S \mid \forall b \in \emptyset$: $s-b \notin S\}=\{s \in S\}=S$. Since S can be written as $S_{\mathfrak{B}}$ where \mathfrak{B} is a subset of the Betti elements in S, then $c(s) \leq \max \{b \mid b$ is a Betti element in $S\}$ follows from Theorem 5.6.

6 Thriftiness and Catenary Inequalities

This section needs some work. It was originally assumed that

$$
c\left(c_{i} n_{i}\right)=\max \left\{c_{i}, r_{i j}+r_{i k}\right\}
$$

but that isn't always the case. Thus, some of the proofs involving thriftiness are no longer correct as they use an old definition of thriftiness that was defined using the catenary degree (which was assumed to be that maximum). Any comments on this issue will appear in red text like this in addition to proofs that need to be repaired.

We will now look into the idea of thrifiness. One of biggest problems in computing catenary degrees in a abstract sense is that sometimes we can do a swap with respect to one generator whose weight is less than the weight of the "cheapest" fundamental swap with respect to that same generator. In other words, even if we choose our minimal presentation carefully, the fundamental swaps that arise from that aren't necessarily the cheapest swaps. The reason that these cheaper or "thrifty" swaps become as issue is because they allow one to construct "shortcuts" in the paths between factorizations connected by fundamental swaps.

Since issues arise from thrify swaps, can we gain any immediate results if we assume the semigroups we are looking at are not thrifty? The answer is yes. Although many of the results in this section use the thriftiness hypothesis in their respective proofs, we believe many of these results still hold regardless of thriftiness so showing that is a possibility for future work.

We begin with a concise definition of thriftiness.
Definition 6.1. Let $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ be a numerical semigroup of embedding dimension three and let $\{i, j, k\}=\{1,2,3\}$. Consider the element $c_{i} n_{i}=r_{i j} n_{j}+$ $r_{i k} n_{k}$. There may be many choices for the r 's so choose $r_{i j}$ and $r_{i k}$ such that $r_{i j}+r_{i k}$ is minimized. Denote $w_{i}=\max \left\{c_{i}, r_{i j}+r_{i k}\right\}$, i.e., let w_{i} be the cheapest weight of a fundamental swap involving the factorization $c_{i} n_{i}$. We call a semigroup n_{i}-thrifty if there exists a $d \in \mathbb{Z}^{+}$with $d \neq c_{i}$ there exists $x, y \in \mathbb{N}$ where $d n_{i}=x n_{j}+y n_{k}$ and $\max \{d, x+y\} \leq w_{i}$. If $\max \{d, x+y\}<w_{i}$, we call the semigroup strictly n_{i}-thrifty.

We can use a little bit of graph theory sometimes to get a bound on the catenary. The following lemma gives us a technique to obtain a bound on the catenary degree by observing the edges emanating from a single factorization.

Lemma 6.2. Let s be in a numerical semigroup S. Let f be a factorization of s. Then $c(s) \geq \min \{E\}$ where E is the set of edge weights emanating from f.

Proof. If the algorithm for computing catenary degree were allowed to run, then when $e:=\min \{E\}$ all the edges from f is removed thus making it disconnected from the rest of the graph. However, it's possible the graph might have already been disconnected earlier in the algorithm. Thus, $c(s) \geq \min \{E\}$.

Given that the c_{i} 's are minimal it would be alarming if the catenary degree could somehow be less than the c_{i} 's themselves. Luckily, we are always guaranteed by the following lemma that this never occurs.

Theorem 6.3. Let $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ be a numerical semigroup of embedding dimension three. Let $s \in S$. Then $c(s) \geq \min \left\{c_{1}, c_{2}, c_{3}\right\}$.

Proof. First, let $\{i, j, k\}=\{1,2,3\}$. Consider the types of swaps that can occur between two factorizations. In embedding dimension three, the only swaps that can occur is swapping n_{i}-type atoms for n_{j}-type and n_{k}-type atoms. Suppose between factorizations f_{1} and f_{2} of s we swap $x n_{i}$-atoms for $y n_{j}$-atoms and z n_{k}-atoms. Then $d\left(f_{1}, f_{2}\right)=\max \{x, y+z\} \geq x$. Note that $x \geq c_{i}$ by minimality of c_{i}. And $c_{i} \geq \min \left\{c_{1}, c_{2}, c_{3}\right\}$. Thus, $d\left(f_{1}, f_{2}\right) \geq \min \left\{c_{1}, c_{2}, c_{3}\right\}$. But, f_{1} and f_{2} were chosen arbitrarily so this is true between any two factorizations, thus all edges are of weight greater than or equal to $\min \left\{c_{1}, c_{2}, c_{3}\right\}$ thus making it impossible for the catenary degree to be less than $\min \left\{c_{1}, c_{2}, c_{3}\right\}$. Therefore, $c(s) \geq \min \left\{c_{1}, c_{2}, c_{3}\right\}$.

If we look at elements that are only supported in certain components can we give bounds on its catenary degree using only the c_{i} 's that pertain to those components? The answer according to the following lemma is yes in the case where we look at the catenary degree of multiplies of generators.

Lemma 6.4. Let $k \in \mathbb{N}$. $c\left(k n_{i}\right) \geq c_{i}$ or $c\left(k n_{i}\right)=0$ for $i=1,2,3$.
Proof. WLOG, let $i=1$. If $c\left(k n_{1}\right)$ has only one factorization, then $c\left(k n_{1}\right)=0$ so suppose $c\left(k n_{1}\right)$ has more than one factorization. We know that $(k, 0,0)$ is at least one factorization. The only type of swap we can make is swapping x n_{1}-atoms for $y n_{2}$-atoms and $z n_{3}$-atoms where $x \leq k$. We also note that $x \geq c_{1}$ or else x would violate the minimality of c_{1}. The weight edge of such a swap would be $\max \{x, y+z\} \geq x$. Thus, all edge weights from $(k, 0,0)$ are $\geq x$. However, x is always greater than c_{1}, so all the edge weights from $(k, 0,0)$ are $\geq c_{1}$, i.e., $\min \{E\} \geq c_{1}$ where E is as in Lemma 6.2. Thus, by Lemma 6.2 $c\left(k n_{1}\right) \geq \min \{E\} \geq c_{1}$.

Using thriftiness, we can get a similar result to Lemma 6.4 that is in terms of the catenary degree of the corresponding Betti element.

Lemma 6.5. Let $i=1,2$ or 3 and let $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ be a numerical semigroup of embedding dimension three such that it is not strictly n_{i} thrifty. Let $k \in \mathbb{N}$. Then $c\left(k n_{i}\right) \geq c\left(c_{i} n_{i}\right)$ or $c\left(k n_{i}\right)=0$.

Proof. WLOG, let $i=1$. If $c\left(k n_{1}\right)$ has only one factorization, then $c\left(k n_{1}\right)=0$ so suppose $c\left(k n_{1}\right)$ has more than one factorization. We know that $(k, 0,0)$ is at least one factorization. The only type of swap we can make is swapping x n_{1}-atoms for $y n_{2}$-atoms and $z n_{3}$-atoms where $x \leq k$. We also note that $x \geq c_{1}$ or else x would violate the minimality of c_{1}. The weight edge of such a swap would be $\max \{x, y+z\}$. By the non strictly n_{1} thriftiness of $S, \max \{x, y+$ $z\} \geq c\left(c_{i} n_{i}\right)$. Thus, every edge weight emanating from $(k, 0,0)$ is $\geq c\left(c_{i} n_{i}\right)$,
i.e., $\min \{E\} \geq c\left(c_{i} n_{i}\right)$ where E is as in Lemma 6.2. Thus, by Lemma 6.2 $c\left(k n_{1}\right) \geq \min \{E\} \geq c\left(c_{i} n_{i}\right)$.

We can combine the previous result (Lemma 6.5) and the fact that the highest catenary degree is attained at a Betti element (Lemma 5.7) to get the following result.

Theorem 6.6. Let $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ with $n_{1}<n_{2}<n_{3}$ be a numerical semigroup with of embedding dimension three. Let i be such that

$$
\max \left\{c\left(c_{1} n_{1}\right), c\left(c_{2} n_{2}\right), c\left(c_{3} n_{3}\right)\right\}=c\left(c_{i} n_{i}\right)
$$

Let $k \in \mathbb{N}$. If S is not strictly n_{i}-thrifty, then $c\left(k n_{i}\right)=c\left(c_{i} n_{i}\right)$ or $c\left(k n_{i}\right)=0$.
Proof. Suppose that S is not strictly n_{i}-thrifty. By (Lemma 6.5, $c\left(k n_{i}\right) \geq$ $c\left(c_{i} n_{i}\right)$ or $c\left(k n_{i}\right)=0$. Suppose that $c\left(k n_{i}\right)>c\left(c_{i} n_{i}\right)$. However, we know that $c(S)=c\left(\max \left\{c\left(c_{1} n_{1}\right), c\left(c_{2} n_{2}\right), c\left(c_{3} n_{3}\right)\right\}\right)$ by Lemma 5.7. Thus, $c\left(k n_{i}\right)>$ $c\left(c_{i} n_{i}\right)=c\left(\max \left\{c\left(c_{1} n_{1}\right), c\left(c_{2} n_{2}\right), c\left(c_{3} n_{3}\right)\right\}\right)=c(S)$ but $c\left(k n_{i}\right)>c(S)$ is a contradiction. Thus, it must be that $c\left(k n_{i}\right)=c\left(c_{i} n_{i}\right)$ or 0 .

Consider the case where we have a numerical semigroup of embedding dimension three with three distinct Betti elements. Now suppose that we knew the catenary degree of two of those Betti elements. Can the catenary degree of the third be anything? The answer is no, as the following lemma suggests that the catenary degrees of the three Betti elements bound each other in a triangle inequality sort of manner.

Lemma 6.7. Let $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ be a numerical semigroup of embedding dimension three where $|C(B)|=3$ where B is the set of Betti elements. Then for $\{i, j, k\}=\{1,2,3\}, c\left(c_{i} n_{i}\right)<c\left(c_{j} n_{j}\right)+c\left(c_{k} n_{k}\right)$.
Proof. Without loss of generality, let $i=1, j=2, k=3$. So we want to show $c\left(c_{1} n_{1}\right)<c\left(c_{2} n_{2}\right)+c\left(c_{3} n_{3}\right)$. Since the three Betti elements are distinct, we know the following is true:

$$
\begin{aligned}
& c_{1}=r_{21}+r_{31} \\
& c_{2}=r_{12}+r_{32} \\
& c_{3}=r_{13}+r_{23}
\end{aligned}
$$

We will rearrange these formulas for convenience later:

$$
\begin{aligned}
& c_{1}=r_{21}+r_{31} \\
& r_{12}=c_{2}-r_{32} \\
& r_{13}=c_{3}-r_{23}
\end{aligned}
$$

We know that $c\left(c_{1} n_{1}\right)=\max \left\{c_{1}, r_{12}+r_{13}\right\}$ by Lemma 1.8 . We use the set of above equations to substitute and we get

$$
\max \left\{c_{1}, r_{12}+r_{13}\right\}=\max \left\{r_{21}+r_{31}, c_{2}-r_{32}+c_{3}-r_{23}\right\}
$$

First, suppose $\max \left\{r_{21}+r_{31}, c_{2}-r_{32}+c_{3}-r_{23}\right\}=r_{21}+r_{31}$. We have

$$
\begin{aligned}
c\left(c_{1} n_{1}\right) & =\max \left\{c_{1}, r_{12}+r_{13}\right\}=\max \left\{r_{21}+r_{31}, c_{2}-r_{32}+c_{3}-r_{23}\right\} \\
& =r_{21}+r_{31}<\left(r_{21}+r_{23}\right)+\left(r_{31}+r_{32}\right) \\
& \leq \max \left\{c_{2}, r_{21}+r_{23}\right\}+\max \left\{c_{3}, r_{31}+r_{32}\right\} \\
& =c\left(c_{2} n_{2}\right)+c\left(c_{3} n_{3}\right) .
\end{aligned}
$$

Now, suppose $\max \left\{r_{21}+r_{31}, c_{2}-r_{32}+c_{3}-r_{23}\right\}=c_{2}-r_{32}+c_{3}-r_{23}$. Then

$$
\begin{aligned}
c\left(c_{1} n_{1}\right) & =\max \left\{c_{1}, r_{12}+r_{13}\right\}=\max \left\{r_{21}+r_{31}, c_{2}-r_{32}+c_{3}-r_{23}\right\} \\
& =c_{2}-r_{32}+c_{3}-r_{23}<c_{2}+c_{3} \\
& \leq \max \left\{c_{2}, r_{21}+r_{23}\right\}+\max \left\{c_{3}, r_{31}+r_{32}\right\} \\
& =c\left(c_{2} n_{2}\right)+c\left(c_{3} n_{3}\right) .
\end{aligned}
$$

Thus, in either case, $c\left(c_{1} n_{1}\right)<c\left(c_{2} n_{2}\right)+c\left(c_{3} n_{3}\right)$.

7 Conjectures, Problems and Examples

Below we have our list of current outstanding conjectures. In what follows, let S be a numerical monoid of embedding dimension three.

Conjecture 7.1. Let

$$
G=\left\{c n_{i}: c_{i} \leq c \leq c(S), 1 \leq i \leq 3\right\} .
$$

It follows that $C(G)=C(S)$.
Conjecture 7.2. Let $s \in S$. Then there exists a generator n_{i} that can be subtracted from s such that $c\left(s-n_{i}\right) \geq c(s)$. Similarly, there exists a generator n_{j} that can be subtracted from s such that $0<c\left(s-n_{i}\right) \leq c(s)$.

Conjecture 7.3. Let S have three distinct Betti elements with distinct catenary degrees where $c_{i} n_{i}$ and $c_{j} n_{j}$ are the Betti elements with the higher catenary degree and the $c_{k} n_{k}$ is the other Betti element. Then the periodicity starts at

$$
\max \left\{A p\left(S, c_{i} n_{i}\right) \cap A p\left(S, c_{j} n_{j}\right) \cap \mathbb{N} \backslash A p\left(S, c_{k} n_{k}\right)\right\}
$$

There are similar results if the Betti elements or catenary degrees of Betti elements coincide.

Conjecture 7.4. Let S be a numerical semigroup such that it is not n_{i}-thrifty and $c_{i} n_{i}$ is the only Betti element that has catenary degree that achieves the lowest nonzero catenary degree of S. Then there are a finite number of elements that hit the smallest nonzero catenary degree.

Problem 7.5. Characterize those monoids S in which the set of elements whose catenary degree is the minimum nonzero value in $C(S)$ is symmetric.

A proof of the following conjecture should not be difficult.
Conjecture 7.6. Let S be a numerical semigroup of embedding dimension three with a single Betti element. Then every element has a triangle number of factorizations.

Conjecture 7.7. Let $S=\langle 4,6,4 n+1\rangle$. Then $C(S)=\left\{0,3, c_{n}\right\}$ for some c_{n}, and $c_{n}<c_{n+1}$.

Conjecture 7.8. There is at most one nonzero catenary degree which is achieved by finitely many elements.

The following examples each demonstrate some interesting behavior. The descriptions given are not rigorous.

Example 7.9. $S=\langle 12,27,29\rangle$ has 2 Betti elements, and the one with the higher catenary degree has dropdowns after it.

Example 7.10. $S=\langle 11,29,32\rangle$ has a dropdown of a different height.
Example 7.11. For $S=\langle 11,13,19\rangle$, the set of elements whose catenary degree is the minimum nonzero value in $C(S)$ is not symmetric. Also, there exists an element with three factorizations that hits the least non-zero catenary degree.

Example 7.12. $S=\langle 7,11,17\rangle$ has three distinct Betti elements, but only two nonzero possible catenary degrees.

Example 7.13. $S=\langle 11,31,37\rangle$ has minimum catenary degree occurring at the greatest, rather than least, Betti element.

Example 7.14. $S=\langle 9,40,47\rangle$ has eventual catenary degree period of $9 \cdot 40$.
Example 7.15. For $S=\langle 17,41,43,59,61\rangle$, the catenary degree of the monoid is 8 and is achieved at exactly one element, namely 208.

8 Code Appendix

```
load('/media/sf_Desktop/NumericalSemigroup.sage')
def getCatDegrees(s, n):
    l = []
    m}=[
    for t in range(1,n):
            if s.Contains(t):
                l.append(s.CatenaryDegree(t))
            #print (t, s.CatenaryDegree(t)), s.
                    Factorizations(t)
            m.append ((t, s.CatenaryDegree(t)) )
    #show(list_plot (m))
```

```
    return (list_plot(m), Set(l))
def getCatDegrees2(s):
    catSet = {0}
    r = getRelations(s)
    a}=\textrm{r}[0
    b}=\textrm{r}[1
    c = r [2]
    print a, b, c
    weightDict = {weight(a): a, weight(b): b, weight(c):
        c}
    x = weightDict[max(weight(a), weight(b), weight(c))]
        #let x be the tuple with highest weight
    y = weightDict[min(weight(a), weight(b), weight(c))]
        #let y be the tuple with lowest weight
    print x, y
    catSet.add(weight(x))
    catSet.add(weight(y))
    catSet.add(weight(tupleAdd (x,y)))
    k = 1
    currentWeight = weight(tupleAdd(x,y))
    while currentWeight > weight(tupleAdd(x,tupleMult (k
        +1, y))):
        print k
        catSet.add(weight(tupleAdd(x,tupleMult(k+1, y))))
        currentWeight = weight(tupleAdd (x,tupleMult (k+1,
            y) ))
        k += 1
    return catSet
def sortFactorizations(s, n):
    l= []
    m=[]
    p = []
    for t in range(1,n):
        if s.Contains(t):
            if len(s.Factorizations(t)) = 1:
                l.append(t)
            elif len(s.LengthSet(t)) = 1:
                m.append(t)
            else:
                p.append(t)
    return l,m,p
def CatDegreesEmbDimThree():
    length = len(NumSemigroups)
```

```
    count = 0
    for s in NumSemigroups:
        count += 1
        if tuple(s.gens) in TestedSemigroups.keys():
            print s.gens, TestedSemigroups[tuple(s.gens)]
            continue
        l= []
        for t in range(1, 5*s.frob):
            if s.Contains(t):
                l.append(s.CatenaryDegree(t))
        l=Set(l)
        print s.gens, l
        if count % 300=0:
            print str(100.*( count/length))+"%"
        TestedSemigroups[tuple(s.gens)] = l
def getRelations(s):
    presentation = s.MinimalPresentation()
    tuples = []
    for i in presentation:
        tuple = tupleAdd(i[0], tupleMult(-1, i [1]))
        count = 0
        for j in tuple:
            if j < 0:
                count += 1
        if count == 1:
            tuple = tupleMult(-1, tuple)
        tuples.append(tuple)
    return tuples
def tupleAdd(t1, t2):
    return tuple([t1[i]+t2[i] for i in range(0,3)])
def tupleMult(n, t):
    return tuple([n*t[i] for i in range(0,3)])
def weight(t):
    pos = 0
    neg = 0
    for i in range(0,3):
        if t[i] > 0:
            pos += t[i]
        else:
            neg += -t[i]
    return max(pos, neg)
```

```
def getEquations(S):
    e = [0,0,0]
    presentations = S.MinimalPresentation()
    for pres in presentations:
        for index, tuple in enumerate(pres):
            if tuple[1] = 0 and tuple[2] = 0:
                t1 = tuple
                    t2 = pres[(index+1)%2]
                    e[0] = str(t1[0])+"*"+str(S.gens[0])+"=
                            "+str(t2[1])+"*"+str(S.gens[1])+"+
                                    "+str(t2[2])+"*"+str(S.gens[2])
            if tuple[0] = 0 and tuple[2] = 0:
                t1 = tuple
                t2 = pres[(index+1)%2]
                e[1] = str(t1[1])+"*"+str(S.gens[1])+" =
                    "+str(t2[0])+"*"+str(S.gens[0])+" +
                        "+str(t2[2])+"*"+str(S.gens[2])
            if tuple [0] =0 and tuple[1] = 0:
                t1 = tuple
                t2 = pres[(index +1)%2]
                e[2] = str(t1[2])+"*"+str(S.gens[2])+" =
                    "+str(t2[0])+"*"+str(S.gens[0])+"}
                        "+str(t2[1])+"*"+str(S.gens[1])
    return str(e[0])+"\n"+str(e[1])+"\n"+str(e[2])
def gcd_test(n):
    coprime = n.coprime_integers(n)
    i = 1
    j = 2
    while i < len(coprime):
        j = i+1
        while j < len(coprime):
            if gcd(i,j) = 1:
                return (coprime[i],coprime[j])
            j += 1
        i += 1
    return false
```


References

[1] S. T. Chapman, P. A. García-Sánchez, and D. Llena, The catenary and tame degree of numerical semigroups, Forum Math 21(2009), 117-129.
[2] M. Delgado, P.A. García-Sánchez, and J. J. Morais, GAP Numerical Semigroups Package, http://www.gap-system.org/Manuals/pkg/ numericalsgps/doc/manual.pdf.
[3] P.A. García-Sánchez and J.C. Rosales, Numerical semigroups, vol. 20, Developments in Mathematics, Springer-Verlag, 2009.
[4] S. T. Chapman, M. Corrales, A. Miller, C. Miller, D. Phatel, The catenary and tame degrees on a numerical monoid are eventually periodic
[5] C. O'Neil, Sage Wrapper for Numerical Semigroups, http://math.duke. edu/~musicman/numsgps
[6] B. Rosser, Explicit bounds for some functions of prime numbers, American Journal of Mathematics 63, 211-232

