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1 Introduction

Let S be a set of size k. We define a (v, k, λ)-symmetric design to be a subset of the power set
P (S) containing v k-sets, which we will call blocks, such that each element of S appears in exactly
k blocks, and for any pair of elements (a, b) ∈ S, there are exactly λ blocks containing both a and
b. Given a finite group G of order v, a subset D ⊆ G is called a (v,k,λ)-difference set if |D| = k and
the set {did−1j |di, dj ∈ D} contains λ copies of each nonidentity element in G. We set the notation
n = k−λ, which is sometimes considered to be a fourth parameter. It is not particularly difficult to
see that, if we have a (v, k, λ)-difference set D based upon the group G, then the collection of sets
{Dg|g ∈ G} is a symmetric design. We call a difference set a Hadamard difference set (HDS) if,
for some m ∈ N, v = 4m2, k = 2m2 ±m, and λ = m2 ±m. We can also see here that v = 4n. The
name Hadamard is derived from the fact that the 1,−1-incidence matrix of the associated design of
any HDS is a Hadamard matrix. Note that a Hadamard matrix is simply an n× n {1,−1} matrix
A such that AAᵀ = nI.

We will start with a basic example, before discussing some basic properties. Let G ∼= C4×C4 =
〈a, b|a4 = b4 = [a, b] = 1〉. Then it easy to check that the set D = {a, a2, a3, ab, b2, ab3} is a
(16, 6, 2)-Hadamard difference set in G. Given any difference set D ⊆ G, the image of D under
any automorphism α ∈ aut(G) is also a difference set. We can also translate a difference set
via left or right multiplication while still retaining the fundamental difference set property. This
means that, given the difference set D = {a, a2, a3, ab, b2, ab3} in C4 × C4, we may conclude that
a3D = {1, a, a2, b, a3b2, b3} is also a difference set. Given two difference sets D1 and D2 contained
in a group G, we say that D1 and D2 are equivalent if there is some automorphism φ ∈ Aut(G)
and some element g ∈ G such that D1 = gφ(D2). Hence, just as group theorists are only concerned
with characterizing groups up to isomorphism, we are generally concerned only with characterizing
Hadamard difference sets up to equivalence (though not always, see Section 2).

We may also view difference sets in the context of a group ring. Given a group G and a ring
R, the group ring R[G] is the set {

∑
gi∈G rigi|ri ∈ R} , which is a module under the natural

definitions of addition and scalar multiplication, and a ring under the natural definition of addition
and distributive multiplication. When working with difference sets in a group G, we make repeated
use of both Z[G] and C[G].

We will abuse notation and use D to refer both to the difference set itself, and to the group ring
element

∑
d∈D d ∈ Z[G]. We use similar notation for entire groups, and for elements of C[G]. So, for

example G =
∑

g∈G g ∈ C[G]. Furthermore, given a group ring element F = r1g1+r2g2+ . . .+rvgv,

we use the symbol F (−1) to denote the element r1g
−1
1 + r2g

−1
2 + . . .+ rvg

−1
v . This gives rise to the

following lemma.

Lemma 1.0.1. Given a group G, a set D ⊆ G is a (v, k, λ)-difference set if and only if DD(−1) =
n1G + λG.

Now consider D∗ = G − 2D, which we call the associate of D. We then get the following
theorem, which we will utilize heavily below.

Theorem 1.0.2. Given a group G, a set D ⊆ G is a (v, k, λ)-difference set if and only if D∗D∗(−1) =
v1G.

The first part of this research project was to create a list of Hadamard difference sets in all
groups of order 64 in which one exists. It is known that 12 of the 14 groups of order 16 and 9 of the
14 groups of order 36 have a Hadamard difference set; see [1] and [2]*** for more details. Several
other basic results that we used repeatedly this summer are as follows:
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• In any difference set, (v−1)λ = k(k−1). This is because each side of this equality just counts
the number of nonidentity elements in DD(−1).

• In an abelian group of order 22s+2, s ∈ N, there is no difference set if the groups exponent is
greater than 2s+2. This result is commonly known as Turyn’s bound, and is proven in [10].

• If a generalized dihedral group contains a difference set, then any Abelian group containing
its underlying Abelian subgroup as a subgroup of index two has a difference set. This result
is proven in [3].

Perhaps our most utilized tool this summer was the computer algebra system GAP (Groups, Al-
gorithms, and Programming, gap-system.org). Using GAP, we created various algorithms based on
known constructions of difference sets, including the product construction, the spread construction,
and the extended-building set construction, all of which we will explain in detail below. We then
applied these to 259 groups of order 64 known to contain Hadamard difference sets to find at least
one difference set in each group. The list is contained as a supplementary appendix to this paper.
Each element of this list contains the GAP ID of the group, the elements that create the difference
set, and the method used to find the difference set. In some cases, more “difficult” groups, such as
the modular group (see [3], page 83), were outside the domain of the main construction methods,
so we searched through other published documents that provided difference sets and translated
them into GAP notation. After completing this project, we used observations that we had made
along the way to try and form novel conjectures and prove original results concerning Hadamard
difference sets. We ended up completing four sub-projects: (1) classifying and beginning to explain
how we can transfer difference sets from one group to another using shared GAP indices, (2) ana-
lyzing and exploring the details of the Davis-Jedwab construction to offer a new view of extended
building sets, (3) studying the optimization of exhaustive searches, (4) using Latin rectangles to
create difference sets.

2 Difference Set Transfers

2.1 Voodoo in Groups of Order 64

In our first project we found an explicit difference set in each of the 259 groups of order 64 that
admit a difference set. We stored our produced difference sets as group ID numbers and lists of
indices using GAP’s SmallGroups Library. For example, one entry in our table of difference sets is

[ [ 64, 10 ], [ 1, 2, 3, 5, 7, 11, 12, 13, 18, 23, 26, 27, 31, 32, 36, 38, 39, 40, 41, 42, 44, 48, 49, 52,
53, 55, 56, 63 ] ].

The [ 64, 10 ] in this entry indicates that the difference set was found in the tenth group
of order 64 in GAP’s SmallGroups Library, which GAP will return when given the command
SmallGroup(64,10). The list [ 1, 2, . . . , 56, 63 ] in the entry indicates which specific elements in
GAP’s ordered list of elements of the group form the found difference set (this list of elements is
returned from the command Elements(SmallGroup(64,10)) in GAP).

These table entries were nothing more than a convenient shorthand, and the lists of indices
meant nothing when separated from the context of the group that contained the difference set.
However, as we exhausted various constructions for producing difference sets we found that we
could sometimes transfer the indices corresponding to a difference set in one group into another
group and still have a difference set. For example, the list of indices [ 1, 2, . . . , 56, 63 ] given
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above for a difference set in group 10 in GAP’s catalog of order 64 groups is also a difference set in
groups 9, 14, 100, 120, 240, and 265. During our first project we used this technique to produce a
difference set in four groups that were not covered by our other constructions.

This “voodoo” of transferring difference sets between groups by way of GAP indices is actually
somewhat common in groups of order 64. Our table of one difference set in each of the 259 groups
of order 64 that have a difference set gives as a total of 259 difference sets in indices (actually, our
table already had 11 sets that were repeated twice and one set that occurred four times, but we
will pretend that we didn’t know this already). Taking these 259 sets of indices and trying each in
every group of order 64 gives that each set of indices works in between 1 and 141 different groups,
with the number of groups a given set of indices works in having a mean of 55.6 and median of 61.
This is very surprising, and indicates that there is some underlying pattern to the way GAP lists
elements that preserves difference sets when transferring between groups.

2.2 Voodoo in Groups of Order 16

We would like to understand the source of this voodoo, and perhaps use it to create constructions
or prove existence results. To determine where the patterns are, we first want to organize all cases
where transferring a difference set in one group to another by way of GAP indices results in a
difference set in the new group. This is very difficult to do in groups of order 64 because there
are a large number of groups and difference sets, because all difference sets up to equivalence in
groups of order 64 have not been found, and because basic computations can take a long time in
these groups. For these reasons, we decided to instead focus on groups of order 16. These groups
have similar voodoo behavior, are still 2-groups, and are much easier to work with than order 64
groups. We also already know all difference sets up to equivalence in groups of order 16. Note that
groups of order 36 also show some definite voodoo behavior (for example, groups 7, 13, and 14 in
order 36 all have the same difference sets when viewed as indices), but it is not as pronounced as
in order 16 and we decided to avoid it for now.

We already know (and can quickly perform a computer search to find) all difference sets in order
16 groups and the number of difference sets up to equivalence in each group. This is summarized in
Table 2.2.1, which lists the 14 groups of order 16 by their ID in GAP, the total number of difference
sets in each group, and the number of difference sets up to equivalence.

Table 2.2.1: Difference Sets in Groups of Order 16
IdGroup 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Difference Sets 0 192 192 192 192 64 0 128 256 448 192 704 320 448
Equivalence Classes 0 3 4 3 2 2 0 2 2 2 2 2 2 1

To classify the voodoo we observed, we want to know when transferring a difference set expressed
in indices from one group to another results in a difference set. Table 2.2.2 shows all the places
transfers can occur in groups of order 16. Each row and column of the table is labeled by GAP’s
category number for a group of order 16. The number in each entry indicates how many difference
sets in the two groups from the associated column and row are the same when expressed as lists of
indices in GAP. For example, the table shows that SmallGroup(16,3) and SmallGroup(16,8) share
64 difference sets. For reference, note that difference sets in groups of order 16 are subsets of 6
elements, and that there are then

(
16
6

)
= 8008 total subsets of 6 elements that could potentially be

a difference set.
Table 2.2.2 clearly shows that transfers are very common in groups of order 16. Other than

groups 1 and 7, which have no difference sets, the only time we can transfer no difference sets is
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Table 2.2.2: Voodoo in Groups of Order 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 192 192 192 64 64 0 64 128 192 192 192 128 192
3 0 192 192 192 64 64 0 64 128 192 192 192 128 192
4 0 192 192 192 64 64 0 64 128 192 192 192 128 192
5 0 64 64 64 192 64 0 0 64 192 64 192 64 192
6 0 64 64 64 64 64 0 0 64 64 64 64 64 64
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 64 64 64 0 0 0 128 128 64 64 64 64 64
9 0 128 128 128 64 64 0 128 256 128 128 128 128 128
10 0 192 192 192 192 64 0 64 128 448 192 448 192 448
11 0 192 192 192 64 64 0 64 128 192 192 192 128 192
12 0 192 192 192 192 64 0 64 128 448 192 704 256 448
13 0 128 128 128 64 64 0 64 128 192 128 256 320 192
14 0 192 192 192 192 64 0 64 128 448 192 448 192 448

between group 8 to group 5 or 6. Also note that transfers do not seem to be randomly distributed.
The numbers in the table are all multiples of 64 and show far too much organization to be the
result of random chance.

One problem with the above table is it simply contains too much information. In order to better
approach the problem we decided to simplify our question of when some difference sets may be
transferred between groups to the question of when all difference sets in some group correspond to
difference sets in another group by way of GAP indices. This question led us to Figure 2.2.1.

In Figure 2.2.1 groups are represented by their category number in GAP. Groups are placed
in a box together if they have the same difference sets when viewed in GAP index form. At the
bottom right of each box is the total number of difference sets found in the group or groups. A
directed arrow indicates that all difference sets from the starting group are also difference sets in
the ending group when viewed as indices in GAP. For example, group 5 contains 192 total difference
sets. Every difference set in group 6 can be transferred to a difference set in group 5 by expressing
it as indices, and then every difference set in 5 can be transferred to a difference set in group 10
or 14 in the same way. Furthermore, groups 10 and 14 have exactly the same difference sets when
their difference sets are viewed as lists of GAP indices.

A good deal of voodoo is lost when viewing Figure 2.2.1. For example, Table 2.2.2 shows that
group 12 and group 13 share 256 difference sets, but here they appear to be totally separate. Still,
the diagram is very useful in organizing and presenting the most surprising examples of voodoo,
and it gives us suggestions for where to focus our efforts. The remainder of our work will be aimed
at explaining and proving the various relations we can see in Figure 2.2.1.

2.3 Power-Commutator Presentations

A difference set transfer occurs when two groups having the same difference set when expressed as
indices in the ordered list of elements GAP provides for each group. To understand transfers we
need to know how GAP organizes its ordered list of elements, specifically in groups of order 16 and
groups of order 64.

A group is called polycyclic if it admits a subnormal series with cyclic factors, i.e. if we can
form a chain of subgroups G = G0 . G1 . G2 . · · · . Gn = {1} such that G1/Gi+1 is cyclic. It is a
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Figure 2.2.1: Voodoo in Groups of Order 16

well-known fact that all p-groups are polycyclic [6], and as it turns out, polycyclic groups always
have a very computationally effecient presentation, known as a PC-presentation.

GAP stores the groups of order 16 and 64 using a special type of PC-presentation known
as a power-commutator presentation. There is an immense amount of theory behind how GAP
represents p-groups in its SmallGroups database. We refer an interested reader to [6]. We will only
present here what is necessary to understand difference set transfers.

A power-commutator presentation of a group G of order pn is a presentation with generators
g1, g2, . . . , gn and two sets of relations: the power relations

gpi =
∏
k>i

g
ai,k
k ,

and commutator relations
[gi, gj ] =

∏
k>max(i,j)

g
bi,j,k
k ,

where [gi, gj ] = g−1i g−1j gigj is the commutator of gi and gj and the ai,k and bi,j,k are nonnegative
integers less than p. If a group G can be generated by k elements, then {g1, g2, . . . , gk} will generate
G. Furthermore, if the size of a minimal generating set for G is k, then all gi, i > k, will be defined
by one of the relations, as it will be the sole element in the right hand side’s product for either a
power relation or a commutator relation on smaller elements of G. Most importantly, 2ith respect
to a power-commutator presentation, every element of G can be written in the form gc11 g

c2
2 . . . gn

cn

where ci < p, which we call the normal form of the element.
Every p-group has a power-commutator presentation, but for a given group there can be several

different power-commutator presentations. In GAP, the groups of order 16 all have generators
f1, f2, f3, f4 and relations listed in Table 2.3.1.
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Table 2.3.1: Power Commutator Presentations in GAP
IdGroup StructureDescription f21 f22 f23 f24 [f1, f2] [f1, f3] [f1, f4] [f2, f3] [f2, f4] [f3, f4]

1 C16 f2 f3 f4 1 1 1 1 1 1 1
2 C4 × C4 f3 f4 1 1 1 1 1 1 1 1
3 (C4 × C2) o C2 f4 1 1 1 f3 1 1 1 1 1
4 C4 o C4 f4 f3 1 1 f3 1 1 1 1 1
5 C8 × C2 f3 1 f4 1 1 1 1 1 1 1
6 C8 o C2 f3 1 f4 1 f4 1 1 1 1 1
7 D16 1 1 f4 1 f3f4 f4 1 f4 1 1
8 QD16 f4 1 f4 1 f3f4 f4 1 f4 1 1
9 Q16 f4 f4 f4 1 f3f4 f4 1 f4 1 1
10 C4 × C2 × C2 f4 1 1 1 1 1 1 1 1 1
11 C2 ×D8 1 1 1 1 f4 1 1 1 1 1
12 C2 ×Q8 f4 f4 1 1 f4 1 1 1 1 1
13 (C4 × C2) o C2 1 1 f4 1 f4 1 1 1 1 1
14 C2 × C2 × C2 × C2 1 1 1 1 1 1 1 1 1 1

Next, as the power-commutator presentation gives a way to write every element in a group of
order 16 in the form fa11 fa22 fa33 fa44 where ai ∈ {0, 1}, GAP simply writes all elements of the group in
this form and orders them lexicographically. This means that the command Elements(g) returns
the ordered list

[1, f1, f2, f3, f4, f1f2, f1f3, f1f4, f2f3, f2f4, f3f4, f1f2f3, f1f2f4, f1f3f4, f2f3f4, f1f2f3f4]

for every group of order 16. Thus difference sets that have the same indices are really difference
sets that are composed of the same words on generators f1, f2, f3, f4.

2.4 The Spread Construction

If we can determine that all of the difference sets in some collection of groups have some well
understood structure, then we should be able to easily explain why difference sets can be transferred
between the groups in this collection. We can perform such a procedure in several groups of order
16 using a difference set construction technique known as the spread construction, showing that
all difference sets in a given group are what we call difference set of spread form. Before we get
to these central results, however, we will briefly examine some basic notions concerning the spread
construction, and see that we can use it to better understand some of patterns in Table 2.2.1 and
Table 2.2.2.

The spread construction was first introduced by McFarland in 1973, before being expanded upon
and mathematically justified by J.F. Dillon in [3] and Drisko in [4]. Though the construction can
be applied to a wide variety of groups, it only can construct Hadamard difference sets in 2-groups,
so we will define it only in this restricted case.

Let G be a group of order 4(2s)2 = 22s+2, for some s ∈ N. If G has a normal elementary Abelian
subgroup E of order 2s+1, then we can employ the spread construction. Note that this means that
we can use the spread constructions only on groups containing a normal subgroup isomorphic to
Cs+1
2 . If we treat E as a vector space over Z2, we can easily see that the hyperplanes of this vector

space are exactly the subgroups of index 2 in E. Because a hyperplane of a vector space is made
up of all points orthogonal to a given point in that vector space, there are 2s+1−1

2−1 hyperplanes of
E.
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So, let {Hi|1 ≤ i < 2s+1} be the collection of subgroups of E of order 2s. Note that if |G| = 16,
then {Hi} is a spread in E. This is the source of the name “spread” construction. We now let
T = {ti| ∪2

s+1

i=1 tiE = G} be a transversal of E in G. It is now possible to (potentially) create a
difference set in G by assigning each hyperplane Hi to a coset of E in G. Letting F ∗ represent
the set of all nonidentity elements in some group F , it was shown in [3] that if {tiH∗i t

−1
i } is a

1-design on E∗, then D =
∑2s+1−1

i=1 tiHi is a difference set in G. We call such a D a difference set
of spread form. Though there many assignments of hyperplanes to cosets that do not meet the
sufficient condition for generating a difference set, Art Drisko showed in [4] that there is always
some assignment that works when we have a properly sized elementary abelian subgroup.

We should note a couple of things here. First of all, it is important to realize that the orderings
ti and Hi are arbitrary. Therefore, if some assignment of difference sets to cosets does yield a
1-design, we can still try other assignments. Also, note that in each assignment one of the cosets
is left empty, as |{Hi}| = |T | − 1. Finally, if E ⊆ Z(G), the center of G, then any assignment of
hyperplanes to cosets will leave {tiH∗i t

−1
i } as a 1-design on E∗.

We now turn to a couple of enumerative results concerning the number of difference sets we can
build as spread constructions over a single normal elementary abelian subgroup. Though the first
theorem will be general, in the second we will focus on groups of order 16, as it is in these groups
that we have our best data on transfers.

Theorem 2.4.1. For a group G of order 22s+2, the spread construction generates 2s+1!(22
s+1−1)

sets over any subgroup E isomorphic to Cs+1
2 .

Proof. We start by assigning hyperplanes to cosets. Recalling that one coset must be left empty, we
see that we have 2s+1 choices for this coset. Then, if we set an arbitrary ordering of the nonempty
cosets, any permutation of the 2s+1−1 hyperplanes represents a different assignment of hyperplanes
to cosets, so we have (2s+1 − 1)! ways of matching the hyperplanes to the remaining cosets. Now,
given a mapping of hyperplanes to cosets, we look out how changing coset representatives changes
the set we construct. For some t, tHi is itself a coset of Hi. Inside each coset of E, say gE, we
have two cosets of Hi, namely gHi and geHi, for some e ∈ E such that E 6∈ Hi. We then have
two choices for where each hyperplane may lie in the coset it has been assigned to. Thus, we must
multiply our total count by 22

s+1−1, to get 2s+1!(22
s+1−1).

Corollary 2.4.2. For a group G of order 22s+2, if there is some E ⊆ Z(G) such that E ∼= Cs+1
2 ,

then G has at least 2s+1!(22
s+1−1) difference sets when we ignore equivalence classes.

Proof. By the final observation made concerning the spread construction above, every set con-
structed via a spread construction over E is a difference set, and by Theorem 2.4.1 there are
2s+1!(22

s+1−1) such sets.

So, restricting our attention to groups of order 16, we see that each spread construction in a
group of order 16 generates 21+1!(22

1+1−1) = 4!23 = 192 potential difference sets. Furthermore, if
a group of order 16 has a subgroup isomorphic to C2 × C2 in its center, then it has at least 192
difference sets, ignoring equivalence classes. It should be noted that not all difference sets generated
via a spread construction over the same subgroup are equivalent, as we will show below that in
several groups with more than one inequivalent difference set, the spread construction generates all
of the group’s difference sets.

We saw the number 192 come up quite a bit in Table 2.2.1 and Table 2.2.2. We in no way claim
to have explained the reason for every occurrence. However, we will show below that the spread
construction can be used to generate all difference sets in several groups of order 16, so Theorem
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2.4.1 and Corollary 2.4.2 shed some light on why this number occurs so often. Another number
that consistently occurs in these two tables is 64. As it turns out, we can explain many of these
occurrences via counting spread constructions as well.

Theorem 2.4.3. Let G be a group of order 16 with a normal subgroup E isomorphic to C2 ×C2.
Then a spread construction over E generates at least 64 difference sets.

Proof. Let {t1, t2, t3, t4} be a transversal of E, and let H1, H2, H3 be the order 2 subgroups of E.
We know, from [4], that there will always be some assignment of hyperplanes to cosets that yields
a difference set. Let t1H1 + t2H2 + t3H3 be one such difference set that we know must exist. If the
map Hi → tiHit

−1
i were not a permutation, then {tiHi ∗ t−1i } could not be a 1-design, for it would

fail to contain one of the elements of E∗. Therefore, Hi → tiHit
−1
i must be a permutation of the Hi.

Consider the maps Hi → tjtiHit
−1
i t−1j for j ∈ {1, 2, 3, 4}. As conjugation is an automorphism which

maps subgroups to subgroups, these 4 maps are all permutations of the Hi as well. These four maps
correspond to four distinct placements of the Hi into cosets of E. Clearly, when Hi → tiHit

−1
i is a

permutation, then {tiHi ∗ t−1i } is a 1-design.
We can do even more by noting that E, as a normal subgroup, must intersect the center of G

nontrivially, a standard result which can be proven using the conjugacy class equation. So E must
contain some nonidentity element that is in the center of G, and this means one of the Hi is in the
center of G. This Hi is fixed under conjugation by any element of G, and thus given any of the
four placements into cosets above we can swap this Hi to the unused coset and still preserve the
fact that the map is a permutation. This gives a total of 4 · 2 = 8 placements of the Hi into cosets.

As each Hi is of index 2 in E, there are two choices for how to position each Hi in its coset
(see proof of Theorem 2.4.1). Combined, this means there are 8 · 23 = 64 total sets where the map
Hi → tiHit

−1
i is a permutation of the Hi, and thus each of these 64 sets is a difference set.

2.5 Difference Set Transfers via The Spread Construction

Having introduced the spread construction and briefly discussed some immediate enumerative re-
sults, we are now ready to use it to explain difference set transfers. This subsection will be focused
almost entirely around Theorem 2.5.3, a theorem that requires some substantial machinery, which
we will now introduce.

An element T =
∑

g∈G tg g in Z[G] is called a perfect ternary array of energy v, or PTA(v), if

tg ∈ {−1, 0, 1} for all g ∈ G, and TT (−1) = v1G. It then follows that D ∈ Z[G], where |G| = 4m2,
is a Hadamard difference set if and only if D̂ is a PTA(4m2). It was shown in [1] that the associate
of every Hadamard difference set in a group G of order 16 could be represented as the product of
two PTA(4)s of the form T = 1− a− b− ab, translated on the left by some element of G. It was
also shown in [1] that every PTA(4) in the canonical form given above was of one of two types: (1)
T = 1−a−b−ab, where a has order 2 and a and b commute, or (2) T = 1−a−b−ab and < a, b >,
the group generated by a and b, is isomorphic to the quaternion group. Clearly, the translation
of a product of two PTA(4)s is the associate of a Hadamard difference set, as, letting T1, T2 be

PTA(4)s, (gT1T2)(gT1T2)
(−1) = gT1T2T

(−1)
2 T

(−1)
1 g−1 = 4gT1T

(−1)
1 g−1 = 16gg−1 = 16. This gives

us the following theorem.

Theorem 2.5.1. Let G be a group of order 16. D ∈ Z[G] is a Hadamard difference set if and only
if D̂ is the product of two PTA(4)s, each of type (1) or type (2), translated on the right by an
element of G, i.e. D̂ = gT1T2.
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Note that the nonidentity elements in the two factors of a difference set must be unique, as
otherwise we would get two identical elements in their product, and would therefore be unable to
scale each element of G with either a 1 or a −1 in the 16 element product.

We now must define some basic group theoretic tools, starting with a special subgroup known
as the socle. Noting that a subgroup N / G is called a minimal normal subgroup when there are
no groups H ⊂ N such that H / G, we define the socle of G, soc(G), to be the group generated
by all minimal normal subgroups in G. Clearly, soc(G) is a characteristic subgroup of G, as an
automorphism bijectively maps normal subgroups to normal subgroups, and therefore must map
minimal normal subgroups to minimal normal subgroups. Therefore, soc(G) / G. The following
lemma is a standard part of literature on p-groups.

Lemma 2.5.2. The socle of a finite p-group G is made up of all elements in Z(G) that have order
p.

Proof. Let G act on itself via conjugation. By the orbit stabilizer lemma, the size of each conjugacy
class is a power of p. Because the sum of the sizes of the conjugacy classes must equal the size of
G, and because the identity is in its own conjugacy class, we must have at least p− 1 nonidentity
elements in their own conjugacy class. So, Z(G) is nontrivial. Similarly, if N /G and we let G act
on N via conjugation, then there must be at least p− 1 fixed points in N . So, N ∩ Z(G) must be
nontrivial. Because every subgroup of the center is normal, any normal subgroup of order greater
than p has a proper subgroup that is normal in G. Therefore, the only minimal normal subgroups
are the subgroups of Z(G) of order p.

We now turn to the central theorem of this section.

Theorem 2.5.3. Let G be a group of order 16 that does not contain a subgroup isomorphic to
the quaternion group. If the socle of G has order 4, then every difference set in G can be generated
via a spread construction over soc(G).

Proof. For convenience, we will denote soc(G) by N . Let D ⊂ G be a difference set. We know
from Theorem 2.5.1 that D = gT1T2, a translation of the product of two PTA(4)s. Because G has
no subgroup isomorphic to the quaternion group, these must both be type (1).

We claim that the nonidentity elements of each Ti consist of one element in N and two elements
in some coset g1N . To see this, we first suppose that the designated commuting involution, a, lies
outside of N . Because N ⊆ Z(G), a commutes with every element of N , as well as every element
of aN . If a were to commute with some element outside of N ∪ aN , a set of index 2, then, by
LaGrange’s Theorem, CG(a) would be the whole group, in which case a would necessarily be in
the socle, a clear contradiction. So, we must have CG(a) = N ∪ aN . Then, the b chosen so that it
commutes with a must be either in N or in aN . In both cases, the product ab will be in the coset
we need it to be in, and our claim is proven. If a ∈ N , then b cannot be a member of N , for then
their product would be the third nonidentity element of N . We would then not be able to produce
a second PTA(4), as the above case (where we show a 6∈ N) shows that any PTA(4) must contain
an element of N , and we cannot repeat any elements. Then, we must multiply b ∈ bN 6= N by
a ∈ N , implying that ab ∈ bN , and thereby proving the claim in both cases.

We now will show that the element of Ti that lies in N determines the hyperplane translate
formed by the other two nonidentity elements of Ti. Let ni denote the nonidentity element in
Ti ∩ N . If ni is the product element ab, where a is the commuting involution, then b = ani, and
{a, b} = a{1, ni}. Alternatively, if Ti is of the form 1 − c − ni − cni, whether ni is the designated
commuting involution or not, then clearly the two elements in Ti not in the socle form the hyperplane
translate c{1, ni}.
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Because n1 6= n2, the hyperplanes {1, n1} and {1, n2} are distinct. Because N ∼= C2 × C2,
{n1, n2} = n1{1, n1n2}, which is a translate of the third hyperplane of N . We also know that
the hyperplane translate in T1 and the hyperplane translate in T2 must lie in distinct cosets, for
otherwise they would have a nonempty intersection. To see this, simply note that in aN , {1, n1}
can be sent to {a, an1} or {an2, an1n2} and {1, n2} can be sent to {a, an2} or {an1, an1n2}. So,
the elements with negative scalars in T1T2, i.e. the difference set generated by these two PTA(4)s,
will form a set containing a translate of each hyperplane of N , each contained in a unique coset of
N . Symbolically, T1T2 = (G \S)−S, where S = x(1 +n1) + y(1 +n2) +n1(1 +n1n2), and x 6∈ yN .
Translating T1T2 by some element in g, we get (G \ S′)− S′, where S′ = gx(1 + n1) + gy(1 + n2) +
gn1(1 + n1n2), which, because translation permutes cosets, is a difference set of spread form.

Though this theorem is interesting in its own right, providing insight into the structure of
difference sets in groups of order 16, our main motivation for proving and presenting it was to
explain the transfers we had observed. Let Gi denote the group with Gap ID [16, i]. We prove a
quick lemma, before getting to our central result.

Lemma 2.5.4. Given the presentations given for G2, G3, G4, and G11 in table 2.3.1, the socle of
each of these groups is 〈f3, f4〉.

Proof. We will employ lemma 2.5.2, showing that f3, f4, and f3f4 are the only central elements of
order 2 in each group.

1. It is easy to see that G2 = 〈f1, f2|f41 = f42 = [f1, f2] = 1〉 only has 3 elements of order 2,
namely f21 = f3, f

2
2 = f4, and f21 f

2
2 = f3f4. Because G2 is abelian, all of these elements are

in Z(G2).

2. Looking to the presentation of G3 in table 2.3.1, it is clear that f3 and f4 are both central.
Combining this with the fact that f2f1 = f1f2f3, we see that any element containing an f1 in
its normal form will not commute with f2, while any element containing an f2 in its normal
form will not commute with f1. Thus, Z(G3) = 〈f3, f4〉, and because |f3| = |f4| = 2, we see
that soc(G3) = 〈f3, f4〉.

3. The argument for G4 is literally identical to the argument just given for G3, due to immense
similarities in their given PC presentations.

4. We may use a nearly identical argument as above again for G11, with the only difference
being that f2f1 = f1f2f4 instead of f1f2f3. Clearly, this change does not alter the stated
implications.

Corollary 2.5.5. Given the presentations in table 2.3.1, let D be a set of words on {fi|1 ≤ i ≤ 4}.
Then, the following are equivalent:

1. D forms a difference set in G2

2. D forms a difference set in G3

3. D forms a difference set in G4

4. D forms a difference set in G11

12



Proof. By Theorem 2.5.3 and Lemma 2.5.4, every difference set in Gi, where i ∈ {2, 3, 4, 11}, is a
spread construction over 〈f3, f4〉. From this, the result follows.

Corollary 2.5.5 is certainly the most powerful, and most immediate, result we can derive from
Theorem 2.5.3. However, there are a couple more results we can derive from this theorem to further
explain difference set transfers. Once again, we start with a lemma.

Lemma 2.5.6. In G10, G12, and G14, {f3, f4} ∈ Z(G), and |f3| = |f4| = 2, while in G10 and G14

we can say the same for {f2, f4}.

Proof. This result can be easily obtained by examining Table 2.3.1

Corollary 2.5.7. When considered as words over {fi|1 ≤ i ≤ 4}, every difference set in G2, G3, G4,
and G11 is also a difference set in G10, G12, and G14.

Proof. We know that if some group of order 16 has a subgroup S ∼= C2 × C2 such that S ⊆ Z(G),
then every set constructed via the spread construction over S is a Hadamard difference set. Thus,
by Corollary 2.5.7, every spread construction over {f3, f4} is a difference set in G10, G12, and G14.
The result then follows from Corollary 2.5.5.

We finally prove one last structural lemma, before deriving our final corollary of Theorem 2.5.3.

Lemma 2.5.8. Given the presentation given for G5 in table 2.3.1, soc(G5) = 〈f2, f4〉 ∼= C2 × C2.

Proof. G5 = 〈f1, f2|f81 = f22 = [f1, f2] = 1〉. It is fairly easy to see that there are only 3 elements
of order 2 in this group, namely f41 = f4, f2, and f2f

4
1 = f2f4, and because G5 is abelian, these

elements are all in Z(G5).

Corollary 2.5.9. When considered as words over {fi|1 ≤ i ≤ 4}, every difference set in G5 is also
a difference set in G10 and G14.

Proof. By Theorem 2.5.3 and Lemma 2.5.8, every difference set in G5 can be constructed via a
spread construction over 〈f2, f4〉. By Lemma 2.5.6, these sets are all difference sets in G10 and G14

as well.

2.6 Difference Set Transfers via Quaternion Subgroups

We will continue our slightly sporadic explanation of difference set transfers in groups of order 16
by using Theorem 2.5.1 in a slightly different setting. We will start by introducing a new difference
set construction, which we will call the half quaternion construction.

Let G be a group such that |G| = 16. Suppose further that there is some H / G such that
H ∼= Q8, the quaternion group. It is traditional to represent the quaternion group as 〈̂i, ĵ, k̂, n|̂i4 =
ĵ4 = k̂4 = n2 = 1, în = î−1, ĵn = ĵ−1, k̂n = k̂−1, îĵ = k̂, ĵk̂ = î, îk̂ = ĵ−1〉. If we give such labels
to the elements of H, then we can follow one of two procedures to construct a difference set. (i)
Select one element from each of the pairs (̂i, î−1), (ĵ, ĵ−1), (k̂, k̂−1), (n, 1), and place them in a set
D, then add to D some element in g ∈ G\H, and finally add the element gn, or (ii) let g1 ∈ G\H,
and select one element from each of the pairs (g1î, g1î

−1), (g1ĵ, g1ĵ
−1), (g1k̂, g1k̂

−1), (g1n, g1), place
them in a set D, than add to D some h ∈ H, as well as the element hn. Note that in construction
(ii) the property of having one element in each pair does not depend on which coset representative
we choose. In both cases, we will call D a difference set of half quaternion type. We now justify
our calling D a difference set.
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Theorem 2.6.1. A set D constructed using either procedure (i) or procedure (ii) is a difference
set.

Proof. Let D = D1 + D2, where D2 is the last two elements added to D, namely g and gn, for

some g ∈ G. Then, DD(−1) = D1D
(−1)
1 + D1D

(−1)
2 + D2D

(−1)
1 + D2D

(−1)
2 . We will first show

that D1D
(−1)
1 + D2D

(−1)
2 = 4 + 2H. Note that, because n ∈ Z(H) is the only element in H of

order 2 in H, n is always fixed under conjugation by some element of G, so n ∈ Z(G). Then,

D2D
(−1)
2 = (g + gn)(g−1 + g−1n) = 2 + 2n. Meanwhile, it is easy to check that if we formed D in

procedure (i), then D1D
(−1)
1 = 2 + 2(H \ {n}). If we formed D in procedure (ii), however, then

D1 = g1D
′
1, where g1 ∈ G\H and D′1 is some set formed in the way we would form D1 in procedure

(i). But then D1D
(−1)
1 = g1(2 + 2(H \ {n}))g−11 = 2 + 2(H \ {n}).

We now turn to D1D
(−1)
2 +D2D

(−1)
1 . Because multiplying by n sends each element of H \{1, n}

to its inverse, if D was created using procedure (i) then D1g
−1
1 +D1ng

−1
1 = Hg−11 = g−11 H, where

g1 ∈ G \ H, while if D was constructed with procedure (ii), we use similar notation as in the
previous paragraph to see that D1g

−1 +D1ng
−1 = g1(D

′
1 +D′1n)g−1 = g1H, where g1 ∈ G \H and

g ∈ H. Similarly, D2D
(−1)
1 = G \H. But then DD(−1) = 4 + 2G.

This construction was originally crafted with an eye towards general 2-groups, perhaps generat-
ing a difference set in any group with a generalized quaternion subgroup of index 2. Unfortunately,
many groups with generalized quaternion subgroups of index 2 do not have difference sets at all,
so this generalized construction failed to work out.

However, we are still in a position to use this specific construction to demonstrate the theory
behind some more difference set transfers. We will here again be using Theorem 2.5.1 to classify
the structure of all difference sets in a group of order 16. Here, we will be considering the modular
group of order 16.

Theorem 2.6.2. Every difference set in G8 is of the half quaternion type.

Proof. Because G8 has a subgroup isomorphic to the quaternion group, we may here use PTA(4)s
of either the quaternion type or of the commuting involution type. Because a PTA(4) of the
quaternion type must be of the form 1 − a − b − ab, it can contain either î, ĵ, and k̂, or it can
contain two of these three elements multiplied by n, and the other one unaltered. Thus, any
two quaternion PTA(4)s generated over a single quaternion subgroup must intersect. Because G8

contains only one subgroup isomorphic to the quaternion group, it cannot contain two PTA(4)s of
the quaternion type without them intersecting.

When we look at what PTA(4)s of the commuting involution type we can form in G8, we
see that we are also very restricted. We can discern from Table 2.3.1 that G8 contains only 5
elements of order 2, namely f4, f2, f2f4, f2f3, and f2f3f4. It is not immediately obvious, but not
particularly difficult to use the relations in Table 2.3.1 to see that CG(f2) = CG(f2f4) = 〈f2, f4〉
and CG(f2f3) = CG(f2f3f4) = 〈f2f3, f4〉. But then we see that each PTA(4) of the commuting
involution type must contain f4, and must be of the form 1 − g − f4 − gf4, for some g ∈ G. So,
we cannot have a difference set that is the product of two PTA(4)s of the commuting involution
type, and we then see that every difference set in G8 must be the translation of the product of one
PTA(4) of each type.

Clearly, the product of one PTA(4) of each type is a difference set of half quaternion type,
constructed via procedure (i). But what happens when we multiply this product by some element
of G? Recycling notation from the proof of Theorem 2.6.1, we can easily see that multiplying D1
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by any element in H will simply permute the pairs from which each element in D1 comes, and
perhaps switch the element of each pair that is chosen, neither of which will take D1 out of the
proper form. Multiplying D1 by some element in G \ H, on the other hand, will simply place
the elements into the other coset of H, and we will simply switch from a type (i) half quaternion
construction to a type (ii) half quaternion construction. Furthermore, whichever coset D2 lies in,
g2{g, gn} = {g2g, g2gn}, for any g2 ∈ G, so multiplying D2 will never take it out of its proper form.
Thus, we can conclude that every difference set in G8 is of half quaternion type.

Corollary 2.6.3. Every difference set in G8 is a difference set in G9.

Proof. We can see from Table 2.3.1 that the one quaternion subgroup of G8 is 〈f1, f3, f4〉, while
〈f1, f3, f4〉 is also a quaternion subgroup in G9. By Theorem 2.6.1, G9 contains all possible difference
sets of the half quaternion type, generated over the group 〈f1, f3, f4〉, and then by Theorem 2.6.2,
the result follows.

2.7 Difference Set Transfers via Basic Algebra

We now turn a more direct proof of one difference set transfer. Although the relevant result will still
be a corollary of the theorem whose proof we give in detail, the theorem will be mapping difference
sets in one group to those in another, rather than simply classifying the structure of all difference
sets in various groups. Letting r = 2s + 2, for some natural number s, we will be considering the
groups Cr2 , which we will call G, and C4 × Cr−12 , which we will call H. We will use the standard
presentations of these groups, representing G as 〈g1, . . . , gr|∀i, j ∈ {1, . . . , r}g2i = [gi, gj ] = 1〉, and
representing H as 〈h1, . . . , hr−1|h41 = 1,∀i, j ∈ {2, . . . , r − 1}h2i = [h1, hi] = [hi, hj ] = 1〉. We will
let [m] denote the set of numbers from 1 to m, i.e. [m] = {1, 2, . . . ,m}.

Set v = 2r, k = 22s+1 − 2s, λ = 22s − 2s, and n = k − λ = 22s. Then, let α : [r] × [k] →
{0, 1} be some function that maps ordered pairs of integers to a binary value. We will use α to
assign exponents to the generators in G and H. Using α, we can generate two sets, DG = {γj =

g
α(1,j)
1 g

α(2,j)
2 · · · gα(r,j)r |j ∈ [k]}, and DH = {ηj = h

α(1,j)+2α(r,j)
1 h

α(2,j)
2 · · ·hα(r−1,j)r−1 |j ∈ [k]}. It is

worth noting that these two sets are of the correct size to be Hadamard difference sets in a group
of order 2r. We now turn to a theorem that can be applied to infinitely many 2-groups.

Theorem 2.7.1. Given some function α, if DG is a difference set in G then DH is a difference set
in H.

Proof. Our proof will revolve around the group ring products

DGD
(−1)
G =

k∑
i,j=1

g
α(i,1)+α(j,1)
1 · · · gα(i,r)+α(j,r)r (1)

and

DHD
(−1)
H =

k∑
i,j=1

h
α(i,1)−α(j,1)+2(α(i,r)+α(j,r))
1 · · ·hα(i,r−1)+α(j,r−1)r−1 . (2)

We start by noting that (1) contains every element in the subgroup SG = 〈g2, g3, . . . gr〉 exactly
λ times if and only if (2) contains every element in SH = 〈h21, h2, . . . , hr−1〉 exactly λ times. This is
because the statements (i) ge22 · · · gerr occurs λ times in (1), and (ii) h2er1 he22 · · ·h

er−1

r−1 occurs λ times
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in (2) are both equivalent to the statement there are exactly λ pairs (p, q) ∈ [k] × [k] such that
α(p, i) + α(q, i) = ei for all i ∈ [r].

We now assume that (1) contains each element of G λ times. So, (1) contains each element
of SG λ times, meaning (2) contains each element of SH λ times. Furthermore, (1) contains each

element of g1SG λ times. Because every element in G has order 2, γiγ
(−1)
j = γjγ

(−1)
i for all i, j ∈ [k].

Thus, for some g1s ∈ g1SG, P (DG), the power set of DG, contains λ
2 unordered pairs (γi, γj) such

that γiγj = γjγi = g1s. Similarly, there are λ
2 unordered pairs in P (DG) such that the product of

the two elements in the pair is g1sgr.
If γiγj = g1s, then, without loss of generality, we can assume γi = g1s1 and γj = s2, where

s1, s2 ∈ SG. Remembering our original definitions of γi and ηi, this implies that ηi = h1t1 and
ηj = t2, where t1, t2 ∈ SH and for i ∈ [r−1] the exponent of hi in t1t2 = t is equal to the expoenent

of gi in s, while the exponent of gr in s is equal to the expoenent of h21 in t. Therefore, ηiη
(−1)
j = h1t,

while ηjη
(−1)
i = h31t. So, we have both h1t and h31t occuring at least λ

2 times each in (2), once for
each pair (γi, γj) such that γiγj = g1s. We can follow a similar procedure for each pair (γi, γj) such
that γiγj = g1sg4, and get λ

2 copies of h1th
2
1 = h31t and λ

2 copies of h1th
2
1h

2
1 = h1t. Thus, we have

λ copies of h1t and λ copies of h31t in (2), for each t ∈ SH , meaning DH is a difference set in H.

We believed that we had proven Theorem 2.7.1 as a biconditional, but recently discovered a
problem with the second half of our proof. However, based on computational evidence, we have a
strong reason to believe that a biconditional still holds in general. Therefore, we will list the second
half as a conjecture.

Conjecture 2.7.2. Given some function α, if DH is a difference set in H then DG is a difference
set in G.

Luckily, most of our observations concern just groups of order 16. When we make the same
restriction here, we do indeed have a proof for the biconditional.

Theorem 2.7.3. Let G and H be as defined above, with r set to 4 so that |G| = |H| = 16. Then
DG is a difference set in G if and only if DH is a difference set in H.

Proof. We will recycle notation from the proof of Theorem 2.7.1, while we know from that same
theorem that if DG is a difference set in G, then DH is a difference set in H. Furthermore, we
know that (1) contains every element in the subgroup SG = 〈g2, g3, . . . gr〉 exactly λ times if and
only if (2) contains every element in SH = 〈h21, h2, . . . , hr−1〉 exactly λ times.

Keep in mind here that k = 6 and λ = 2. Now, we suppose that (2) contains every element in
H twice. We then know immediately that (1) contains every element in SG twice, by the result
stated at the end of the last paragraph. But we are also supposing that (2) contains every element

of h1SH twice. Let ηiη
(−1)
j = ηpη

(−1)
q = h1t, for some t ∈ SH . See that then, ηjη

(−1)
i = ηqη

(−1)
p =

(h1t)
−1 = h31t. We know by (2) that either (a) ηi = h1t1 and ηj = t2, for t1, t2 ∈ 〈h2, h3〉, or (b)

ηi = t1 and ηj = h31t2, for t1, t2 ∈ 〈h2, h3〉. We can make a similar claim about ηp and ηq.

But suppose both pairs were of form (a), so that ηp = h1t3 and ηq = t4. Then ηiη
(−1)
p = ηjη

(−1)
q

implies that h1t1t3h
−1
1 = t2t4 = t4t2, and we have three ways of comibing elements of DH to make

the same element, violating our assumption that DH was a difference set. Similarly, if both pairs
were of form (b) we would be violating our initial assumption. So, one of the pairs must be of form
(a) and the other must be of form (b).
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By the definition of γi and of ηi, we then know that then one of γiγj = γjγi and γpγq = γqγp
equal to g1s, and the other is equal to g1sg4, where the exponent of hi in t is equal to the expoenent
of gi in s, for i ∈ {2, 3}, while the exponent of g4 in s is equal to the expoenent of h21 in t.

If we repeat this process for each inverse pair of elements in H, we see that (1) contains every
element of G exactly twice, so DG is a difference set.

Corollary 2.7.4. When considered as words over {fi|1 ≤ i ≤ 4}, the difference sets in G10 and
G14 are exactly the same.

Proof. We can see from Table 2.3.1 that in G10, f4 = f21 . Then, given our definitions of DH and
DG above, the result follows from Theorem 2.7.3

2.8 Next Steps in Difference Set Transfers

We remain impressed with how pervasive difference set transfers are in 2-groups. Although we
were only able to characterize transfers in groups of order 16, we believe that there are fully general
results out there to be proven. We spent only about three weeks investigating this phenomenon,
so what we have done here is just scratching the surface of what can be done.

We believe that there are likely grand overall theorems that can be used to explain vast swaths
of our observations concerning difference set transfers. The study of difference set transfers is just
beginning, and if it is given the time and attention that it deserves, there are almost certainly some
fascinating and illuminating results to be drawn from it.
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3 Extended Building Sets

3.1 Introduction

James A. Davis and Jonathan Jedwab co-authored a paper titled A Unifying Construction for
Difference Sets that features exactly what its title alludes to: another method for constructing
difference sets. Applicable to those of the Hadamard type, Davis and Jedwab create a recursive
construction that relies on three major concepts, which we shall now define.

Definition 3.1.1. For a finite multiplicative group G of order m ∗u, where m is the modulus of G
and u is the order of U �G, we call R, a k-element subset of G, a (m,u, k, λ) relative difference
set (RDS) in G relative to U if every element of G−U is contained in {r1r−12 | r1, r2 ∈ R, r1 6= r2}
exactly λ times.

Definition 3.1.2. A building block in a group G with modulus m is a subset of G such that all
nonprincipal character sums over the subset have modulus either 0 or m. A collection of t building
blocks in G with modulus m, each containing a elements, is known as a (a, m, t) building set
(BS) on a group G relative to a subgroup U , where for each nonprincipal character of G, either
precisely one building block has nonzero character sum or none of the building blocks have nonzero
character sum depending on whether the character is nonprincipal or principal on U , respectively.

Definition 3.1.3. Suppose we have a collection of building blocks Bi, i ∈ {1, 2, ..., h}, of elements
in the group G. Suppose further that h−1 blocks have a elements and one block has a±m elements,
where

∑
i |Bi |= (h − 1)a + (a ±m) = ha ±m, which must equal 2m2 ±m (the parameter k for

Hadamard difference sets), where + or − must be preserved. The collection of these sets is referred
to as a (a, m, h, ±) extended building set (EBS) with respect to a subgroup U , where for each
nonprincipal character of G, either precisely one building block has nonzero character sum of none
of the building blocks have nonzero character sum depending on whether the character is principal
or nonprincipal on U , respectively.

The ultimate goal of the Davis-Jedwab construction is to find a covering extended building set,
which means that the EBS is relative to the trivial subgroup. We now make a critical observation.
A difference set, in general, is actually a relative difference set where U = 1G. To give an analogy,
a building set is to a relative difference set as a (covering) EBS is to a difference set for a group G.
Thus, we have a difference set in G through this relation with the trivial subgroup! This process
of creating extended building becomes noticeably more difficult as the size of the group grows;
however, the fact that this construction is recursive by nature allows for a covering EBS on G to
be “lifted” to another group G

′
that contains G fairly easily.

One of the primary tools that the authors use in their difference set construction is character
theory, as indicated in the above definitions. To be brief, the group of characters of G is isomor-
phic to G itself and contains all possible homomorphisms (the characters) from G to the complex
roots of unity, a multiplicative group. An extended building set contains only one building block
with nonzero character sum for every nonprincipal character of G, with the term “nonprincipal”
describing characters which do not map every element of G to the identity element, 1, of the group
of complex roots of unity. We would like to note here that Ken Smith provided the covering EBS
for G ∼= C4 × C4 and Jim Davis provided the covering EBS for G ∼= C8 × C8, likely using these
character properties to do so.

Given these, however, we were able to do two things: first, create our own covering EBS for
G ∼= C2×C2 and for G ∼= C3×C3, since these groups are smaller and therefore easier to manipulate
to construct building blocks; second, examine these extended buildings sets and find patterns that
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do not rely on character theory in order to provide new guidelines for creating an covering EBS.
This has led to our development of quasi-difference sets, which we will explain in detail after the
presentation of our results in order to accurately portray the progression of our research. These
new sets, which exist in Cm × Cm, are, in a sense, shadows of the Hadamard difference sets found
in groups of order 4m2 since they uphold similar parameters to those of their larger counterparts.
Moreover, quasi-difference sets are distinct from relative difference sets because the latter is a result
of building sets while the former is a result of extended building sets. It seems, however, that this
new way of looking at the EBS construction is only applicable to groups where m = 2n, n ∈ N,
n ≥ 2.

We shall cite three important theorems from Unifying Construction. The first, appearing as
Theorem 2.4 in the paper, makes explicit the “lifting” process utilized in our EBS algorithm. The
second theorem, appearing as Theorem 4.3, illustrates the origins of this “lifting” process: finding
a building set in the pr quotient groups and injecting them into G to obtain a building set. The
third theorem, appearing as Theorem 3.1.5, bridges these first two theorems. We omit the proofs
but encourage readers to find them in [2].

Theorem 3.1.4. Suppose there exists a (a, m, h, ±) covering EBS on a group G. Then there exists
an (h | G |, ah±m, ah±m−m2,m2)-difference set in any group G

′
containing G as a subgroup of

index h.

We note the importance of Theorem 3.1.4. The proof construction proves that shifting any
building block B by an element of the group G still results in a building block and, in fact, is
another choice for building blocks when making the extended building set.

Theorem 3.1.5. Let G be a group of order p2ra containing a subgroup Q ∼= Z2r
p , where p is prime.

Let H0, ...,Hpr be the subgroups of G of order pr corresponding to hyperplanes when viewed as
subgroups of Q. Suppose there exists a (a,

√
at, t) building set on G/Hi relative to Q/Hi for each

i = 1, ..., pr. Then there exists a (pra, pr
√
at, prt) building set on G relative to H0.

Theorem 3.1.6. Let G be a group of order u2am containing a subgroup U of order u. Suppose
there exists a (am,m, h,±) covering EBS on G/U and there exists a (a2t, at, t) BS on G relative
to U, where um = at. Then there exists a (uam, um, h+ t,±) covering EBS on G.

In the context of Hadamard difference sets, Theorem 3.1.4 indicates that any difference set in
a group of order 4m2, whose parameters could be expressed as indicated in the theorem, originates
from an extended building set that covers a group of order m2, which itself gives a difference set in
this smaller group. Davis and Jedwab use character theory to show how a covering EBS for a group
G relates to a covering EBS for a group G

′
containing G as a subgroup with index h = 4, thus

leading to the utilization of four building blocks in our algorithm. This covering EBS for G
′

then
gives a difference set for that group. The proof of Theorem 3.1.4, meanwhile, shows how the idea
of using quotient groups and coset representatives to build difference sets begins with constructing
the building sets, which again relate to relative difference sets. The subgroups of Q (and G by
extension) correspond to hyperplanes in the Galois field of size p2r under an isomorphism between
Q and GF (pr). Disregarding H0, the building blocks formed for the quotient groups G/Hi using
the generators of G are “lifted” into G to create the building set for this group, with H0 becoming
our U . To create a covering EBS on G, we find a covering EBS for G/U and combine it with the
BS we have already constructed on G, as indicated by Theorem 3.1.6.

We will now look at how the EBS construction is implemented using GAP.
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3.2 Algorithm

The algorithm we used to create difference sets with the Davis-Jedwab EBS construction technique
begins with identifying the GAP index of the group we are going to use as our G from Theorem
3.1.4. We decided to restrict ourselves to looking at G ∼= Cm × Cm, where m is a natural number
greater than one. Hence our EBS construction will only work in groups that contain a subgroup
isomorphic to Cm × Cm.

Next we generated the list of elements of G in GAP and stored it in a variable. Since GAP
maintains the same number of generators for each group of equal size (i.e. the number of components
in the elementary abelian group), we needed to search for two elements in G that generated the
entire group. These were always the second and third elements in the list, which were denoted f1
and f2. With these generators, we were able to construct our extended building sets. Since G ∼=
Cm × Cm has order m2 and we are looking at G in the context of larger groups with order 4m2,
we will always have four building blocks in our covering EBS, three of size a and one of size a±m.
Each building block is, by design, the union of particular subgroups of G; this is more clear with
the examples in the subsequent section.

The set-up is now complete and we may dive into the heart of the code. It begins with a for
loop that allows us to search for Hadamard difference sets over all groups of a particular size; this
index is represented by the variable cn. Within the for loop, we set a variable, which we call found,
equal to false, the reason being clear later. Then we create a variable to store our groups of size
4m2, which correspond to G

′
in Theorem 3.1.4, as we move through this initial for loop. Now we

must find all subgroups of G
′

isomorphic to G. We accomplish this using the Filtered function in
GAP, and we store these subgroups in a list, which we call K. After creating another for loop that
cycles through these subgroups, we create an if statement that breaks the code if a difference set
has been found (this is because we only care about the existence of a difference set rather than
finding all inequivalent ones). Again, this will make more sense later. In order for GAP to recognize
the subgroups of G

′
isomorphic to G, we utilized the IsomorphismGroups function to create an

isomorphism between G and each element of K. We are thus able to use the RightCosets function
to create a list of coset representatives of the elements of G

′
/K.

With this list of coset representatives, we create yet another for loop that moves through the
elements of the permutation group of size four, denoted S4. This is because the main idea behind
this EBS construction is consider all possible permutations of our coset representatives with respect
to our four building blocks. In other words, we want to search through the 24 distinct matchings of
buildings blocks and coset representatives and find the first one that yields a Hadamard difference
set. The first item in this for loop is instantiating our list of elements of our potential difference
set, which we designate as empty for now. Then, using a pair of for loops, we essentially inject
the elements of our covering EBS into G

′
by multiplying each building block by one of the coset

representatives. These elements are appended to our list of “proposed” difference set elements.
The final step of our algorithm is to call the DiffsetTest function that we created, which checks

whether or not a given set of element meets the criteria to be a Hadamard difference set. If this
returns true, then we set our variable found to be true and the for loop which moves through
all of our subgroups isomorphic to G breaks. This process continues into the next G

′
of a given

order. It is critical to understand that the building blocks are formed without the influence of G
′
,

as indicated by Theorem 3.1.4. This permits the “lifting” process to extend to infinite families of
difference sets.

We share our results in the next section, examining the cases of m = 2, 3, 4, and 8. Attempts
have been made for the cases m = 5, 6, and 7, but with no success. Only one difference set has
been found in groups of order 100 (see [8]) and, according to [7], only one group of order 196 could
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possibly have a difference set, which has not been found yet; on the other hand, we are aware that
numerous difference sets in groups of order 144 (see [9]) have been found.

3.3 Results

When referring to groups, which appear in the left-hand columns of the tables below, we use the
notation (u, v), where u is the size of the groups, and v is the GAP ID. The tables also include
the list of GAP indices emitted by our algorithm that make a Hadamard difference set. We will
reiterate that we found the extended building sets for the first two groups sizes while we were
provided the extended building sets for the last two groups sizes. The EBS algorithm took mere
seconds to search for difference sets in groups of order 16 and 36, a couple of minutes for groups
of order 64, and roughly five days for groups of order 256 (but, given how we restricted G, it is
basically unnecessary to search after a certain GAP index since groups beyond that point definitely
do not contain G as a subgroup).

Note that we list the covering extended buildings sets used to find the difference sets. By Theorem
3.4, each building block can, in fact, be acted on by an element in the group and still be a building
block, and thus we still have an covering EBS.

• Groups of order 16:

∗ G = C2 ×C2

1. B1 = 〈x, y〉, B2 = 〈y〉, B3 = 〈x〉, B4 = 〈xy〉.
Emitted HDSs:
(16,2): [ 7, 10, 12, 13, 14, 15 ]
(16,3): [ 3, 4, 6, 11, 12, 15 ]
(16,4): [ 7, 10, 12, 13, 14, 15 ]
(16,5): [ 6, 11, 12, 13, 14, 15 ]
(16,6): [ 3, 5, 6, 11, 13, 15 ]
(16,10): [ 6, 11, 12, 13, 14, 15 ]
(16,11): [ 2, 5, 6, 11, 13, 14 ]
(16,12): [ 7, 10, 12, 13, 14, 15 ]
(16,13): [ 2, 5, 6, 11, 13, 14 ]
(16,14): [ 6, 11, 12, 13, 14, 15 ]

Hence 10 out of 12 possible groups of order 16, of which there are 14, emit Hadamard
difference sets with this method.

• Groups of order 36:

∗ G = C3 ×C3

1. B1 = 〈y〉 ∪ x2〈y〉, B2 = 〈xy〉, B3 = 〈x2y〉, B4 = 〈x〉.
Emitted HDSs:
(36,6): [ 4, 12, 19, 23, 29, 35, 2, 16, 33, 7, 32, 34, 1, 3, 9 ]
(36,7): [ 1, 5, 11, 13, 22, 31, 2, 17, 34, 3, 29, 30, 6, 14, 24 ]
(36,8): [ 1, 4, 9, 12, 19, 29, 2, 15, 32, 5, 30, 31, 8, 16, 25 ]
(36,9): [ 6, 15, 24, 26, 32, 36, 2, 17, 34, 3, 29, 30, 1, 4, 11 ]
(36,10): [ 1, 5, 11, 13, 22, 31, 2, 17, 34, 3, 29, 30, 6, 14, 24 ]
(36,12): [ 3, 10, 19, 21, 29, 35, 2, 17, 34, 6, 32, 33, 1, 4, 11 ]
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(36,13): [ 1, 5, 11, 13, 22, 31, 2, 17, 34, 3, 29, 30, 6, 14, 24 ]
(36,14): [ 1, 5, 11, 13, 22, 31, 2, 17, 34, 3, 29, 30, 6, 14, 24 ]

2. B1 = 〈y〉 ∪ x2〈y〉, B2 = x〈xy〉, B3 = x2〈x2y〉, B4 = 〈x〉.
Emitted HDSs:
(36,6): [ 4, 12, 19, 23, 29, 35, 6, 18, 25, 24, 26, 28, 1, 3, 9 ]
(36,7): [ 1, 5, 11, 13, 22, 31, 7, 18, 27, 19, 20, 21, 6, 14, 24 ]
(36,8): [ 1, 4, 9, 12, 19, 29, 6, 17, 24, 20, 22, 23, 8, 16, 25 ]
(36,9): [ 6, 15, 24, 26, 32, 36, 7, 18, 27, 19, 20, 21, 1, 4, 11 ]
(36,10): [ 1, 5, 11, 13, 22, 31, 7, 18, 27, 19, 20, 21, 6, 14, 24 ]
(36,12): [ 3, 10, 19, 21, 29, 35, 7, 18, 27, 24, 25, 26, 1, 4, 11 ]
(36,13): [ 1, 5, 11, 13, 22, 31, 7, 18, 27, 19, 20, 21, 6, 14, 24 ]
(36,14): [ 1, 5, 11, 13, 22, 31, 7, 18, 27, 19, 20, 21, 6, 14, 24 ]

Hence 8 out of 9 possible groups of order 36, of which there are 14, emit Hadamard
difference sets with this method. We put two constructions to illustrate that different
EBSs emit different Hadamard Difference Sets.

• Groups of order 64:

∗ G = C4 ×C4

1. B1 = 〈x2, y2〉 ∪ x〈y〉,
B2 = 〈x2y〉,
B3 = 〈x〉 ∪ y〈xy2〉,
B4 = 〈xy〉 ∪ y〈xy3〉.

Hence 140 out of 259 groups of order 64, of which there are 267, emit Hadamard difference
sets with this method, which we will not list for the sake of brevity.

• Groups of order 256:

∗ G = C8 ×C8

1. B1 = 〈x4, y2〉 ∪ x2〈y〉 ∪ x〈x4y〉,
B2 = 〈x2, y4〉 ∪ y〈x2y2, y4〉 ∪ x〈x2y〉 ∪ xy〈x2y3〉,
B3 = 〈x〉 ∪ y〈xy2〉 ∪ y2〈xy4〉 ∪ y3〈xy6〉 ,
B4 = 〈xy〉 ∪ y〈 xy3〉 ∪ y2〈xy5〉 ∪ y3〈xy7〉.

Hence 779 groups of order 256, of which there are 56,092, emit Hadamard difference sets
with this method, which we will not list for brevity. We are unsure of the number of
groups of this size that do not have an HDS due to known nonexistence results.

One item we would like to make note of is that we do not need to have a covering EBS that
contains all of the elements of G; remember this “covering” property is based on character sums.
We can observe such a phenomenon with the covering EBS for C4 × C4. We also notice that
each building block of does not have to contain the identity 1G, as proven by the second covering
EBS on groups of order 36. We do believe, though, that the building block with a ±m elements
must contain the identity element in order for this algorithm to produce a difference set. This is
because the subgroup H0 of Q in Theorem 1.2 is our subgroup U used in the definitions given in
the beginning of this paper, thus serving as the kernel in the “lifting” process from G/U to G to
G
′
. Furthermore, the fact that we were able to find more than one covering EBS in the first place

for C3 × C3 has led to the following theorem for any abelian group.
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Theorem 3.3.1. Given an (a,m, h,±) extended building set φ = {B1, B2, . . . , Bh} that covers a
group G, and, without loss of generality, letting the block Bh be the a ±m block, containing the
identity element. For any h′ ∈ {1, 2, . . . , h− 1} and any g ∈ G, φ′ = {B1, . . . , g

′Bh′ , . . . , Bh} is also
a covering extended building set on G.

This follows from the proof of Lemma 2.3 in [2] with s = 1 and thus forcing the condition that
G
′

is G. We will restate the lemma here.

Lemma 3.3.2. Suppose there exists a (a, m, h, ±) covering EBS on a group G. Then there exists
a (as, m, h/s, ±) covering EBS on G

′
, where s divides h and G

′
is any group containing G as a

subgroup of index s.

In the proof of this lemma, Davis and Jedwab explicitly shift the elements of the building
blocks, which are located in G, via multiplying them by elements of G

′
. They then show that the

character properties necessary for a covering EBS still hold after this transformation. Accordingly,
Theorem 3.4 indicates that “shifting” a building block within a covering EBS for G will maintain
the required properties of a covering EBS. An example of this would be to take the covering EBS
for C4 × C4 and modifying it in the following manner:

1. B1 = 〈x2, y2〉 ∪ x〈y〉

2. B2 = 〈x2y〉

3. B3 = y〈x〉 ∪ y2〈xy2〉

4. B4 = 〈xy〉 ∪ y〈xy3〉.

It is easy to check that by “shifting” the third building block via left multiplication by y yields a
different building block than in the previous example, and the algorithm still emits a Hadamard
difference set for all 140 groups it previously worked for.

Another interesting observation we have made is how the value of m influences which groups
emit difference sets. To expound, for m = 2 and m = 3, groups that contained a normal subgroup
isomorphic to Cm×Cm would only emit difference sets. This means that, for instance, group (36,11)
in GAP did not emit a difference set because the subgroup isomorphic to Cm ×Cm is not normal.
For the non-prime values of m that we looked at, there is no such “surface-level” indicator of why
certain groups containing Cm × Cm as a subgroup do not emit difference sets with our algorithm.
The groups of order 64 with this phenomenon have indices 25, 28, 45, 102, 124, and 125; those
of order 256 have indices 167, 168, 169, 444, 447, 4657, 4658, 5034, 5035, 5298, 5299, 5300, 5352,
and 5353. For the most part, these groups appear close together in GAP’s ranking system, which
suggests some structural similarities that might explain these observations.

The above examples also demonstrate the use of both addition and subtraction in covering EBS
parameters. We shall explore this concept in more detail. The nature of the covering EBS over G is
that the total number of elements equals the number of elements, k, of the Hadamard difference set
in G

′
, as demonstrated in Definition 3.1.3. Thus we have the equation ha ±m = 2m2±m. Given a

particular value of m for G ∼= Cm×Cm, we can solve this equation for a (since we know h = 4 when
aiming to create an HDS) to give us the size of three of the building blocks, with the remaining
building block of size a ±m. So, naturally, one is curious as to which operation to choose when
forming a covering EBS. Looking at the EBS for C2 × C2, it is obvious that three building blocks
have size 2 while the fourth has size 4. This sums up to 10 elements, which is the complement to
the more standard (16,6,2) difference set. It is known, however, that the complement of a difference
set is too a difference set, so as explained earlier, we can find the complement of the complement
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to obtain the size 6 difference set that corresponds to subtraction as the fourth parameter of our
(2,2,4,+) covering EBS (see [10], page 322). We provide an algorithm in the appendix that is an
addition to our EBS algorithm and allows for the conversion of an HDS complement into an HDS.

This does not imply that using addition always gives the complement of a Hadamard difference
set. For instance, we observe that both covering extended building sets for C3 × C3 contain three
building blocks of size 3 and another of size 6. This yields an HDS of size 15 using addition as the
fourth parameter of our (3,3,4,+) covering EBS. An example of using subtraction is our (8,4,4,-)
covering EBS for C4 × C4. Hence, in general, the operation chosen in a ± m to create the hth
building block is itself not imperative to successfully finding an HDS in a group; the choice is only
a starting point!

3.4 Quasi-difference Sets

The structure of the extended building sets constructed for C4 × C4 and C8 × C8 have motivated
our exploration into a new type of set in these groups. In fact, these sets in the groups Cm × Cm
relate directly to the (4m2, 2m2±m,m2±m) Hadamard difference sets in groups of order 4m2, as
we shall reveal soon.

Definition 3.4.1. Let G be a group of order vG, and suppose we want a (vG, kG, λG) difference set
on G. On a group H of order vH , where for some z ∈ N, vG

vH
= z, a set S ⊆ H is a (vH , kH , λG, δ)

quasi-difference set relative to a group G, provided H is contained in G, the set SS−1 contains
δ = (v − k) ((v − k)− 1) non-identity elements exactly λG + 1 times, and all other non-identity
elements exactly λG times.

Corollary 3.4.2. | SS−1 | = (kH − λG) |1H | +λ |H | + δ

Proof.

| SS−1 | = δ (λG + 1) + (vH − δ)λG + (kH − λG) (3)

= δλG + δ + λGvH − δλG + (kH − λG) (4)

= δ + λG |H | + (kH − λG) (5)

=⇒ | SS−1 | = (kH − λ) |1H | +λ |H | + δ (6)

Corollary 3.4.3. If λG = kH − (vH − kH) , then: (kH(kH − 1)− δ) = (vH − 1)λG

Proof.

kH(kH − 1)− δ = kH(kH − 1)− (vH − k) ((v − 1)− kH) (7)

= kH(kH − 1)− (vH − kH) (vH − 1)− kH (vH − kH) (8)

= kH(kH − 1)− (vH − kH) (vH − 1)− kH (vH − kH) (9)

= k2H − kH − (vH − kH) (vH − 1) + kHv − k2H (10)

= (vH − 1) kH − (vH − kH) (vH − 1) (11)

= (vH − 1) (kH − (vH − hkH)) (12)

= (vH − 1)λG (13)
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We focus our attention on groups of order 4m2 and smaller groups H of order m2, in hopes to
further understand the Hadamard Difference Sets.

Theorem 3.4.4. For a group G of order 4m2 and H of order m2 a set S ⊆ G is a (m2,m2 −
m
2 ,m

2 −m, m2

4 −
m
2 ) quasi-difference set on H.

Proof. We check the conditions given by the two corollaries above.

1. k(k− 1) = (v− 1)λ, eliminating the elements counted λ+ 1 times, which break the difference
set condition.

k(k − 1)−
(
m2

4
− m

2

)
= (m2 − m

2
)(m2 − m

2
− 1)−

(
m2

4
− m

2

)
(14)

=

(
m4 −m3 − 3m2

4
+
m

2

)
−
(
m2

4
− m

2

)
(15)

= m4 −m3 −m2 +m (16)

=
(
m2 − 1

) (
m2 −m

)
(17)

= (v − 1)λ (18)

=⇒ k(k − 1)− δ = (v − 1)λ (19)

2. The size of the differences of S, | SS−1 | = (k − λ) | 1G | +λ | G | +
(
m2

4 −
m
2

)
.

| SS−1 | =

(
3m2

4
+
m

2
− 1

)
λ+

(
m2

4
− m

2

)
(λ+ 1) +

(
m2 − m

2

)
(20)

=
3m2

4
λ+

m

2
λ− λ+

m2

4
λ− m

2
λ+

m2

4
− m

2
+m2 − m

2
(21)

=

(
3m2

4
+
m2

4

)
λ+

(m
2
− m

2
− 1
)
λ+

(
m2 +

m2

4
−m

)
(22)

= m2λ+
(
−m2 +m

)
+m2 +

m2

4
−m (23)

= λ |G | +m2

4
+
(m

2
− m

2

)
(24)

=
m

2
+ λ |G | +m2

4
− m

2
(25)

= (k − λ) |1G | +λ |G | +
(
m2

4
− m

2

)
(26)

In defining these sets, we borrow the notation for difference sets, setting v = m2, k = m2−m
2 , and

λ = m2 −m, without meeting the requirements for being a difference set; however, the motivation
for this definition lies in its connection to Hadamard Difference Sets. We can lift these sets into
groups of order 4m2 that contain a group isomorphic to G, and the elements in these sets will, in
fact, be a difference set on that group.

Example 3.4.5. Consider G = C4 × C4.
The covering EBS is φ = {{〈x2y〉}, {〈x〉∪y〈xy2〉}, {〈xy〉∪y〈xy3〉}, {〈x2, y2〉∪x〈y〉}}. The differences
φ ∗φ−1on C4×C4 gives the following count matrix, where the nth entry in the matrix refers to the
nth element of C4 × C4 in GAP:
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[14 12 12 12 12 12 12 13 12 12 12 12 12 13 12 12]

Conjecture 3.4.6. For every m = 2n, n ∈ Z with n ≥ 2, there exists an (m2,m2 − m
2 ,m

2 −m)-
quasi-difference set on Cm × Cm.

Proof. Conjectured outline of process:
Consider G ∼= 〈x, y|xm = ym = 1〉. Take m

4 non-identity elements or non-nilpotent elements
of G and their inverses; label the set of these elements L. Let S = G − L. Since G is symmetric
and L is defined as stated above, we know that S = S−1. Looking at the group ring structure of
difference sets, we have the definition DD−1 = (k − λ)1G + λG. We can adapt this to our set S
to express the differences as SS−1 = S2. These differences can be visualized with the Cayley table
for G, where the elements of L can be viewed as “holes” in the table.

Group theory allows us to conclude that for any g1, g2 ∈ G, there exists an element h ∈ G such
that h = g1g2. Hence for any nonidentity s1 ∈ S, s1S is a bijective shift of elements in S by s1 on
G, from which we obtain the elements of L. There are k = m2 − m

2 elements to shift by, where k
elements are hit k − m

2 times and the remaining elements, naturally in L, are hit k − m
2 + 1 times.

Thus we have m2 − m
2 stages of “shifting” and in each stage m

2 elements fall into the “holes.”

For m prime, the quasi-difference sets behave differently, as we have (m, m, 4, +) extended
building sets for them. The sets on Cm × Cm are such that the union is m2, and the differences
thus include each element of Cm × Cm m times.

Conjecture 3.4.7. For every m ∈ N, there exists an (m2,m2− m
2 ,m

2−m) quasi-difference set on
Cm × Cm lifts to groups G′ of order 4m2 to serve as elements of the Hadamard Difference Set on
the group, provided G′ contains a subgroup isomorphic to Cm × Cm.

Although we did not have the time to prove this, evidence strongly suggests that this statement
is true, based off of data collected on groups of order 64 and 256 while searching for Hadamard
Difference Sets. However, some groups that contain an isomorphic Cm×Cm do not emit a Hadamard
Difference Set with this construction, independent of Cm × Cm being normal.
We believe that the problem of missing some of the groups requires a stronger condition, particularly
regarding the order of the generating elements of the subgroup isomorphic to Cm × Cm and the
larger group’s generating elements.

3.5 Future Work

Although the preceding conjectures were beyond our scope to prove within the time of the program,
we firmly believe that these are true given the evidence we’ve gathered on C4 × C4 and C8 × C8

using the Extended Building Sets that Dr. Jim Davis formed. As such, future work would firmly
and rigorously prove the purported statements, namely Conjectures 3.4.6 and 3.4.7.

The motivation for quasi-difference sets is in the power of applying this to much higher order
groups and in the fact that these sets can be formed on abelian groups. One can lift and inject the
sets into non-abelian groups, whether or not the group that the set was found on is normal. In a
word, we can use the nice properties of smaller order, abelian, well-understood groups to discover
a concrete difference set on a much higher order group, namely, on groups of order z | vH |, where
z = vG

vH
. We find quasi-difference sets on smaller groups and lift up to more complicated, less

well-understood groups to get difference sets.
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4 Finding All (64,28,12)-Difference Sets

4.1 Difference Sets

Definition 4.1.1. A (v, k, λ)-difference set is a set δ of elements of a group G such that |G| = v,
|δ| = k, and all nonidentity elements g ∈ G can be represented as g = d1 · d−12 for exactly λ ordered
pairs (d1, d2) of elements of δ.

Two (v, k, λ)-difference sets δ1 and δ2 of a group G are considered equivalent iff there exist an
element g0 ∈ G and an automorphism ψ of G such that δ2 = {g0 · ψ(g) | g ∈ G}.

A Hadamard difference set is a difference set with the parameters (4m2, 2m2 −m,m2 −m) for
some positive integer m.

All inequivalent (16,6,2)-difference sets and (36,15,6)-difference sets are listed in [1] and [5]
respectively. This section will go about listing all inequivalent (64,28,12)-difference sets.

In this section we will be working in the group ring Z[G]. By a common abuse of notation, we
will denote the element

∑
g∈G g by G. Throughout this section, let δ denote a difference set, and

D =
∑

d∈δ d ∈ Z[G]. We will call both δ and D difference sets, but δ will refer to a set, while D
will refer to an element of Z[G].

Definition 4.1.2. Let S ∈ Z[G] and g ∈ G. Throughout this section, let Sg denote the coefficient
of g in S. That is,

S =
∑
g∈G

Sg · g

Inside the group ring, the difference set must satisfy the following equation:

DD(−1) = (k − λ) · 1G + λ ·G,

where 1G refers to the identity element of G, and

D(−1) =
∑
g∈G

Sg · g−1

.
We will assume standard results from the theory of representations of finite groups. Most

important is the following theorem:

Theorem 4.1.3. If S1, S2 ∈ Z[G] are such that χ(S1) = χ(S2) for all irreducible representations χ
of G, then S1 = S2.

Let χ0 denote the trivial representation from here on, defined by χ0(g) = 1 for all g ∈ G. Notice
that χ0(D) =

∑
d∈δ 1 = |δ| = χ0

(
D(−1)). The difference set equation, under χ0, then rearranges

to

|δ|2 = k − λ+ λ|G|
=⇒ k(k − 1) = λ(v − 1),

an auxilliary equation that v, k, λ must always satisfy, and which is automatically satisfied by
v = 4m2, k = 2m2 − m, and λ = m2 − m. Throughout this section assume v, k, λ satisfy this
condition.

Lemma 4.1.4. For S ∈ Z[G] and χ a representation, χ
(
S(−1)) = χ(S)t.
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Proof. Immediate from algebraic manipulation.

We will also need the following result from the theory of representations:

Lemma 4.1.5. For any subgroup H ⊆ G and representation χ of G, we have

χ(H) :=
∑
h∈H

χ(h) =

{
|H| if χ(h) = 1 for all h ∈ H
0 otherwise

,

from which it is immediate that χ(G) = 0 for all nontrivial irreducible representations χ of G.
Combining theorem 4.1.3 with the above two lemmas yields the defining theoerem for difference

sets:

Theorem 4.1.6. Let S ∈ Z[G]. Then S is a difference set iff

1. Sg ∈ {0, 1} for all g ∈ G,

2. χ0(S) =
∑

g∈G S
g = k, and

3. χ(S)χ(S)
t

= (k − λ)χ(1G) for all irreducible χ 6= χ0.

4.2 Difference Sums

Definition 4.2.1. For S ∈ Z[G], we say that S is a (v, k, λ)-difference sum of magnitude r if
|G| = v/r, Sg ∈ {0, 1, ..., r} for all g ∈ G, and SS(−1) = (k − λ) · 1G + rλ ·G.

As in the previous subsection, we have

Theorem 4.2.2. S ∈ Z[G] is a difference sum of magnitude r if and only if

1. Sg ∈ {0, 1, ..., r} for all g ∈ G,

2. χ0(S) =
∑

g∈G S
g = k, and

3. χ(S)χ(S)
t

= (k − λ)χ(1G) for all irreducible χ 6= χ0.

A difference set is just a difference sum of magnitude 1. The following shows how a difference
sum on a group will induce difference sums on its quotient groups.

Definition 4.2.3. Suppose S ∈ Z[G] and K is a normal subgroup of G. Then S induces an element
SK ∈ Z[G/K], defined by

SgKK =
∑
h∈gK

Sh =
∑
k∈K

Sgk

for all gK ∈ G/K.

The theory of representations tells us that the irreducible representations of a quotient group
are induced by those of the base group:

Lemma 4.2.4. For a normal subgroup K of G, the irreducible representations of G/K are induced
by the irreducible representations of G which contain K in the kernel.

From this lemma, we can show the following:
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Theorem 4.2.5. Suppose S ∈ Z[G] is a difference sum of magnitude r, and K is a normal subgroup
of G. Then SK ∈ Z[G/K] is a difference sum of magnitude r|K|.

Proof. Since 0 ≤ Sg ≤ r for all g ∈ G we have

0 ≤ SgK =
∑
k∈K

Sgk ≤ r|K|

for all gK ∈ G/K. Furthermore, consider an irreducible representation χ 6= χ0 of G/K. From the
above lemma, we can consider χ to be a nontrivial irreducible representation of G with χ(k) = χ(1G)
for all k ∈ K. Thus

χ(SK) =
∑

gK∈G/K

SgKχ(gK)

=
∑

gK∈G/K

χ(gK)
∑
k∈K

Sgk

=
∑

gK∈G/K

∑
k∈K

Sgkχ(gk)

= χ(S),

and so
χ0(SK) = χ0(S) = k

and
χ(SK)χ(SK)

t
= χ(S)χ(S)

t
= (k − λ)χ(1G)

for all nontrivial irreducible representations χ. Thus SK is a difference sum of magnitude r|K|.

The following observation will become helpful in the next chapter.

Theorem 4.2.6. If S ∈ Z[G] is a (v, k, λ)-difference sum of magnitude r, then∑
g∈G

(Sg)2 = k − λ+ rλ

Proof. The coefficient of 1G in (k− λ) · 1G + λ ·G is k− λ+ rλ, and the coefficient of 1G in SS(−1)

is
∑

g∈G(Sg)2.

If G is a group of size 64, then G is a 2-group, so there exists K � G with |K| = 2. If,
furthermore, G has a difference set D ∈ Z[G], then DK ∈ Z[G/K] is a difference sum of magnitude
2.

On the other hand, suppose we are given a difference sum S ∈ Z[G/K] of magnitude 2. Then
there are finitely many T ∈ Z[G] such that TK = S, and T g ∈ {0, 1} for all g ∈ G, although
not all such T are difference sets. In fact, such a T is a difference set if and only if χ(T )χ(T )t =
16χ(1G) + 12χ(G) for all irreducible χ.

Thus if we know all difference sums of magnitude 2 in groups of size 32, we can use this
information to find all difference sets in groups of size 64. Similarly we can use a list of all
difference sums of magnitude 4 in groups of size 16 to find a list of all difference sums of magnitude
2 in groups of size 32.

Our starting point will be to find all difference sums of magnitude 4 in groups of size 16.
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4.3 Difference Sums of Magnitude 4 in Groups of Size 16

Let S be a (64,28,12)-difference sum of magnitude 4 in a group G of size 16, and define mi = |{g ∈
G | Sg = i}| for i = 0, 1, 2, 3, 4.

Theorem 4.3.1. There are 9 possible values of (m0,m1,m2,m3,m4). They are listed in the table
below, along with the number of group ring elements T ∈ Z[G] that have mi = |{g ∈ G | T g = i}|.

(m0,m1,m2,m3,m4) # group ring elements

(3, 0, 12, 0, 1) 7, 280

(0, 8, 6, 0, 2) 360, 360

(2, 3, 9, 1, 1) 4, 804, 800

(1, 6, 6, 2, 1) 20, 180, 160

(3, 1, 9, 3, 0) 1, 601, 600

(0, 9, 3, 3, 1) 1, 601, 600

(2, 4, 6, 4, 0) 25, 225, 200

(1, 7, 3, 5, 0) 5, 765, 760

(0, 10, 0, 6, 0) 8, 008

Proof. We have the equations

m0 +m1 +m2 +m3 +m4 = |G| = 16

m1 + 2m2 + 3m3 + 4m4 =
∑

g∈G S
g = 28

m1 + 4m2 + 9m3 + 16m4 =
∑

g∈G(Sg)2 = 64

from which we can solve for m0,m1,m2 in terms of m3 and m4:

m0 = −m3 − 3m4 + 6

m1 = 3m3 + 8m4 − 8

m2 = −3m3 − 6m4 + 18.

The equation m0 ≥ 0 gives m3 + 3m4 ≤ 6, which limits (m3,m4) to (0, 0),(0, 1), (0, 2),
(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0), (5, 0), or (6, 0). The equaton m1 ≥ 0 gives 3m3 +8m4 ≥
8, which rules out (m3,m4) = (0, 0), (1, 0), or (2, 0). This leaves us with the 9 choices shown in the
table. The number of group ring elements for a given (m0, ...,m4) is found by the combinatorial
formula

16!

m0!m1!m2!m3!m4!
.

From this theorem, we see that, for any G with |G| = 16, there are at most 59,554,768 elements
of Z[G] that could be (64,28,12)-difference sums of magnitude 4. For each of the 14 groups of order
16, we can run an exhaustive computer search on each of these 59,554,768 elements T to see whether
χ(T )χ(T )t = 16χ(1G) for all nontrivial irreducible representations of G. T is a difference sum if
and only if it has this property. The computer search yields the following number of difference
sums in each of the 14 groups of order 16, as ordered by GAP’s small group database.
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cn (catalogue number) # difsums in SmallGroup(16,cn)

1 304

2 14448

3 3440

4 10608

5 3440

6 5360

7 304

8 1200

9 27184

10 14448

11 3440

12 33136

13 5360

14 14448

The function AllMag4 takes a group of size 16 and produces all (64,28,12)-difference sums of
magnitude 4 in that group, using this method.

4.4 Translational Equivalence

Definition 4.4.1. Two difference sums S1, S2 ∈ Z[G] are equivalent if there exist g0 ∈ G and
φ ∈ Aut(G) such that S2 = g0φ(S1).

Definition 4.4.2. Two difference sums S1, S2 ∈ Z[G] are translationally equivalent, or t-equivalent,
if there exists g0 ∈ G such that S2 = g0S1.

Notice that our definition of equivalent difference sums corresponds to our definition of equiva-
lent difference sets. That is, two difference sets are equivalent when viewed as difference sets if and
only if they are equivalent when viewed as difference sums of magnitude 1.

T-equivalence is stronger than equivalence: t-equivalent difference sums are always equivalent
but not vice-versa. As such, a list with at least one representative from each t-equivalence class
of difference sums will contain at least one representative from each equivalence class of difference
sums.

Lemma 4.4.3. For any S ∈ Z[G], we have (g0S)g = Sg
−1
0 g.

Proof. The coefficient of g−10 g becomes that of g when translating by g0 on the left.

Lemma 4.4.4. For any K �G and S ∈ Z[G], we have (g0S)K = (g0K)SK .

Proof.

(g0S)gKK =
∑
k∈K

(g0S)gk

=
∑
k∈K

Sg
−1
0 gk

= S
g−1
0 gK
K

= S
(g0K)−1(gK)
K

= ((g0K)SK)gK .
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Thus (g0S)K = (g0K)SK .

Theorem 4.4.5. Let G be a group and K a normal subgroup. Let T be a set of (v, k, λ)-difference
sums of magnitude r|K| in G/K such that at least one difference sum from each t-equivalence class
is contained in T . Define S = {S ∈ Z[G] | S is a (v, k, λ)-difference sum of magnitude r and SK ∈
T }. Then S contains an element from each t-equivalence class.

Proof. Let S ∈ Z[G] be a (v, k, λ)-difference sum of magnitude r. Then SK ∈ Z[G/K] is a (v, k, λ)-
difference sum of magnitude r|K|, and so SK is t-equivalent to some T ∈ T . Thus there exists
gK ∈ G/K such that T = (gK)SK . But then (gS)K = (gK)SK = T ∈ T , so gS ∈ S. Thus S is
t-equivalent to some element of S.

This theorem tells us that if we take a single representative from each t-equivalence class of
difference sums of G/K, then, when we pull back to difference sums of G, we will still get at least one
representative from each t-equivalence class of difference sums, and hence from each equivalence
class of difference sums. The following theorem tells us that the size of each t-equivalence of
difference sums in G is exactly |G|.

Theorem 4.4.6. If S ∈ Z[G] is a (v, k, λ)-difference sum of magnitude r, then S = gS if and only
if g = 1G.

Proof. Suppose S = gS. Then

(k − λ)1G + rλG = SS(−1)

= gSS(−1)

= g[(k − λ)1G + rλG]

= (k − λ)g + rλG.

Thus g = 1G.

Thus the number of t-inequivalent difference sums of magnitude 4 inside a group of size 16 is
1/16 of the total number of difference sums.

The function TPurge (with the parameter “K” set to equal “Group(Identity(G))”) takes a list
of difference sums of a group and returns a list of representatives of the t-equivalence classes of
that list.

4.5 Difference Sums of Magnitude 2 in Groups of Size 32

Theorem 4.5.1. Let S ∈ Z[G] be a (v, k, λ)-difference sum of magnitude 2. Let ni = |{g ∈ G |
Sg = i}| for i = 0, 1, 2. Then

(n0, n1, n2) = (
v + λ

2
− k, k − λ, λ

2
)

Proof. We know that n0 + n1 + n2 = |G| = v/2, and that 0 · n0 + 1 · n1 + 2 · n2 =
∑

g∈G S
g = k.

Furthermore, from theorem 4.2.6, we have 02 · n0 + 12 · n1 + 22 · n2 = k − λ+ 2λ = k + λ. Solving
these three linear equations simultaneously yields the unique solution for (n0, n1, n2) given.

Corollary 4.5.2. Let G be a group of size 32, and S ∈ Z[G] a (64,28,12)-difference sum of
magnitude 2. Let ni = |{g ∈ G | Sg = i}| for i = 0, 1, 2. Then (n0, n1, n2) = (10, 16, 6).
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Let G be a group of size 32 and K = {1, x} a normal subgroup of size 2. We will now describe
the process of finding all (64,28,12)-difference sums S ∈ Z[G] of magnitude 2 which induce a given
(64,28,12)-difference sum T ∈ Z[G/K] of magnitude 4.

Suppose SK = T , with S, T as above, and fix g ∈ G. Then

T gK = SgKK =
∑
k∈K

Sgk = Sg + Sgx.

We know that Sg, Sgx ∈ {0, 1, 2} and T gK ∈ {0, 1, 2, 3, 4} since S, T have magnitudes 2,4 respec-
tively. With these constraints, the value of T gK gives us the following information about Sg and
Sgx:

T gK = 0 =⇒ Sg = Sgx = 0

T gK = 1 =⇒ {Sg, Sgx} = {0, 1}
T gK = 2 =⇒ {Sg, Sgx} = {0, 2} or Sg = Sgx = 1

T gK = 3 =⇒ {Sg, Sgx} = {1, 2}
T gK = 4 =⇒ Sg = Sgx = 2

Theorem 4.5.3. Let C = {gK | T gK = 2}. Define A := {gK ∈ C | {Sg, Sgx} = {0, 2}} and
B := {gK ∈ C | Sg = Sgx = 1}. Then C = A tB is a partition of C, and |A| = 1

3 |C|.

Proof. The fact that C partitions into A and B follows from the above discussion. Define mi =
|{gK ∈ G/K | T gK = i}| for i = 0, 1, 2, 3, 4 and ni = |{g ∈ G | Sg = i}| for i = 0, 1, 2. Then, from
the proof of theorem 4.3.1, we have

|C| = m2 = −3m3 − 6m4 + 18.

On the other hand, from the above discussion and corollary 4.5.2, we have

6 = n2 = |A|+m3 + 2m4.

Thus |A| = −m3 − 2m4 + 6 = 1
3 |C|.

Keep the notation mi = |{gK ∈ G/K | T gK = i}| for i = 0, 1, 2, 3, 4. From the above theorem
and the discussion leading up to it, we see that we have a choice of two options for (Sg, Sgx) when
T gK = 1 or 3, and 1

3 of the time when T gK = 2. With(
m2
1
3m2

)
choices for which of the m2 elements of C belong to A, as per theorem 4.5.3, the number of elements
S ∈ Z[G] which could be (64,28,12)-difference sums of magnitude 2 such that SK = T is given by(

m2
1
3m2

)
× 2m1+

1
3
m2+m3 .

This value, for the 9 possible distributions (m0, ...,m4) produced by theorem 4.3.1 is given below
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(m0,m1,m2,m3,m4) potential # of difsums with mag 2

(3, 0, 12, 0, 1) 7, 920

(0, 8, 6, 0, 2) 15, 360

(2, 3, 9, 1, 1) 10, 752

(1, 6, 6, 2, 1) 15, 360

(3, 1, 9, 3, 0) 10, 752

(0, 9, 3, 3, 1) 24, 576

(2, 4, 6, 4, 0) 15, 360

(1, 7, 3, 5, 0) 24, 576

(0, 10, 0, 6, 0) 65, 536

As can be seen, any given (64,28,12)-difference sum of magnitude 4 in a quotient group G/K can
yield at most 65,536 (64,28,12)-difference sums of magnitude 2 in G.

Without the restriction imposed by theorem 4.5.3 the number of elements of Z[G] that would
need to be checked would be 3m2 × 2m1+m3 , which, for (m0, ...,m4) = (3, 0, 12, 0, 1), would give
531,441 possiblities instead of only 7,920. Thus, in practice, this extra restriction can drastically
cut down the size of the search space.

Theorem 4.5.4. Let G be a group and K a normal subgroup. If S ∈ Z[G] is such that 0 ≤ Sg ≤ r
for all g ∈ G and SK ∈ Z[G/K] is a (v, k, λ)-difference sum of magnitude r|K|, then S is a

(v, k, λ)-difference sum of magnitude r if and only if χ(S)χ(S)
t

= (k−λ)χ(1G) for each irreducible
representation χ of G such that K 6⊆ ker(χ).

Proof. From representation theory, we know that the irreducible representations of G/K are in-
duced by those of G which contain K in the kernel. The theorem then follows immediately from
theorem theorem 4.2.2.

Going back to the setup with K�G, |G| = 32, |K| = 2, we see that if S ∈ Z[G] is produced in the
manner descibed in this chapter, so that 0 ≤ Sg ≤ 2 for each g ∈ G and so that SK is a (64,28,12)-
difference sum of magnitude 4, then one can determine whether or not S is a (64,28,12)-difference
sum of magnitude 2 simply by checking the value of χ(S) for each irreducible representation χ of
G not containing K in its kernel.

The function Mag4toMag2 takes as input a group G of size 32, a normal subgroup K of size 2,
and a (64,28,12)-difference sum T ∈ Z[G/K] of magnitude 4, and returns all (64,28,12)-difference
sums S ∈ Z[G] of magnitude 2 such that SK = T . The function AllMag2 iterates this process over
all (64,28,12)-difference sums T ∈ Z[G/K] of magnitude 4, up to t-equivalence.

4.6 Purging the List of Difference Sums of Magnitude 2 in a Group of Size 32

At this point in the algorithm, we can get a list of all (64,28,12)-difference sums of magnitude 2,
up to t-equivalence, in a given group G of size 32. However, each t-equivalence class may have up
to 32 duplicates. However, because the difference sums of magnitude 2 were produced from a list
of difference sums of magnitude 4 in a quotient group, and this original list did not contain repeats
within t-equivalence classes, we actually have more information about our newer list.

Theorem 4.6.1. Let G be a group and K a normal subgroup. Suppose T is a list of difference
sums of magnitude r|K| in Z[G/K] such that no two elements of T are t-equivalent. Let S be the
set of difference sums S ∈ Z[G] of magnitude r such that SK ∈ T . Then, for any S ∈ S, we have
{gS | g ∈ G} ∩ S = {kS | k ∈ K}.
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Proof. ⊆: Fix S ∈ S and g ∈ G such that gS ∈ S. Thus (gS)K ∈ T . Then, by lemma 4.4.4,
(gS)K = (gK)SK . Since SK ∈ T and (gK)SK is t-equivalent to SK , it must be that (gK)SK = SK .
Thus, by theorem 4.4.6, gK is the identity of G/K, so g ∈ K.
⊇: Fix S ∈ S and k ∈ K. Then clearly kS ∈ {gS | g ∈ G}. Furthermore, (kS)K = (kK)SK =

SK ∈ T , so kS ∈ S.

Thus, in our setup, when |G| = 32 and |K| = 2, and we have a difference sum in G, we only
have to check for one difference sum in the list that is t-equivalent, rather than 31.

The number of (64,28,12)-difference sums of magnitude 2, up to t-equivalence, in each group of
size 32 is shown below. As seen in theorem 4.4.6, the total number of (64,28,12)-difference sums of
magnitude 2 is found by multiplying each number in the table by 32.

Remark 4.6.2. SmallGroup(32,1) is C32, the cyclic group of order 32, and SmallGroup(32,18) is
D32, the dihedral group of order 32. Empirically, we have shown that C32 and D32 do not contain
any (64,28,12)-difference sums of magnitude 2. Consequently, any group of size 64 which has a
holomorphic image of (i.e. a quotient group isomorphic to) either of these two groups cannot have
a difference set. Thus, we have computationally proven Turyn’s bound and the dihedral trick (see
[2]) for groups of size 64.

The function TPurge takes a group G, a normal subgroup K, and a list S of difference sums in
G, and return a list of representatives from the t-equivalence classes of the list. It is assumed that
the set {SK | S ∈ S} contains two t-equivalent elements in Z[G/K], and thus the reduction made
in theorem 4.6.1 can be applied.
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cn (catalogue number) # difsums in SmallGroup(32,cn) up to t-equivalence
1 0
2 12180
3 11556
4 19620
5 5620
6 3780
7 4116
8 28596
9 1604

10 9008
11 6020
12 5604
13 5020
14 4236
15 9492
16 708
17 2132
18 0
19 1072
20 5472
21 112020
22 25620
23 58000
24 60148
25 39044
26 94180
27 11572
28 12652
29 43876
30 22264
31 23292
32 65396
33 33528
34 8640
35 91776
36 25620
37 38068
38 31956
39 708
40 7012
41 124164
42 9332
43 4132
44 32836
45 219604
46 25620
47 609428
48 62132
49 10132
50 137492
51 219604

36



4.7 Difference Sets in Groups of Size 64

Theorem 4.7.1. Let G be a group and K a normal subgroup. If φ ∈ Aut(G) is such that
φ(K) = K, then φ induces an automorphism φK on G/K defined by

φK(gK) = φ(g)K.

Furthermore, for any S ∈ Z[G], we have

φ(S)K = φK(SK).

Proof. FixG,K, and φ as in the theorem. Define φK : G/K → G/K by φK(gK) = φ(g)K. If g1K =
g2K, then g−11 g2 ∈ K and hence φ(g−11 g2) ∈ K, so φK(g1K) = φ(g1)K = φ(g1)(φ(g−11 g2)K) =
φ(g2)K = φK(g2K). Hence φK is well defined.

For any g1, g2 ∈ G, we have φK(g1K)φK(g2K) = (φ(g1)K)(φ(g2)K) = φ(g1)φ(g2)K = φ(g1g2)K =
φK((g1K)(g2K)), so φK is a homomorphism. If φK(gK) = K, then φ(g)K = K =⇒ φ(g) ∈ K.
Observing that φ, when restricted to K, is an automorphism of K, we have that φ(g) ∈ K =⇒
g ∈ K. Thus φK(gK) = K if and only if gK = K, and so φK is injective. For surjectivity, observe
that φK(φ−1(g)K) = gK. Thus φK is an automorphism of G/K.

For the last part of the theorem, fix S ∈ Z[G]. By the same argument as in lemma 4.4.3, we
see that φ(S)g = Sφ

−1(g). Thus

φ(S)gKK =
∑
k∈K

φ(S)gk

=
∑
k∈K

Sφ
−1(g)φ−1(k)

=
∑
k∈K

Sφ
−1(g)k

= S
φ−1(g)K
K

= S
φ−1
K (gK)

K

= φK(SK)

The following analogue to theorem 4.4.5 follows immediately, with precisely the same proof.

Theorem 4.7.2. Let G be a group and K a normal subgroup. Let T be a set of (v, k, λ)-difference
sums of magnitude r|K| in G/K such that for any (v, k, λ)-difference sum T ∈ Z[G/K] of magnitude
r|K|, there exists some gK ∈ G/K and φ ∈ Aut(G) with φ(K) = K, such that φK((gK)SK) ∈ T .
Define S = {S ∈ Z[G] | S is a (v, k, λ)-difference sum of magnitude r and SK ∈ T }. Then S
contains an element from each equivalence class.

This theorem allows one to cut down on the number of difference sums that one has to look at
in G/K order to find difference sums in G. It is not possible to apply this method without knowing
what G is, i.e. the set {φK | φ ∈ Aut(G)} may change if G/K is realized as a different quotient
group G′/K ′. Thus this reduction is applied only in the final step, in which we find difference sets
in groups of size 64 from difference sums of magnitude 2 in groups of size 32.

By corollary 4.5.2, each difference sum T ∈ Z[G/K] of magnitude 2 has 10 0’s, 16 1’s, and 6 2’s.
Thus there are 216 = 65,536 elements S ∈ Z[G] with SK = T . As in theorem 4.5.4, we have only to
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check that χ(S)χ(S)
t

= 16χ(1G) for each irreducible representation χ of G which does not contain
K in the kernel. Since K is not in the kernel and |K| = 2, say K = {1G, x}, lemma 4.1.5 tells us
that χ(x) = −χ(1G). For each gK ∈ G/K with T gK = 2, we will have Sg = Sgk = 1, which will
contribute χ(g) +χ(gk) = 0 to the sum χ(S) when K is not in the kernel of χ. Thus, for such a χ,
we have

χ(S) =
∑

{g|Sg=T gK=1}

χ(g),

which is the sum over 16 values rather than the naive sum

χ(S) =
∑

{g|Sg=1}

χ(g),

which is a sum over 28 values.
The function FindDifsets takes a group G of size 64 and a normal subgroup K of size 2, and

a difference sum T ∈ Z[G/K] of magnitude 2, and finds all difference sets S ∈ Z[G] such that
SK = T , by cycling through all 65,536 possibilities and then using the method described above to
test each one and see if it is a difference set.

The function AllMag1 takes a group G of size 64 and produces a list of difference sets of G, with
at least one per equivalence class. The algorithm starts by picking a normal subgroup K of size 2,
taking a list of all difference sums of magnitude 2 in G/K, up to t-equivalence, and then further
purging this list using theorem 4.7.2. FindDifsets is then applied to the elements of the resulting
list of difference sets.

Unfortunately, in practice, AllMag1 will give an error indictating that the allocated memory
has been exceeded when G=SmallGroup(64,cn) for cn=260, 262, or 267. This is because these
three groups have the largest automorphism groups out of all groups of size 64, and minipulating
these automorphism groups requires too much memory.

Finally, the function FinalPurge takes a list of difference sets in a group G of size 64 and
removes duplicates within equivalence classes. No “shortcuts” are used in this final step, although
conceivably one can be created using information from previous steps in the algorithm.

4.8 Selected Final Results

The following is a table of the number of difference sets in certain groups of size 64, up to equivalence.

cn (catalogue number) # difsets in SmallGroup(64,cn) up to equivalence

1 0

2 31

3 71

4 468

5 708
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cn (catalogue number) # difsets in SmallGroup(64,cn) up to equivalence

6 584

7 1320

8 616

9 1652

10 300

11 522

12 67

13 688

14 319

15 104

16 104

17 1012

18 652

19 176

20 1944

21 968

22 600

23 882

24 1026

25 1180

26 32

27 24

28 148

29 284

30 338

31 448

32 642

33 962

34 228

35 684

36 306

37 706

38 0

39 440

40 168

41 204

42 60

43 340

44 52

45 136
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cn (catalogue number) # difsets in SmallGroup(64,cn) up to equivalence

46 152

47 0

48 56

49 52

50 0

51 112

52 0

53 0

54 0

58 1936

63 1321

85 721

86 1122

87 944

88 760

89 1162

90 964

91 948

92 422

109 1348

110 656

111 616

112 1186

113 814

114 1044

115 1624

116 1673

117 1007

118 320

119 1639

120 2672

121 1808

129 1314

130 878

131 738

139 751

140 136

141 554

142 998

186 0
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5 Latin Rectangles

5.1 Introduction

If R is an m × n array whose entries are elements of {1, 2, ..., k} such that no entry occurs more
than once in any row or column, then R is a latin rectangle based on k .

1 2 3 4
2 3 4 1
3 4 1 2

A row-latin rectangle is a latin rectangle in which no entry occurs more than once in any row, but
columns can have repeating entries.

1 2 4 3
2 3 4 1
1 2 4 3
4 3 2 1
4 1 3 2

A partial transversal of length r is a set of r distinct entries of R, no two from the same row or
column.

1 2 4 3
2 3 4 1
1 2 4 3
4 3 2 1
2 4 1 3

A transversal is a partial transversal of length n.

1 2 4 3
2 3 4 1
1 2 4 3
4 3 2 1
2 4 1 3

Suppose group A = {a1, ..., am} acts on X = {x1, ..., xn}, a ∈ A maps x ∈ X to xa ∈ X.

Definition 5.1.1. A complete A-mapping θ is an injection θ : X → A such that {xθ(x) : x ∈ X} =
X.

Let R be a row-latin rectangle with entries Ra,x = xarc .

Theorem 5.1.2. θ : X → A is a complete A-mapping iff T = {Rθ(x),x|x ∈ X} is a transversal in
R. [4]

Proof. Assume θ is a complete A-mapping. Since θ is 1-1, θ(xi) 6= θ(xj) for i 6= j, and xi 6= xj ,
i 6= j, then no two elements of T would have come from the same row or column.Since by definition
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5.1.1 {xθ(x) : x ∈ X} = X, T contains all of X in which each element is distinct. Therefore R has
a transversal.

Theorem 5.1.3. Let p be a prime, A a finite p-group, and X a A-set with |X| ≤ |A|. Then X
has a complete A-mapping. [4]

5.2 Application to groups of order 2n

Let G be a group of order 22(s+1), and E/G such that E = Cs+1
2 . Define a quotient goup Q = G/E,

and a set H = {Hi/E, |Hi| = 2s} such that Q = {q1, ..., q2s+1}, qi = giE and H = {H1, ...,H2s+1−1}.
Let R be a |Q| × |H| array whose rows and columns are indexed by the elements of Q and H, re-
spectively, such that Rq,H = Hqr

c

Theorem 5.2.1. If there exist elements g1, ..., gr in distinct cosets of E in G, and Hi 7→ giHig
−1
i is

a permutation of elements of H, then D = g1H1+ ...+grHr is a difference set of G with parameters
[3]

v = 22(s+1)

k = 2s(2s+1 − 1)

λ = 2s(2s − 1)

The quotient group Q acts on H by Hqi
j = giHjg

−1
i .

By Theorem 5.1.2, R has a transversal {R1, ..., R2s+1−1}, Ri = Rq(i),Hi
, where q(i), ..., q2

s+1−1

are distinct elements of Q. Then by Theorem 5.2.1
⋃
i g

(i)Hi is a difference set.

Example. Let G =< x, y, z|x4 = y2 = z2 = 1, [x, z], [y, z], xyx−1 = yz > and E / G, E =
{1, y, z, yz}. Define Q = G/E = {1, x, x2, x3}, and H = {{1, y}, {1, z}, {1, yz}}.
We can now construct a row-latin rectangle R as follows

{1, y} {1, yz} {1, z}
1 {1, y} {1, yz} {1, z}
x {1, yz} {1, y} {1, z}
x2 {1, y} {1, yz} {1, z}
x3 {1, yz} {1, y} {1, z}

A transversal T = {{1, y}, {1, yz}, {1, z}} and difference set, by Theorem 5.2.1, is D = 1{1, y}+
x2{1, yz}+ x{1, z} = {1, x, y, x2, xz, x2yz}.
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5.3 Algorithm

The algorithm will first check to make sure there exists an elementary abelian soubgroup of G of
order

√
n. Once confirmed, the algorithm will begin a series of recursive comparisons.

We begin by fixing one of the columns and a symbol in it, staring with R1,1 in the first row and
column. Next, we compare each of the symbols in the second column to R1,1, omitting the first
one since entries in a transversal must all belong to different rows, until we find a distinct symbol
Rr,2 6= R1,1 and fix it as well as the row it is in. Proceeding in this fashion, the algorithm will go
through the rest of the columns recursively comparing each of the symbols to the set of the ones
we have already found {R : Ri 6= Rj , i 6= j} and fixing them if they are not in the set. If after
fixing a symbol in the last column we have a set of n distinct entries, then we have a transversal.
Otherwise, we will begin the process again, this time by fixing a symbol R2,1 in the first column
and second row. If we failed to find a transversal by the time both the last symbol in the first
column and some symbol in the last column are in the set, we will begin again by fixing a symbol
R1,2 in the second column and carrying out the algorithm as before, starting with the symbol in
the first row and column.
Such procedure randges between n− 1 comparisons per group before a transversal is found in the
best case scenario and n(2n− 1)

(
2n−2

2

)
comparisons in the worst.

The results of running the algorithm on groups of size 64 and 256 are in the table below.

Group size # of groups Time Difsets found

64 267 < 1 min 181

256 56092 ¡12 hrs 42353
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6 Appendix

The following packages are included as sources of the found difference sets by our group. In general,
each file is a list of difference sets found on different group sizes; for each group size, we use code
to iterate over all groups in GAP for that size and output the resulting difference set (if found).
Each output file includes a list showing the GAP ID of a group and the difference set found on
that group.

• DifsetMap.txt is a list of difference sets in all groups of order 64 that can have a difference
set, and it includes the method used to find the difference set. This file thus includes the
solution to the first problem we were tasked with, finding difference sets for each group of
order 64.

• 64TransversalResults.txt is the list of difference sets found using the Latin Rectangles method
on groups of order 64.

• 256TransversalResults.7z contains the list of difference sets found using the Latin Rectangles
method on groups of order 256.

• EBS Order16 difsets.txt is the list of difference sets found using the Extended Building Set
method on groups of order 16.

• EBS Order36 difsets.txt is the list of difference sets found using the Extended Building Set
method on groups of order 36.

• EBS Order64 difsets.txt is the list of difference sets found using the Extended Building Set
method on groups of order 64.

• EBS Order256 difsets.txt.zip contains a file with the list of difference sets found using the
Extended Building Set method on groups of order 256.

• EBS HDSData is an Excel spreadsheet of the results and characteristics of the results of
applying the EBS construction to groups of order 16, 36, 64, and 256.

• HDS Code.txt is a file containing all of the code written, referenced, and used. The Difference
Sums package is contained in that file, but due to the interplay between so many different,
large functions and their variables, the given files have also been uploaded separately in case
of error.

• DifferenceSumsCode.zip contains the aforementioned Difference Sum package.

• SpreadConstructionGroupsOfSize64.txt contains code that generates a difference set in each
group of order 64 that contain a normal elementary Abelian group of order 8 using the spread
construction (see section 2.4).
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