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Abstract

Let n ∈ N, Γ ⊆ N and define Γn = {x ∈ Zn | x ∈ Γ} the set of residues
of elements of Γ modulo n. If Γn is multiplicatively closed we may define
the following submonoid of the naturals: HΓn = {x ∈ N | x = γ, γ ∈
Γn}∪{1} known as a congruence monoid (CM). Unlike the naturals, many
CMs enjoy the property of non-unique factorization into irreducibles. This
opens the door to the study of arithmetic invariants associated with non-
unique factorization theory; most important to us will be the concept
of elasticity. In particular we give a complete characterization of when
a given CM has finite elasticity. Throughout we explore the arithmetic
properties of HΓn in terms of the arithmetic and algebraic properties of
Γn.

1 Introduction and Preliminaries

By the Fundamental Theorem of Arithmetic each element of the set N, the
naturals, can be written uniquely as a product of primes (or irreducibles). For
multiplicatively closed subsets of N containing 1, the corresponding property
of unique factorization into irreducibles is not in general inherited from N. In
this paper we are interested in a certain class of subsets of N called Congruence
Monoids. Before we begin studying the non-unique factorization theory of such
objects, let us define some terms:

Definition 1. A set S equipped with a binary operation is a semigroup if it
is closed and associative with respect to that operation.

Definition 2. A monoid is a semigroup that contains an identity element.

Definition 3. Let M be a monoid, let M× denote the set of units in M , and
let M• = M\M×. We say x ∈ M• is irreducible if whenever x = yz and
y, z ∈M , either y ∈M× or z ∈M×. If x is not irreducible, it is reducible.

Definition 4. We say a monoid M is atomic if every non-unit can be factored
into irreducibles.
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In a monoid that does not possess unique factorization into irreducibles, we may
encounter elements that yield factorizations of different lengths. This motivates
the following definition.

Definition 5. We define the length set of x, L(x), to be:

L(x) =

{
m ∈ N | x =

m∏
i=1

αi

}

where the αi are irreducibles in M . Let L(x) = max {L(x)} and l(x) = min {L(x)}.
We define the elasticity of x to be ρ(x) = L(x)

l(x) , and the elasticity of the

monoid M to be:
ρ (M) = sup

x∈M
ρ(x).

Let n ∈ N, Γ ⊆ N and define Γn = {x ∈ Zn | x ∈ Γ}, the set of residues of
elements of Γ modulo n. If Γn is multiplicatively closed we may define the fol-
lowing submonoid of the naturals: HΓn = {x ∈ N | x = γ, γ ∈ Γn} ∪ {1} known
as a congruence monoid (CM). In the case where Γn = {a} is a singleton
we refer to HΓn as an Arithmetical Congruence Monoid (ACM), which is
denoted by Ma,n. ACMs have been the focus of much study in recent years.
CMs are a natural generalization of ACMs.

Broadly speaking, one encounters different behaviors depending on whether Γn
contains units or not. This leads us to introduce the following taxonomy:

1. We say that HΓn is regular if Γn = Γ×n

2. We say that HΓn is singular if Γn = Γ•n

3. We say that HΓn is semi-regular otherwise.

A useful tool for showing that two distinct monoids have the same factorization
properties (defined below) is the transfer homomorphism defined below.

Definition 6. Let M and N be commutative, cancellative, atomic monoids and
σ : M −→ N be a monoid homomorphism. σ is a transfer homomorphism
if:

* σ(u) ∈ N× for any u ∈M×

* σ(u) 6∈ N× for any u 6∈M×

* (Surjectivity up to associates) For every a ∈ N , there exists a unit u ∈
N× and an x ∈M such that σ(x) = ua, and

* whenever x ∈ M and a, b ∈ N such that σ(x) = ab, there exist y, z ∈ M
and units u, v ∈ N× such that x = yz, σ(y) = ua, and σ(z) = vb.
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Transfer homomorphisms preserve the length sets of each element in the monoid.
Therefore, they preserve all the information that can be deduced from these
length sets. We shall refer to the properties of a monoid M preserved under a
transfer homomorphism as the factorization properties of M . Below, we list
some examples:

1. Accepted elasticity: We say a CM, M , has accepted elasticity if ∃x ∈M
such that ρ(x) = ρ(M).

2. Full elasticity: We say a CM,M , has full elasticity if ∀q ∈ Q∩[1, ρ(M)),∃x ∈
M such that ρ(x) = q.

3. Delta set: Order L(X) = {`1, ..., `j} with `i < `i+1 for 1 ≤ i < j. Denote
∆(x) = {`i+1 − `i for 1 ≤ i < j}. By the ∆− set of M , we mean

∆(M) =
⋃

x∈M•
∆(x)

Definition 7. Define vp(x), the p-adic evaluation of x to be the greatest
integer k such that pk | x.

An important constant used in factorization theory is the Davenport constant.

Definition 8. Let G be a finite abelian group. The Davenport constant of G
is the length of the longest minimal zero-sum sequence of G and is denoted by
D(G).

Definition 9. Let Γn = {γ1, . . . , γm} we define the gcd-set of HΓn as DΓn =
{gcd(γ1, n), . . . , gcd(γm, n)}

2 General Congruence Monoids

In this section we consider what information we can glean from a general CM
where we place no restrctions on Γ or n. From the gcd-set DΓn we can determine
two parameters d and δ which play an important role in the factorization theory
of a CM: let δ = lcm(DΓn) and d = gcd(DΓn) and define ζ = n/δ. Before we
continue we require a short lemma:

Lemma 1. Let S be a semigroup and G a group. Suppose that θ : S −→ G is a
bijection such that θ(s1s2) = θ(s1)θ(s2) ∀s1, s2 ∈ S. Then S is in fact a group
and S ∼= G.

Proof. It suffices to show that S contains an identity element and that each
element of S has an inverse. Let eG denote the identity element in G. Since θ
is surjective, θ(eS) = eG for some eS ∈ S. For s ∈ S,

θ(eSs) = θ(eS)θ(s) = eGθ(s) = θ(s)
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hence by injectivity of θ, eSs = s. Similarly seS = s ∀s ∈ S so eS is an identity
element in S. Now, for s ∈ S pick s′ ∈ S such that θ(s′) = θ(s)−1 (possible by
surjectivity of θ).

θ(ss′) = θ(s)θ(s′) = θ(s)θ(s)−1 = eG = θ(eS)

hence ss′ = eS by injectivity and similarly s′s = eS . s′ is an inverse of s in S
hence S is a group and θ is a group isomorphism.

The following theorem is of great use in the study of singular CMs. We give the
statement and proof here and return to it in a later section.

Theorem 2. Let HΓn be a CM. Then

Mδ,δ ∩HΓζ ⊆ HΓn ⊆Md,d

where HΓζ is regular and the following are equivalent:

1. HΓn = Mδ,δ ∩HΓζ

2. δ = d

3. Multiplication induces a group structure on Γn.

Proof. Let Γn = {γ1, . . . , γm} and di = gcd(γi, n). We begin by showing that
HΓζ is regular. Note that γ1 · · · γm ∈ Γn since Γn is closed so without loss of gen-
erality let γ1 · · · γm = γ1. Now, δ | γ1 · · · γm and δ | n hence gcd(γ1 · · · γm, n) ≥ δ
however gcd(γ1 · · · γm, n) = gcd(γ1, n) = d1 ≤ δ hence d1 = δ. It follows that
di | d1 ∀i and in particular δ = d1 = max{d1, . . . , dm}. Suppose that p | ζ = n/δ
and p | γi for some prime p ∈ N and 1 ≤ i ≤ m. It follows that pδ | n and
pδ | γiγ1 hence gcd(γiγ1, n) ≥ pδ contradicting the maximality of d1 since
γiγ1 ∈ Γn. We conclude that gcd(ζ, γi) = 1 ∀i and so Γζ ⊆ Z×ζ i.e. HΓζ is regu-
lar. It is also useful to note that gcd(δ, ζ) = 1 since δ | γ1 and gcd(γ1, ζ) = 1.

Let us now show the first inclusion in the above statement. Let x ∈ (Mδ,δ∩HΓζ )
•

so that δ | x and x ≡ γj (mod ζ) for some 1 ≤ j ≤ m. Now, γ1 ∈ Z×ζ hence

γk1 ≡ 1 (mod ζ) for some k ≥ 1 and so x ≡ γjγk1 (mod ζ) i.e. x = γjγ
k
1 + cζ for

some c ∈ Z. We have δ | x and δ | γjγk1 hence δ | cζ and so n = δζ | cζ, since
gcd(δ, ζ) = 1, thus x ≡ γjγk1 (mod n) so x ∈ HΓn as required.

The second inclusion is straightforward: If x ∈ H•Γn i.e. x ≡ γj (mod n) for
some 1 ≤ j ≤ m then x ≡ γj (mod f) so x ∈ HΓf and x ∈Md,d since d | n and
d | γj so d | x.

We shall now demonstrate the stated equivalences. It is simplest to show that
(1) and (3) are both equivalent to (2).
(1) ⇐⇒ (2): Suppose that δ = d. Then by the above, Mδ,δ ∩ HΓζ ⊆ HΓn ⊆
Mδ,δ ∩HΓn . However, since ζ | n we have that HΓn ⊆ HΓζ and so we must have
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Mδ,δ ∩HΓζ = HΓn . For the converse suppose that δ 6= d. Then δ - γj for some
j and so γj + n ∈ HΓn yet γn + n /∈ Mδ,δ (note that we consider γj + n rather
than just γj to account for the case where γj = 1). We conclude that if δ 6= d
then Mδ,δ ∩HΓζ ( HΓn .

(2) ⇐⇒ (3): Suppose that δ = d and consider the map

θ : Γn −→ Γζ

γi (mod n) 7−→ γi (mod ζ)

θ is clearly well-defined and surjective. Suppose that γi ≡ γj (mod ζ) some
1 ≤ i, j ≤ m but δ = d so that 0 ≡ γi ≡ γj (mod δ) hence γi ≡ γj (mod n),
since n = δζ and gcd(δ, ζ) = 1, thus θ is injective. Finally, for γi, γj ∈ Γ we
have θ(γiγj mod n) = γiγj (mod ζ) = θ(γi mod n)θ(γj mod n) so by Lemma
1 (Γn, ·) is a group isomorphic to Γζ ⊆ Z×n .

Conversely, suppose that (Γn, ·) is a group with identity element γi. For 1 ≤
j ≤ m we have γjγi ≡ γj (mod n) and di | γi, n hence di | γj so that di | dj . On
the other hand γjγk ≡ γi (mod n) for some k (γk is the inverse of γj in (Γn, ·))
and dj | γj , n hence dj | γi so dj | di. We conclude that di = dj and since j was
arbitrary we have d1 = d2 = . . . = dm hence δ = d as required.

The above theorem hinges on information contained in the gcd-set DΓn . It is
a surprising fact that the information afforded by the gcd-set also allows us to
answer the fundamental question of whether a given CM has finite elasticity.
Before we present a result to this effect we must set up some machinery:

Definition 10. Let S ⊆ N. We say that a set T is S-essential if T = {p : p
prime and p | x} for some x ∈ S.

Lemma 3. Let n ∈ N and let T = {p1, . . . , pm} be a set of rational primes.
Then ∃r such that p2r

i ≡ pri (mod n) for all 1 ≤ i ≤ m.

Proof. Let vi = vpi(n) then for r ≥ vi:

p2r
i ≡ pri (mod n) ⇐⇒ p2r−vi

i ≡ pr−vii (mod np−vii )

⇐⇒ pri ≡ 1 (mod np−vii )

where we’ve used the fact that gcd(pi, np
−vi
i ) = 1. The above shows that r =

lcm(ϕ(np−v1
1 ), . . . , ϕ(np−vmm )) has the required property for the lemma.

The following lemma is a restatement of Lemma 1.4.9 of p.27 [11].

Lemma 4. Let (A, ·) be a finite abelian group, x = a1 · · · ak a product of
elements of A, and D the Davenport constant of A. If k ≥ D + 1 then
ai1 · · · ail = eA for some 1 ≤ i1, . . . , il ≤ k and l ≤ D.
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Definition 11. For z ∈ N, let ℘(z) denote the multiset of prime divisors of z
in N.

Corollary 5. Let HΓn be a congruence monoid and let x ∈ HΓn . If Γ×n 6= ∅ and
℘(x) contains more than D(Z×n /Γ×n ) elements coprime to n, then x is reducible
in HΓn .

Proof. Let D = D(Z×n /Γ×n ). By hypothesis there exist rational primes p1, . . . , pk
(not necessarily distinct) coprime to n such that p1 · · · pk | x and k > D. By
Lemma 4, pi1Γ×n · · · pilΓ×n = Γ×n for some 1 ≤ i1, . . . , il ≤ k and l ≤ D i.e.
pi1 · · · pil ∈ Γ×n . It follows that u = pi1 · · · pil ∈ HΓn and we write x = uy where
1 < y ∈ N. Now, u is a unit modulo n and y ≡ xu−1 (mod n) hence y ∈ HΓn

by multiplicative closure of Γn. Thus x is reducible as claimed.

Remark: Letting G = Z×n /Γ×n , we could replace D(G) in the above by |G|2 and
lose the need for Lemma 4. This is because given |G|2 elements of G, at least
|G| must be the same (equal to g, say) and g|G| = eG = Γ×n .

Theorem 6. A congruence monoid HΓn has finite elasticity if and only if every
minimal HΓn-essential set is a singleton.

Proof. ⇒) Suppose that T = {p1, . . . , pm} is a minimal HΓn -essential set that
is not a singleton i.e. m ≥ 2. Since T is HΓn-essential, ∃e1, · · · , em ≥ 1 such
that pe11 · · · pemm ∈ HΓn . By Lemma 3 we can pick r such that p2r

i ≡ pri (mod n)
∀i. Note that for k1 . . . , km ≥ 1 we have pk1r

1 · · · pkmrm ∈ HΓn since:

pk1r
1 · · · pkmrm ≡ pr1 · · · prm ≡ (pe11 · · · pemm )r (mod n)

Consequently, letting a = p1 · · · pm, the following expressions are factorizations
in HΓn for k ≥ 1:

x = (pr1 · · · prm)k(t−1)+1 =

m∏
i=1

pri

(
a

pi

)rk
The LHS factors into at least k(t − 1) + 1 irreducibles whereas the RHS fac-
tors into at most rm irreducibles since each irreducible must be divisible by
p1, . . . , pm by minimality of T . It follows that

ρ(x) ≥ k(t− 1) + 1

rm

and (k(t− 1) + 1)/rm→∞ as k →∞ since t ≥ 2.

⇐) Assume that every minimal HΓn-essential set is a singleton. Let Q = {q ∈
N : q prime, q | n and {q} an HΓn -essential set}, Q = {q1, . . . , qt} say. For each
qi ∈ Q, ∃ki ≥ 1 such that pkii ∈ HΓn . By Lemma 3 we can pick ri minimal

such that p2ri
i ≡ prii (mod n). prii ∈ HΓn since prii ≡ (pkii )ri (mod n). Suppose

now that ypci ∈ HΓn where c ≥ 2ri, c = 2ri + c′ say. ypci = (prii )(ypc−rii ) and
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ypc−rii ∈ HΓn since ypci = yp2ri+c
′

i ≡ ypri+c
′

i = ypc−rii (mod n). We conclude
that any irreducible in HΓn can have pi-adic evaluation at most 2ri − 1.

Define P = {p ∈ N : p prime and p - n} and let x ∈ H•Γn have longest factor-
ization into irreducibles x = u1 · · ·uL and shortest factorization x = v1 · · · v`.
Suppose that u ∈ HΓnwhere ℘(u) contains no element of P then since each
minimal HΓn -essential set is a singleton, ℘(u) must contain an element of Q.
It follows that ℘(ui) contains an element of P or Q for 1 ≤ i ≤ L and hence
℘(x) contains λL elements of P and µL elements of Q where λ+ µ ≥ 1. In the
special case where Γ×n = ∅ then gcd(z, n) > 1 for all z ∈ H•Γn hence no power of
p ∈ P can appear in HΓn . Consequently, ℘(ui) contains an element of Q for all
i and so µ ≥ 1.

℘(vj) must contain at least µL/` elements of Q for some j. Indeed, suppose
that ℘(vj) contains ≥ 2tmax{r1, . . . , rt} elements of Q then ℘(vj) must contain
≥ 2rk copies of pk for some k hence vj is reducible by the above, a condradiction.
We conclude that

µL

`
< 2tmax{r1, . . . , rt}

If Γ×n = ∅ then ρ(x) = L/` ≤ µL/` < 2tmax{r1, . . . , rt}. This bound is inde-
pendent of x hence ρ(HΓn) <∞ and we’re done. Suppose then that Γ×n 6= ∅:

℘(vi) contains at least λL/` elements of P for some i. vi is irreducible hence by
Corollary 5, ℘(vi) contains ≤ D(Z×n /Γ×n ) elements of P hence:

λL

`
≤ D

(
Z×n
Γ×n

)
It follows that

ρ(x) =
L

`
≤ (λ+ µ)

L

`
< 2tmax{r1, . . . , rt}+D

(
Z×n
Γ×n

)
The last bound is independent of x hence the elasticity of the monoid is finite.

Lemma 7. A minimal HΓn-essential set contains only primes that divide n

Proof. Suppose that x = p1 · · · prq1 · · · ql ∈ HΓn where the pi, qj ’s are (not
necessarily distinct) rational primes such that pi | n, qj - n. We have that
xϕ(n) ≡ (p1 · · · pr)ϕ(n) (mod n) and so (p1 · · · pr)ϕ(n) ∈ HΓn . It follows that if
l ≥ 1, the set of primes dividing x is not minimal HΓn -essential.

Although the above theorem gives a characterization of when a given CM has
finite elasticity, we would like a simple test to determine this property. As
mentioned above the salient information with regards to this problem lies in the
gcd-set:
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Theorem 8. HΓn has finite elasticity if and only if every minimal DΓn-essential
set is a singleton.

Proof. By Theorem 8 it suffices to show that a set is minimal DΓn -essential if
and only if it is minimal HΓn -essential. To this end it suffices to show that a
minimal HΓn -essential set is DΓn -essential and every DΓn -essential set is HΓn -
essential.

Suppose that T = {p1, . . . , pt} is minimal HΓn -essential with pe11 · · · p
et
t ≡ γ1

(mod n) say. By Lemma 7, each pi divides n hence the given congruence ensures
that T is the set of primes dividing d1 = gcd(γ1, n) and so T is DΓn -essential.

Finally suppose that S = {q1, . . . , qs} is DΓn -essential, d2 = qf1

1 · · · qfss say. It

follows that γ2 can be written as γ2 = qα1
1 · · · qαss rβ1

1 · · · r
βl
l where αi ≥ 1 and

rj a rational prime not dividing n. Note that γ
ϕ(n)
2 ≡ (qα1

1 · · · qαss )ϕ(n) (mod n)
and so (qα1

1 · · · qαss )ϕ(n) ∈ HΓn hence S is HΓn -essential.

We mention a couple of simple corollaries that apply in later sections of the
paper, yet can be understood here.

Corollary 9. Let (Γn, ·) be a group and (Γn, ·) a subgroup then HΓn has finite
elasticity iff HΓn

has finite elasticity.

Proof. By Theorem 2, DΓn and DΓn
are singletons and they are equal since Γn

is a subset of Γn. The result now follows by Theorem 8.

Corollary 10. Let Γ•n 6= ∅ then HΓn has finite elasticity if and only if HΓ•n
has

finite elasticity

Proof. Note that DΓn = DΓ•n
∪{1}, the result then follows from Theorem 8.

3 Regular Congruence Monoids

When Γn = Γ×n , it follows that Γn is a normal subgroup of Z×n , the set of units
modulo n. This makes the quotient group:

GΓn = Zn
/

Γn

well defined. The structure of GΓn plays a large role in determining the fac-
torization properties of HΓn . First we define the block monoid over an abelian
group.

Definition 12. Let G be an abelian group, and let B(G) be the set of all zero-
sums G. We call B(G) the block monoid over G.

Theorem 11. Let n be a fixed modulus, Γ be a finite subset of N such that Γn
is multiplicatively closed, and Γn = Γ×n . Then there exists a transfer homomor-
phism from HΓn to B (GΓn).
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Proof. Let x ∈ HΓn and suppose x =
∏k
i=1 p

αi
i is its prime factorization in

N. Note that x̄ =
∏k
i=1 p̄

αi
i ∈ Γn where multiplication is in Zn, hence in

GΓn we have that Γn = x̄Γn =
∏k
i=1 (p̄iΓn)

αi . It follows that we have a map
φ : HΓn −→ B(GΓn) defined by φ(x) = [p̄1Γn]α1 [p̄2Γn]α2 · · · [p̄kΓn]αk where

x =
∏k
i=1 p

αi
i as above. We claim that φ is a transfer homomorphism. The

fact that φ is a monoid homomorphism is clear. Note that the only units in
HΓn and B(GΓn) are 1 and [Γn] respectively, thus is suffices to show (i) that φ
is surjective, and (ii) if x ∈ HΓn and a, b ∈ B(GΓn) such that φ(x) = ab then
∃y, z ∈ HΓn such that x = yz and φ(y) = a, φ(z) = b.
(i) Let β = [u1Γn]α1 [u2Γn]α2 · · · [ukΓn]αk ∈ B(GΓn). For 1 ≤ i ≤ k, ui ∈ Z×n
i.e gcd(ui, n) = 1, hence by Dirichlet’s theorem we may pick a prime pi ∈ N
congruent to ui modulo n. Let x =

∏k
i=1 p

αi
i . Then x̄ =

∏k
i=1 p̄

αi
i =

∏k
i=1 ui

αi ∈
Γn since β ∈ B(GΓn). Thus x ∈ HΓn and φ(x) = [u1Γ]α1 [u2Γn]α2 · · · [ukΓn]αk .

(ii) Suppose that x =
∏k
i=1 p

αi
i ∈ HΓn and that φ(x) = [p̄1Γn]α1 [p̄2Γn]α2 · · · [p̄kΓn]αk =

ab where a, b ∈ B(GΓn) (note that it may be the case that p̄i = p̄j for i 6= j).
Write a = [p̄1Γn]β1 [p̄2Γn]β2 · · · [p̄kΓn]βk , b = [p̄1Γn]γ1 [p̄2Γn]γ2 · · · [p̄kΓn]γk where
0 ≤ βi, γi ≤ αi and βi + γi = αi for 1 ≤ i ≤ k. Since a ∈ B(GΓn) we have that∏k
i=1 p̄

βi
i ∈ Γn i.e y =

∏k
i=1 p

βi
i ∈ HΓn . Similarly z =

∏k
i=1 p

γi
i ∈ HΓn . Hence

x = yz where y, z ∈ HΓn , φ(y) = a and φ(z) = b.

Example : Let Γ = {1, 7, 11} and n = 19. Then:

GΓn = Z×19

/
Γn = {Γn, 2Γn, 4Γn, 8Γn, 16Γn, 13Γn} ' Z6.

First we map each coset into the free monoid over Z6:

Γn 7→ [0], 2Γn 7→ [1], 4Γn 7→ [2], 8Γn 7→ [3], 16Γn 7→ [4], 13Γn 7→ [5].

Now let’s say we want to factor a number like 1343545157637423 in HΓn . First
we factor our number over the naturals:

1343545157637423 = 35 · 133 · 171 · 236.

We note that 3 ∈ 2Γn,13 ∈ 13Γn,17 ∈ 16Γn, and 23 ∈ 4Γn. Hence with our
mapping, we have:

35 · 133 · 171 · 236 7−→ [1]5[5]3[4]1[2]6 ∈ B(Z6).

Now we can focus on factorizations within the block monoid. Some factoriza-
tions of [1]5[5]3[4]1[2]6 are:

* ([1][5])3([1]2[2]2)([2][4])([2]3)

* ([1][5])3([1]2[4])([2]3)2

* ([1][5])([2][4])([2][5]2)([1]4[2])([2]3)

Looking back in HΓn , we obtain these different factorizations into irreducibles:
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* (3 · 13)3(32 · 232)(23 · 17)(233) = 393 · 4761 · 391 · 12167

* (3 · 13)3(32 · 17)(233)2 = 393 · 153 · 121672

* (3 · 13)(23 · 17)(23 · 132)(34 · 23)(233) = 39 · 391 · 3887 · 1863 · 12167

Since transfer homomorphism preserves factorization properties, we immediatly
obtain the following results.

Corollary 12. Let HΓn be a regular congruence monoid, B (GΓn) be the block
monoid over GΓn , and σ : HΓn −→ B (GΓn) be a transfer homomorphism.
Then:

1. For all x ∈ HΓn , x is irreducible iff σ(x) ∈ B (GΓn) is irreducible.

2. For all x ∈ HΓn , L(x) = L(σ(x)) and ρ(x) = ρ(σ(x)).

3. ρ (HΓn) = ρ (B (GΓn)) =
D(GΓn )

2 .

Proof. These properties follow straight from the definition of a transfer homo-
morphism.

With a little more machinery, we also obtain results about full and accepted
elasticity.

Lemma (Unit-Primes Lemma). If Γ×n is not empty, then HΓn contains
infinitely many primes.

Proof. Let Γ ⊆ N such that Γn contains a unit, a, and is multiplicatively closed.
The modulus and the the unit a are coprime, so by Dirichlet, there exist infinitely
many rational primes p ≡ a (mod n). Choose one such rational prime, p, and
let x, y ∈ HΓn . Suppose p | xy in HΓn , then without loss of generality, p | x in
N, and therefore, x = pk in N. Because p ∈ HΓn , and HΓn is multiplicatively
closed, there must exist some pk such that pk = 1 for some k ≥ 1. Then clearly
p · pk−1 = 1 and the inverse of p is in HΓn as well. Multiplying x = pk by the
inverse gives us p−1x = k and then, because HΓn is multiplicatively closed, k
must also be in HΓn . Therefore p | x in the monoid and p must be prime. It can
be concluded that there are infinitely many primes in HΓn when Γn contains a
unit.

We also note that block monoids over finite abelian groups have accepted elasticy
(Theorem 7, [1]) and monoids that have accepted elasticity and a prime element
also have full elasticy (Corollary 2.2, [4]). These two theorems along with the
Unit-Primes Lemma give us the following result.

Corollary 13. If HΓn is a regular congruence monoid, then the elasticity of
HΓn is accepted and full.
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Proof. Since HΓn is regular, by Theorem 11 we know there exists a transfer
homomorphism to B (GΓn). Because GΓn is a finite abelian group, it follows
that the elasticity of B (GΓn) is accepted, hence the elasticity of HΓn is also
accepted. Since Γn is regular, it contains at least one unit. Therefore, by the
Unit-Primes Lemma, HΓn contains infinitely many primes. Therefore, because
HΓn has accepted elasticity and a prime element, it follows that the elasticity
is also full.

4 Singular Congruence Monoids

Recall Theorem 2 from the section on general congruence monoids:

Theorem. Let HΓn be a CM then

Mδ,δ ∩HΓζ ⊆ HΓn ⊆Md,d

where HΓζ is regular and the following are equivalent:

1. HΓn = Mδ,δ ∩HΓζ

2. δ = d

3. Multiplication induces a group structure on Γn.

In light of this theorem it is natural to consider CMs for which d = δ, i.e. (Γn, ·)
is a group), let us call such CMs J-monoids. This is a natural generalization
of the concept of an ACM since ACMs correspond to the case where (Γn, ·)
is the trivial group. In the regular case Γn ⊆ Z×n we have d = δ = 1 hence
(1) is satisfied in Theorem 2 vacuously. However it is important to note that
there exist interesting groups of non units e.g. Γ30 = {4, 14, 16, 26} ∼= C2 × C2

where 16 acts as the identity, Γ62 = {2, 4, 8, 16, 32} ∼= C5 where 32 acts as the
identity. The proof of Theorem 2 shows that if (Γn, ·) is a group then it is in
fact isomorphic to a subgroup of Z×ζ .

Theorem 2 suggests that d and δ are important parameters in the study of the
factorization theoretic porperties of a CM. With this in mind, we present some
results that rely on certain properties of d, δ.

Corollary 14. Let x, y ∈ HΓn with y |N x and x 6= y then:
δ |N x/y =⇒ y | x in HΓn .

Proof. By Theorem 2 x, y ∈ HΓζ where HΓζ is regular. Let x = ky for k ∈ N
then x ≡ ky (mod ζ). y is a unit modulo ζ and Γζ is multiplicatively closed
hence xy−1 ≡ k (mod ζ) and k ∈ HΓζ . By the first inclusion of Theorem 2
δ |N x/y =⇒ x/y = k ∈ HΓn .

Corollary 15. Let Γn be such that d2 - δ then:

11



1. HΓn contains no prime elements.

2. If x is reducible then x+ n is irreducible.

Proof. (1) Let x ∈ H•Γn . By the proof of Theorem 2 gcd(δ, ζ) = 1, hence

δ/d ∈ Z×ζ , and the residue of x modulo ζ lies Z×ζ . Let p be a rational prime such

that p - d and p ≡ (xδ/d)−1 (mod ζ) and set y = pδ/d. Note that by the second
inclusion of Theorem 2, d | x hence δ | xy. Noting also that xy, xy2 ∈ Γζ , since
y = x−1 ∈ Γζ ⊆ Z×ζ , we have xy, xy2 ∈ HΓn by the first inclusion of Theorem

2. Now d - y = pδ/d since gcd(d, p) = 1 and d2 - δ by assumption. It follows
from Theorem 2 again that y /∈ HΓn . Finally note that x | x(xy2) = (xy)(xy)
but x - xy and so x is not prime.

(2) If x = yz for some y, z ∈ H•Γn then by the second inclusion of Theorem 2,
d2 |N x. If x+n is also reducible then d2 |N x+n and so d2 |N n. However, d | δ
and n = δζ where gcd(δ, ζ) = 1 hence d2 | δ contrary to assumption.

Remarks:

• The above hypotheses cover the case when (Γn, ·) is a group of non-units
since in this case d = δ > 1.

• Let HΓn satisfy the hypotheses of the above corollary and let A(HΓn) =
{x ∈ HΓn : x is irreducible}. It follows from (2) that

lim sup
k→∞

|A(HΓn) ∩ [1, k]|
| HΓn ∩ [1, k] |

≥ 1

2

When studying the ACM Ma,b it is useful to consider the case when gcd(a, b)
is a power of a prime. Analogously we may consider the case when δ = pα is a
power of a prime in which case d = pγ for some γ ≤ α since d | δ.

Theorem 16. Let Γn be such that δ = pα, d = pγ for some prime p ∈ N and
γ ≥ 1. Let β ≥ 0 be minimal such that pβ ∈ HΓn then:

α+ β − 1

cγ
≤ ρ(HΓn) ≤ α+ β − 1

γ

where c =
⌈
α+β−1−γ

β

⌉
Proof. Let x ∈ HΓn such that vp(x) ≥ α + β. By assumption pβ ∈ HΓn hence
x, pβ ∈ HΓζ a fortiori. Now, pα |N xp−β hence by Corollary 14, xp−β ∈ HΓn

and so x = (pβ)(xp−β) is reducible. We conclude that all irreducibles in HΓn

have p-adic value at most α + β − 1. On the other hand, all irreducibles have
p-adic value greater than γ by the second inclusion of Theorem 2. It follows
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that if y ∈ H•Γn then the number of irreducibles in any factorization of y lies in
the interval [vp(y)/(α+ β − 1), vp(y)/γ] hence

ρ(y) ≤ vp(y)/γ

vp(y)/(α+ β − 1)
=
α+ β − 1

γ

This demonstrates the upper bound in the statement of the proposition. To
deal with the lower bound we find a sequence of elements xk ∈ HΓn such that
ρ(xk) ≥ ck where ck → (γ + β − 1)/γ as k →∞.

Now, δ = pα = lcm(d1, . . . , dm) which forces di = pki for some γ ≤ ki ≤ α
in which case δ = pα = max{pk1 , . . . , pk

m} and d = pγ = gcd(pk1 , . . . , pk
m

) =
min{pk1 , . . . , pk

m}. Assume without loss of generality that k1 = γ and km = α.
It follows that gcd(γ1p

−γ , f) = 1 so by Dirichlet’s Theorem we can pick a ratio-
nal prime r coprime to n, such that r ≡ γ1p

−γ (mod f) i.e. pγr ≡ γ1 (mod n).
Note that pγr ∈ HΓn and is irreducible since d2 = p2γ |N x for all reducibles
x ∈ HΓn . The proof of Theorem 2 shows that gcd(δ, ζ) = 1 hence gcd(p, ζ) = 1
and so we can find a rational prime q coprime to n such that q ≡ pβ−α+1

(mod ζ). δ | pα+β−1q and pα+β−1q ≡ 1 (mod ζ) hence pα+β−1q ∈ HΓn by
Theorem 2.

Let ϕ = ϕ(n) the Euler totient function of n. r and q are units modulo n hence
for k ∈ N, pγrkϕ+1 ≡ pγr ≡ pγqkϕr (mod n) and so pγrkϕ+1, pγqkϕr ∈ HΓn .
Furthermore pγrkϕ+1, pγqkϕr are both irreducible since they do not contain p2γ

as a factor in N. For k ≥ 1 w have:

(pα+β−1q)kϕγ(pγrkϕ(α+β−1)+1) = (pγr)kϕ(α+β−1)(pγqkϕγr) (1)

Suppose that pα+β−1q can be factored into more than c irreducibles in HΓn

i.e. pα+β−1q = (pr1) . . . (prc)(prc+1q). ri ≥ β for 1 ≤ i ≤ c by definition of β
hence rc+1 < α + β − 1 − cβ < γ so d - (prc+1q) a contradiction. We conclude
that (prc+1q) can be factored into at most c irreducibles. Consequently, the
factorization on the left of the above has at most ckϕγ + 1 irreducibles, while
the one on the right has kϕ(α+ β − 1) + 1 irreducibles so:

ρ(HΓn) ≥ kϕ(α+ β − 1) + 1

ckϕγ + 1

which tends to (α+ β − 1)/cγ as k →∞

Remarks:

• Note that if (Γn, ·) is a group then c = 1 hence ρ(HΓn) = (α + β − 1)/α.
In particular, the above generalizes the result that gives the elasticity of
a local singular ACM.

• Other conditions such as α− γ < β force c to equal 1.
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• It is interesting to note that the two inclusions of Theorem 2 translate to
bounds on the elasticity of the monoid. Furthermore the more Γn behaves
as a group i.e. the closer α and γ become, the tighter the bounds become.

• Below we shall see that if Γ = {p, p2, . . . , pr}, n = pr then for p 6= 2,
ρ(HΓn) = r so the upper bound is met even when c is large for the monoid.
Furthermore if p = 2 then ρ(HΓn) = r − 1 which shows that the upper
bound is not always met.

The last remark motivates us to analyze conditions under which we have equality
in the upper bound of Theorem 16 more closely. In the context of Theorem 16
we have the following:

Proposition 17. If ∃ a rational prime q such that pα−1q ∈ Γζ and pα−jq 6∈ HΓn

for all 1 ≤ j ≤ α− γ for which pβ+j−1 ∈ HΓn then:

ρ(HΓn) =
α+ β − 1

γ

Proof. Let q ∈ N be as in the statement of the proposition. We begin by
showing that pα+β−1q ∈ HΓn and that it is irreducible. Since pβ ∈ HΓn we
have pβ ∈ Γζ and by assumption pα−1q ∈ Γζ hence pα+β−1q ∈ Γζ . Moreover
δ = pα | pα+β−1q so that pα+β−1q ∈ HΓn by Theorem 2.

Suppose that pα+β−1q is reducible in HΓn . Since β is minimal such that
pβ ∈ HΓn and d = pγ divides each element of HΓn , pα+β−1q must factorize
in HΓn as (pβ+j−1)(pα−jq) for some 1 ≤ j ≤ α − γ contradicting the assump-
tions of the proposition. We conclude that pα+β−1q is irreducible.

Now, returning to equation 1 of Theorem 16 we see that the factorization on
the left has at most kϕγ+ 1 irreducibles, while the one on the right has kϕ(α+
β − 1) + 1 irreducibles so:

ρ(HΓn) ≥ kϕ(α+ β − 1) + 1

kϕγ + 1

which tends to (α + β − 1)/γ as k → ∞. However, by Theorem 16, ρ(HΓn) ≤
(α+ β − 1)/γ and so we must have equality.

Remarks:

• The hypotheses of this proposition give a characterization for when one
can find a rational prime q such that pα+β−1q ∈ HΓn is irreducible.

• In the case where Γ = {p, p2, . . . , pr}, n = pr Proposition 17 determines
the elasticity of HΓn where Theorem 16 fails to do so.

• Let γ′i = γi/vp(γi). A weaker but simpler condition for the above equality
to hold is

p1−αΓζ 6⊂ {γ′1 . . . γ′m}
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We’ve seen that it’s common for HΓn to saturate the upper bound of Theorem
16 even when (Γn, ·) is not a group. However, we still have the following:

Proposition 18. Suppose the upper bound of Theorem 16 is met for HΓn then:

1. HΓn is half-factorial if and only if (Γn, ·) is a group and min{Γn} = p

2. ρ(HΓn) < 2 if and only if (Γn, ·) is a group and min{Γn} = pγ

Proof. (1): HΓn is half-factorial ⇐⇒ (α + β − 1)/γ = 1 ⇐⇒ α − γ = 1 − β.
Now, α − γ ≥ 0 and β ≥ 1 hence α − γ = 1 − β ⇐⇒ α = γ and β = 1.
By the proof of Theorem 2 we have α = γ ⇐⇒ (Γn, ·) is a group. Finally
β = 1 ⇐⇒ p ∈ HΓn , but p divides all non units in HΓn hence p ∈ HΓn ⇐⇒ p
is the least element of H•Γn ⇐⇒ p = min{Γn}.

(2): (α+β−1)/γ < 2 ⇐⇒ α−γ < γ−β+1. Note that α−γ ≥ 0 and γ−β ≤ 0
hence α − γ < γ − β + 1 ⇐⇒ α = γ = β. Again, by the proof of Theorem 2
we have α = γ ⇐⇒ (Γn, ·) is a group. Furthermore β = γ ⇐⇒ pγ ∈ HΓn ,
but d = pγ divides all non units in HΓn hence pγ ∈ HΓn ⇐⇒ pγ is the least
element of H•Γn ⇐⇒ pγ = min{Γn}.

Having analyzed the case where d and δ are prime powers it is natural to consider
the case where d and δ are composite.

Theorem 19. Let Γn be such that d, δ are composite and share the same prime
factors then ∃λ > 0 such that `(x) < λ ∀x ∈ HΓn .

Proof. Let d = pα1
1 · · · p

αt
t , δ = pβ1

1 · · · p
βt
t be the prime factorizations of d, δ in

N, we’re assuming that t ≥ 2. Let r ≥ βi/αi be such that pri ≡ 1 (mod ζ) for
all i (r = dβi/(αiϕ(ζ))eϕ(ζ) suffices).

Let x ∈ H•Γn . By Theorem 2, d must divide all non-units in HΓn so we may
write x = pm1

1 · · · pmtt y where mi ≥ αi, y ∈ N and pi - y. If mi < 3αir
for some i then `(x) ≤ vd(x) < 3r so assume that mi ≥ 3αir for all i.
Write mi = αirl + m′i where 2 ≤ l ∈ N and αir ≤ m′i < 2αir. We have

x = x1x2x3 where x1 = pα1r
1 p

α2r(l−1)
2 · · · pαtr(l−1)

t , x2 = p
α1r(l−1)
1 pα2r

2 · · · pαtrt

and x3 = p
m′1
1 · · · pm

′
t

t y. Theorem 2 dictates that x1 ∈ HΓn since δ | x1 and
x1 ≡ 1 (mod ζ), similarly x2 ∈ HΓn . x3 ∈ HΓn since δ | x3 and x3 ≡ x (mod ζ).

Finally note that `(x1), `(x2) ≤ r and `(x3) < 2r hence `(x) < 4r.

Remark: If (Γn, ·) is a group then d = δ and so d, δ trivially share the same
prime factors.

Corollary 20. Let Γn be as in Theorem 19 then HΓn has infinite elasticity and
the elasticity is not full.
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Indeed if Γn is such that d is composite then HΓn has infinite elasticity. This is
a simple corollary of Theorem 8.

We have explored what impact the parameters d and δ have on the factorization
properties of HΓn . For the remainder of this section let us assume that (Γn, ·)
is a group where d = δ = pe11 . . . pekk for pi distinct primes and the ei ≥ 1 and
that HΓn = Mδ,δ ∩HΓζ as in Theorem 2:

Theorem 21. If pi ∈ HΓζ ∀i then

σ : HΓn −→ (e1, . . . , ek) + Nk0
x 7−→ (vp1

(x), . . . , vpk(x))

is a transfer homomorphism.

Proof. Let N = (e1, . . . , ek)+Nk0 . Since HΓn = Mδ,δ∩HΓζ , each element of HΓn

is divisible by δ and so σ maps into N . σ is clearly a monoid homomorphism,
let us show that it is surjective: Let (v1, . . . , vk) ∈ N . By the proof of Thoerem
2 we know that gcd(δ, ζ) = 1 hence ∃m ∈ N such that x := pv1

1 · · · p
vk
k m ≡ 1

(mod ζ). Note that we can choose m such that it is coprime to δ. We know
that vi ≥ ei for all i hence δ | x. It follows that x ∈ HΓn and σ(x) = (v1, . . . , vk).

Let x ∈ HΓn be arbitrary where we write x = pv1
1 · · · p

vk
k m, gcd(m, δ) = 1.

Suppose that σ(x) = (w1, . . . , wk) + (u1, . . . , uk) a factorization in N . Since
wi ≥ ei and pi ∈ HΓζ for all i we have y := pw1

1 · · · p
wk
k ∈ HΓn . Now, x ∈ HΓn

hence x ≡ γ (mod ζ) for some γ ∈ Γ (noting that ζ | n). HΓζ is regular
and contains each pi hence we may take inverses modulo ζ to deduce that
m ≡ (pv1

1 · · · p
vk
k )−1x (mod ζ) and so m ∈ HΓζ . Noting also that ui ≥ ei for

all i, it follows that z := pu1
1 · · · p

uk
k m ∈ HΓn . Finally note that x = yz where

σ(y) = (w1, . . . , wk) and σ(z) = (u1, . . . , uk). The only units in HΓn and N
are their respective identity elements hence we have shown that σ is indeed a
transfer homomorphism.

The factorization properties of N are well known. Indeed the above proof can
be used to show that there is a transfer homomorphism from Mδ,δ onto N hence
with the hypotheses of Theorem 21, Mδ,δ and HΓn share the same arithmetic
invariants. Using the known results on N which can be found in Proposition 2.2,
2.3 of [3] we have the corollary below. Note that parts of the following result may
be deduced from previous theorems, we restate these parts for completeness.

Corollary 22. Under the hypotheses of Theorem 21 we have the following:

• If δ is composite then:

1. Given a reducible x ∈ HΓn , write x = δkm with δ -N m then k ≥ 2
and

L(x) = {` ∈ N | 2 ≤ ` ≤ k}
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2. ∆(HΓn) = {1}.
3. ρ(HΓn) =∞.

4. HΓn is not fully elastic.

5. HΓn has no prime elements.

• If δ = pα a prime power then:

1. Given a nonunit x ∈ HΓn ,

L(x) =

{
` ∈ N :

⌈
vp(x)

2α− 1

⌉
≤ ` ≤

⌊
vp(x)

α

⌋}
2. ∆(HΓn) = {1} if r > 1 and ∆(HΓn) = ∅ if r = 0.

3. ρ(HΓn) = 2α−1
α and this elasticity is accepted.

4. HΓn is fully elastic if and only if r = 1.

5. HΓn is half-factorial if and only if r = 1. However it is never facto-
rial.

6. HΓn has no prime elements.

Examples:

• HΓ62
where Γ = {2, 4, 8, 16, 32} satisfies the hypotheses of the above corol-

lary.

• The above applies to ACMs of the form Mxd,yd where gcd(x, y) = 1 and
each divisor of d is congruent to 1 modulo y. In particular it applies to
local singular ACMs Mxpα,ypα where p ≡ 1 (mod y) .

We now consider a transfer homomorphism that does not require the condi-
tion on prime divisors of δ. By the structure theorem on finitely generated
abelian groups, for all finite abelian groups A there exist a unique set of natu-
rals {m1, . . . ,mr} such that mi | mi+1 ∀i and A ∼= Zm1

⊕ · · · ⊕ Zmr . Let us
call this the canonical representation of A.

Proposition 23. Let Z×ζ /Γζ = {e, g1Γζ , . . . , gmΓζ} and let θ : Z×ζ /Γζ → Zm1⊕
· · · ⊕ Zmr be an isomorphism into its canonical representation. Then there is a
transfer homomorphism

σ : HΓn → N

where N = {z ∈ Nk+m
0 : zi ≥ ei for 1 ≤ i ≤ k and

∑k
i=1 ziθ(piΓζ) +∑m

j=1 zk+jθ(gjΓζ) = 0}.
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Proof. Let x ∈ HΓn then we may write x = pf1

1 · · · p
fk
k q11 · · · q1r1 · · · qm1 · · · qmrmy

where qijΓζ ∈ giΓζ ∀i, j and y ∈ HΓζ . Define σ(x) = (f1, . . . , fk, r1, . . . , rm).
Since HΓn = Mδ,δ ∩ HΓζ we must have that fi ≥ ei and θ(Γζ) = θ(xΓζ) =∑k
i=1 fiθ(piΓζ) +

∑m
j=1 rjθ(gjΓζ) = 0 so that σ is a map HΓn → N .

We see that σ is clearly a monoid homomorphism, let us show that it is surjec-
tive: Choose primes q1, . . . , qm such that qiΓζ = giΓζ . Let z = (z1, . . . , zk+m) ∈
N and consider x = pz11 · · · p

zk
k q

zk+1

1 · · · qzk+m
m . We have zi ≥ ei for 1 ≤ i ≤ k

hence x ∈Mδ,δ and by construction θ(xΓζ) = 0 hence xΓζ = Γζ (i.e. x ∈ HΓζ )
by injectivity of θ. It follows that x ∈ HΓn and σ(x) = z.

Finally let x ∈ HΓn be arbitrary and assume that σ(x) = (v1, . . . , vk+m) = u+
w = (u1, . . . , uk+m) + (w1, . . . , wk+m) is a factorization in N . As before, x must
be of the form x = pv1

1 · · · p
vk
k q11 · · · q1vk+1

· · · qm1 · · · qmvk+m
y where qijΓζ ∈

giΓζ ∀i, j and y ∈ HΓζ . Let s = pu1
1 · · · p

uk
k q11 · · · q1uk+1

· · · qm1 · · · qmuk+m
y,

t = pw1
1 · · · p

wk
k q1(uk+1+1) · · · q1vk+1

· · · qm(uk+m+1) · · · qmvk+m
. Note that x = st,

σ(s) = u and σ(t) = w and the fact that u,w ∈ N ensures that s, t ∈ HΓn . We
have thus shown that σ is a transfer homomorphism.

Corollary 24. Let θ : Z×ζ /Γζ → Zm1
⊕ · · · ⊕ Zmr be an isomorphism into its

canonical representation. Then all factorization properties of HΓn are deter-
mined by the following parameters:

• (e1, . . . , ek)

• (m1, . . . ,mr)

• (θ(p1Γζ), . . . , θ(pkΓζ))

Proof. Let N be as in Theorem 23. It suffices to show that the monoid N
depends only on the listed parameters. To this end, it suffices to show that
N is independent of the isomorphism θ : Z×ζ /Γζ → Zm1

⊕ · · · ⊕ Zmr chosen.

Suppose then that ψ : Z×ζ /Γζ → Zm1 ⊕ · · · ⊕ Zmr is a group isomorphism. By
the injectivity of θ and ψ we have:

θ(pz11 · · · p
zk
k g

zk+1

1 · · · gzk+m
m Γζ) =

k∑
i=1

ziθ(piΓζ) +

m∑
j=1

zk+jθ(gjΓζ) = 0

⇐⇒ pz11 · · · p
zk
k g

zk+1

1 · · · gzk+m
m Γζ = Γζ

⇐⇒ ψ(pz11 · · · p
zk
k g

zk+1

1 · · · gzk+m
m Γζ) =

k∑
i=1

ziψ(piΓζ) +

m∑
j=1

zk+jψ(gjΓζ) = 0

so that N is indeed independent of the choice of isomorphism θ.

It follows that in the context of the above corollary we can associate to HΓn a set
of parameters P (HΓn) = {(e1, . . . , ek), (m1, . . . ,mr), {(θ(p1Γζ), . . . , θ(pkΓζ)) :
θ : Z×ζ /Γζ → Zm1⊕· · ·⊕Zmr is an isomorphism}} which completely determines
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the factorization properties of HΓn . Let Θ denote the parameter space of all
possible sets P (HΓn) where HΓn is a J-Monoid. The value of the above obser-
vation lies in the fact that distinct J-monoids can have the same parameter set
in which case we conclude that they have the same factorization properties:

Example: Most results on ACMs can be restated in the form ‘For all ACMs
M such that P (M) ∈ S ⊆ Θ, property Q holds’ from which we can deduce
the more general statement ‘For all J-Monoids M such that P (M) ∈ S ⊆ Θ,
property Q holds’. The study of ACMs is therefore inadvertently the study of
the more general J-monoid. Consider the following known result on ACMs:

Theorem. Let Ma,n = Mpk,pk ∩M1,f where p is prime. If p generates Z×f and

pk 6= 1 then ρ(Ma,n) is accepted if and only if:

• ϕ = |Z×f | > 5

• k−1
ϕ −

⌊
k−1
ϕ

⌋
≥ 1

2

Using the above observations, one can lift this result to the more general context
of J-monoids:

Theorem. Let (Γn, ·) be a group where HΓn = Mpk,pk ∩HΓζ and p a prime. If

pΓζ generates Z×ζ /Γζ and pkΓζ 6= Γζ then ρ(HΓn) is accepted if and only if:

• ϕ = |Z×ζ /Γζ | > 5

• k−1
ϕ −

⌊
k−1
ϕ

⌋
≥ 1

2

4.1 Singular J-Monoids

In accordance with Theorem 2, we consider the case where we have equality
throughout. We further assume that n is the minimum modulus for Γn, so
equality throughout will occur exactly when Γn has a group structure, so HΓn

is a J-monoid. In this case, the theorem states that

HΓn = Md,d ∩HΓf . (2)

The following theorem specifies which elements of a J-monoid are irreducible
regardless of any other properties of the monoid:

Theorem 25. An element x ∈ HΓn is irreducible if and only if one of the
following two conditions hold:
(1): x = dq and d - q, or
(2): x = d2q and q has no subfactor in the coset d−1Γf .

The term subfactor will be used to denote a factor of a factor. For instance, b
is a subfactor of the factor (ab) in (ab)(cd).
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Proof. An element x ∈ HΓn is reducible if and only if there is some factorization
of x into numbers that are themselves elements of bothMd,d andHΓf . A number
is in Md,d if and only if it has d as a factor. Furthermore, an element of Md,d

is reducible if and only if it has d2 as a factor, and in that case each factor
must have d as a subfactor. Therefore, if x ∈ HΓn is reducible, it must be
of the form x = d2qr, and it must factor as x = (dq)(dr), for some q, r ∈ N
(although dq and dr may not themselves be irreducible). In order for this to be
a valid factorization in HΓn , however, both dq and dr must be in HΓf as well.

Note that the elements of Γf must form a subgroup of Z×f . As a result, we can

specify the conditions for dq and dr to be in HΓf : we must have q, r ∈ d−1Γf ,

the coset of Γf in Z×f . Therefore, given that some x = d2qr is in the monoid, it
is reducible if and only if some subfactor of qr (wlog say it is q) is in the coset
d−1Γf . Because qr ∈ d−2Γf as a result of x being in the monoid, if q ∈ d−1Γf ,
then r ∈ d−1Γf as well. Thus x = d2qr is reducible in the monoid if and only if
qr has some subfactor in the coset d−1Γf , and any element of the monoid not
of this form (that is, if it does not have two factors of d) cannot be reducible.
Therefore, x ∈ HΓn is irreducible if and only if either d2 - x or x/d2 is an integer
which has no subfactors in d−1Γf .

This leads to the following corollary:

Corollary 26. Let x = dkq be an element of HΓn , where k ≥ 2. If x is
irreducible, then q has no subfactor in any coset d−iΓf , where 1 ≤ i ≤ k − 1.

Proof. Assume that x is an irreducible element of HΓn . We can write x as
x = (d2)(dk−2q). Then by applying the previous theorem, we see that dk−2q can
have no subfactor in d−1Γf . If q has a subfactor z in d−iΓf , then di−1z ∈ d−1Γf ,
and di−1z is a subfactor of (dk−2q) as long as 1 ≤ i ≤ k − 1. Thus no such
subfactor of q can exist, so if x is irreducible, then q has no subfactor in any
d−iΓf for 1 ≤ i ≤ k − 1.

In the case of J-monoids, d = δ > 1, so d2 - δ. Therefore, Theorem 15 applies
to all J-monoids:

Theorem 27. HΓn has no primes.

We will now separate our treatment of J-monoids into two cases, depending on
whether d is a power of a prime. The case where d = 1 is the regular case, which
has been solved in the previous section.

4.1.1 d = pα, p prime

Recall the following definition:

Definition 13. Let β be the least positive integer such that pβ ∈ HΓn .
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Such a β must exist because d = pα and f are relatively prime, so some power
of pα must be congruent to 1 (mod f). As 1 must be an element of Γf , that
power of pα will be in the monoid. Furthermore, β ≥ α because every element
of the monoid has pα as a factor. Then the elasticity of the monoid is known:

Theorem 28. ρ(HΓn) = α+β−1
α

Proof. This is noted in the remarks following Theorem 16.

A straightforward corollary follows:

Corollary 29. A J-monoid HΓn is half-factorial if and only if d is prime and
in the monoid.

Proof. Assume that d = pα for some prime p. Then the elasticity of the J-
monoid is α+β−1

α by Theorem 28. The monoid will be half-factorial if and only
if the elasticity of the monoid is 1, which occurs exactly when β = 1. However,
β ≥ α and α ≥ 1, so α = 1 as well. Thus d is prime as α = 1, and d itself is in
the monoid because β = 1. We will later show that if d is not a power of a prime
(or 1), the elasticity is infinite, so no other J-monoid can be half-factorial.

We are also interested in determining when the elasticity of a J-monoid is ac-
cepted. This is a challenging problem, however, partially because it contains
the problem of when an ACM has accepted elasticity, which itself has not been
completely solved. Luckily, many of the results on ACMs can be generalized to
CMs in light of Corollary 24. In addition to those generalizations, a few other
results are given below.

Theorem 30. If d ∈ HΓn (that is, if β = α), then the elasticity is accepted.

Proof. Consider x = pα(2α−1)rα, where r is any prime in the coset pΓf not
equal to p. Such an integer r must exist because gcd(p, f) = 1, so there are
infinitely many primes in that coset by Dirichlet’s Theorem. As x has d as a
factor, and both pα(2α−1) and rα are in the coset Γf , x is in both Md,d and
HΓf , so it must be in HΓn as well. We can factor x in two key ways: x =
(pα)2α−2(pαrα) = (p2α−1r)α. No element in either factorization has d2 = p2α

as a factor, so all are irreducible. The first factorization must be the longest
possible for x, because all factors have only α subfactors of p, the minimum
number for a factor to be in the monoid. The second factorization must be the
shortest, because all factors have 2α− 1 subfactors of p, the maximum number
that an irreducible in the monoid can have (otherwise pα can be factored out of
the monoid element, leaving a factorization into two elements). Therefore the
maximum length factorization of x has length 2α− 1, and the minimum length
factorization has length α, so the elasticity of x is ρ(x) = 2α−1

α . Because β = α,
however, the elasticity of the monoid is itself ρ(HΓn) = 2α−1

α , so the element x
accepts the elasticity of the monoid.

Theorem 31. If d2 is the smallest power of d in HΓn and Z×f /Γf is noncyclic,
then the elasticity is accepted.
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Proof. Assume that d2 is the smallest power of d in HΓn and that Z×f /Γf is

noncyclic. Because d2 ∈ HΓf , dΓf has order 2 in Z×f /Γf . But Z×f /Γf must have
at least one other component cycle of even order of which dΓf is not a part (due
to the Fundamental Theorem of Finitely Generated Abelian Groups). Let the
element of order 2 in this other cycle be gΓf . Then ({Γf , dΓf , gΓf , dgΓf}, ·) ∼=
C2×C2. Let q ∈ gΓf , r ∈ dgΓf , s ∈ pΓf , t ∈ p−1Γf all be primes not equal to p.
Note that since d 6∈ Γf and d2 ∈ Γf , α < β ≤ 2α. There are two cases: β = 2α
and β ≤ 2α − 2 (if β = 2α − 1 then since p2α ∈ Γf , we must also have p ∈ Γf ,
but then pα ∈ Γf , a contradiction).
First assume β ≤ 2α− 2. Then let x = p2α(α+β−1)q4αr4αs2α(β−α+1)

= (pα+β−1q4sβ−α+1)α(pα+β−1r4sβ−α+1)α

= (pαqr)4α(pαsβ−α)2(β−α−1)−1(pαs(β−α)+(6αβ+2β−4α2−2β2)). Each factor in the
first factorization must be irreducible since neither (pβ−α−1q4sβ−α+1) nor
(pβ−α−1r4sβ−α+1) has any subfactor in dΓf (those are the “q” in condition (2)
of Theorem 1), and each factor in the second factorization must be irreducible
since d2 does not divide any factor. Furthermore, to show that the final factor is
in HΓn , note that the power of s must be positive, and s(β−α)+(6αβ+2β−4α2−2β2)

must be in pβ−αΓf . To show that it is positive, note that β > 2α − β ⇒
β(2α + 2 − β) > (2α − β)2, which rearranges to (6αβ + 2β − 4α2 − 2β2) > 0,
and the power of s is that value added to β − α. It also must be in pβ−αΓf
because both sβ and s2α are in Γf . The first factorization must be the shortest,
as all factors have α+ β − 1 subfactors of p, the maximum possible number (as
otherwise a pβ could be factored out), and the second factorization must be the
longest, as all factors have only α subfactors of p, the minimum necessary for
a number to be in the monoid. The first factorization has length 2α, and the
second has length 2(α+ β − 1) so this element accepts the elasticity of α+β−1

α .

Now assume that β = 2α. Then let x = p2α(α+β−1)q4αr4αt2α(β−α−1)

= (pα+β−1q4tβ−α−1)α(pα+β−1r4tβ−α−1)α = (pαqr)4α(pαtα)2(β−α−1). Each fac-
tor in the first factorization must be irreducible since neither (pβ−α−1q4tβ−α−1)
nor (pβ−α−1r4tβ−α−1) has any subfactor in dΓf , and each factor in the second
factorization must be irreducible since d2 does not divide any factor. The first
factorization must be the shortest as all factors have α + β − 1 subfactors of
p, and the second factorization must be the longest as all factors have only α
subfactors of p, the minimum necessary for a number to be in the monoid. The
first factorization has length 2α, and the second has length 2(α+ β − 1) so this
element accepts the elasticity of α+β−1

α .

We also have some partial results concerning when the monoid has full elasticity.
Again, many results from ACMs can be generalized, and only some results are
given here.

Theorem 32. If β = α, then the monoid has full elasticity if and only if pα is
the minimum power of p in Γf .

Proof. First assume that pα is the smallest power of p that is in Γf , and con-
sider any rational number a

b with 1 ≤ a
b <

2α−1
α , the elasticity of the monoid.

22



Let r be a prime in the coset pΓf not equal to p, and consider the element
µ(a, b) = (pα)b(2α−1)−aα(p2α−1r)α(a−b) = (pα)aα−a−1(pαrα(a−b)). Because no
smaller power of p is in Γf , pα is the only power of p in the monoid that is irre-
ducible. Because p and r are in the same coset pΓf , and elements of that coset
have order α by assumption, a product of powers of p and r is in the monoid if
and only if the sum of their powers is a multiple of α (and the power of p is at
least α). For any factorization of x, say we have i factors with no copies of r,
and j with at least one copy of r. Each of the i factors has exactly α copies of p,
and each of the j factors has at most 2α−1. Thus νp(µ(a, b)) ≤ iα+j(2α−1) =
(`(µ(a, b))−j)α+j(2α−1) = α`(µ(a, b))+j(α−1) ≤ α`(µ(a, b))+α(a−b)(α−1).
However, α(aα − a) = νp(µ(a, b)), so aα − a ≤ `(µ(a, b)) + (a − b)(α − 1), or
bα − b ≤ `(µ(a, b)). The first factorization achieves this length so it is the
shortest possible for x. We also have α ≤ νp(x) for any x, so αL(µ(a, b)) ≤
ν(µ(a, b)) = α(aα − a) and thus L(µ(a, b)) ≤ ν(µ(a, b)) = aα − a. This max-
imum length is achieved by the second factorization, so these are in fact the
shortest and longest factorizations of µ(a, b). Therefore the elasticity of this ele-
ment is ρ(µ(a, b)) = a

b . Because a and b were chosen arbitrarily to represent any
rational number in the interval [1, 2α−1

α ], the monoid must have full elasticity.
Now assume that some smaller power than pα is in Γf . Then for some s with
α < s < 2α, ps ∈ HΓn , and is irreducible. The goal is to show that no element

can have the elasticity αs2+1
αs2 . Assume to the contrary that some element x has

ρ(x) = αs2+1
αs2 . Let vp(x) be the valuation of p at x, which gives the power of p

in the prime factorization of x. Then by assumption, x has a factorization with
a length of at least αs2 + 1, and each factor must itself have a valuation of at
least α, so vp(y) ≥ α2s2 +α ≥ α2s+α. If j is the largest multiple of α less than
or equal to vp(x)−α, we can write x = (pα)j/αy for some y ∈ HΓn , so x can be

written as the product of at least j
α + 1 ≥ vp(x)

α − 1 factors. Also, if m is the

largest multiple of s less than or equal to vp(x)− α, we can write x = (ps)m/sz
for some z ∈ HΓn . The value of vp(z) must be in the interval [α, α + s], so it
can be written as the product of at most three irreducibles. Thus x can also

be written as the product of m
s + 3, or

vp(x)
s + 3 irreducibles. As a result, the

elasticity of xmust be at least
vp(x)/α−1
vp(x)/s+3 , or ρ(x) ≥ vp(x)/α−1

vp(x)/s+3 = s
α
vp(x)−α
vp(x)+3s . Since

vp(x) ≥ α2s + α, and the function mapping t to t−α
t+3s is monotone increasing

on [α2s + α,∞), ρ(x) ≥ s
α
vp(x)−α
vp(x)+3s ≥

s
α
α2s+α−α
α2s+α+3s = s

α
α2s

α2s+α+3s = αs2

α2s+α+3s .

At this point it suffices to show that αs2

α2s+α+3s ≥
αs2

αs2−1 >
αs2+1
αs2 . The second

inequality is immediate for α ≥ 2 and s ≥ 3 (these must hold as if α = 1 the
monoid is half-factorial, and s > α by assumption), so only the first inequality
must be checked, and to show that, we only need to prove α2s+α+3s ≤ αs2−1,
or equivalently, αs(s− α) > α+ 3s.
First assume that s−α ≥ 2. Then αs(s−α) ≥ 2αs = αs

2 + 3αs
2 ≥

3α
2 +3s > α+3s,

so this case is fine. The other case is when s − α = 1. Then we want to show
that αs > α + 3s, or α2 − 3α − 3 > 0. This is true as long as α ≥ 4. Thus
the only cases we still have to check are for (α, s) = (2, 3) and (3, 4). Since
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vp(x) ≥ α2s2 +α, ρ(x) ≥ (α2s2+α)/α−1
(α2s2+α)/s+3 . For (2, 3), ρ(x) ≥ 18

16 >
19
18 = ks2+1

ks2 , and

for (3, 4), ρ(x) ≥ 48
40 >

49
48 = αs2+1

αs2 . Therefore no element x can possibly have

the elasticity ρ(x) = αs2+1
αs2 , so the monoid does not have full elasticity.

The preceeding proof was adapted those in Section 3 of Ref. [7].

Theorem 33. If d = p is prime, then the monoid has full elasticity.

Proof. The elasticity of the monoid is β. Let q ∈ p−1Γf be a prime not
equal to p. Consider the element µ(i, j) = piβ+ij+1qiβ+1 = (pq)iβ+1(pβ)j =
(pqiβ+1)(pβ)i+j . Such an element can be created for any i, j ∈ N0. All factors
are irreducible, as they all are either exactly pβ or have only one factor of p.
The first factorization is the longest possible for µ(i, j), since there are as many
factors with a single subfactor of p as possible. The second is the shortest possi-
ble because there are as few factors with a single subfactor of p as possible, and
because no monoid element with both p2 and q as divisors can be irreducible as
a factor of (pq) could be factored out (so all factors with a q must have only one

power of p). Therefore ρ(µ(i, j)) = iβ+j+1
i+j+1 = 1+ i(β−1)

i+j+1 . The fraction i(β−1)
i+j+1 can

be exactly 0, and is bounded above by β − 1 but cannot reach it, and can take
any rational value in [0, β − 1). Thus the elasticity of the elements µ(i, j) can
take any rational value in [1, β). To reach any rational value a

b in that range, set
i = a and j = (b(β−1)−a−1, which is a nonnegative integer because a

b < β−1

implies a < b(β− 1). Then i(β−1)
i+j+1 = a(β−1)

a+(b(β−1)−a−1)+1 = a(β−1)
b(β−1) = a

b . Therefore

ρ(µ(i, j)) can reach any value in [1, β), and the elasticity of the monoid is equal
to β, so the monoid has full elasticity.

4.1.2 d = qr, gcd(q, r) = 1, q and r > 1

The following definition will be useful in the proofs concerning J-monoids with
a composite d.

Definition 14. Let `1 and `2 be the least positive integers such that q`1 ∈ Γf
and r`2 ∈ Γf .

Note that such integers must exist because qΓf and rΓf must have finite order
in Z×f /Γf , and `1 and `2 are exactly those orders.

Theorem 34. ρ(HΓn) =∞ and the elasticity is trivially not accepted.

Proof. Consider the element x = (qr)k`1`2+2 for any k ∈ N. Its longest fac-
torization is clearly of length k`1`2 + 2, and its shortest factorization must be
(qrqk`1`2)(qrrk`1`2), a factorization of length 2. Thus ρ(x) = k`1`2+2

2 . By allow-
ing k to approach infinity, this elasticity can itself approach infinity. Therefore
the monoid has infinite elasticity. Each monoid element has finite elasticity,
however, so the elasticity cannot be accepted.

Theorem 35. HΓn does not have full elasticity.
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Proof. Let m be the least positive integer such that dm ∈ HΓn . Take some
x ∈ HΓn and assume that the longest factorization of x into irreducibles is x =
(dk1s1)(dk2s2) · · · (dkjsj) where j is any number greater than 2m. Then for every
i, 1 ≤ ki ≤ m, si ∈ d−kiΓf , and no si has both q and r as a factor. We can write
s1s2 · · · sj = (qm1u)(rm2v) where neither u nor v has a factor of either q or r.
This can be done by grouping all the si with a subfactor of q into the first prod-
uct, and all the rest into the second. Then qm1u ∈ daΓf and rm2v ∈ dbΓf for
some 0 ≤ a, b ≤ m−1, so we can write x = (dm−aqm1u)(dm−brm2v)(d)j+a+b−2m

where each factor is in the monoid (although possibly reducible). Further-
more, if j + a + b − 2m ≥ `1`2, then we can change this factorization to
x = (dm−aqm1+`1`2u)(dm−brm2+`1`2v)(d)j+a+b−2m−`1`2 , and this process can
be repeated until the factor (d) is repeated fewer than `1`2 times. The first
two factors need not be irreducible, but they can be factored into at most m
irreducibles each as they both contain at most m factors of d. Therefore the
shortest factorization of such an x cannot have more than 2m+ `1`2−1 factors,
as some factorization of x has at most that many factors. We assumed that
j ≥ 2m, so we have shown that if the numerator of an element’s elasticity is
at least 2m, its denominator cannot be greater than 2m + `1`2 − 1. But since
2m ≤ 2m + `1`2 − 1, and the elasticity of any element is always at least 1, no
element can have an elasticity with a denominator greater than 2m+ `1`2 − 1.
Therefore the monoid does not have full elasticity.

Note that these two results apply to all J-monoids when d is not a power of a
prime, regardless of any other properties of the monoid. This is unlike the case
when d is a power of a prime, as in that case, other properties such as α, β and
the structure of Z×f /Γf are important.

4.2 Case when n = pr and Γ = 〈p〉
First we consider the case when n = pr, and in the singular case the most
natural question is to ask what happens when Γ = 〈p〉. The first step is to try
to categorize the irreducibles in this monoid.

Definition 15. Let x ∈ HΓ. We call x of type I iff x ≡ 0 (mod pr), otherwise
x ∈ HΓ is of type II. Moreover, for x of type II, we will write x in the following
canonical form: x = pi + cpr, where 0 < i < r.

Let us characterize the irreducible elements in HΓ.

Type I: Given that an element x = cpr, it is obvious that if p divides c,
then x is reducible as x = cpr = p( cpp

r). Also, if c ≡ 1 (mod p) then we can
write c = 1 + pk for some integer k. Then,

x = cpr = (1 + pk)pr = p(pr−1 + prk)

and we have that since p, pr−1 + prk ∈ HΓ we have that x is reducible. This are
necessary conditions that turn out to be sufficient.
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Lemma 36. Let x = cpr. Then x is irreducible if and only if x is not congruent
to 0 nor 1 modulo p

Proof. By taking the contrapositive of the above remarks we already know that
if x is irreducible then x is not congruent to 1 nor 0 modulo p. To prove the
other direction, let c not be congruent to either 1 or 0 modulo p, and for sake
of contradiction assume that x is reducible. Write x = ab. Then, vp(x) = r,
so vp(a) + vp(b) = r. Since every non-unit in our monoid is a multiple of p, we
can let vp(a) = i where i must be greater than 0, and strictly less than r, so we
have that the p-adic value of b is r − i. Then,

a = pi + t1p
r b = pr−i + t2p

r

Whence,
cpr = x = ab = (pi + t1p

r)(pr−i + t2p
r)

⇒ c = (1 + t1p
r−i)(1 + t2p

i)

However we have that c ≡ 1 (mod p) a contradiction. Thus, x was irreducible.

Type II: Say x ∈ HΓ and x = pi + cpr for 0 < i < r. Then vp(x) = i, so if x is
reducible, and x = yz, then we must have that i = vp(y) + vp(z), and so y and
z must be of Type II. Furthermore, since y, z are multiples of p we must have
that i > 1. Hence, there is an a with 0 < a < i such that

pi + cpr = x = yz = (pi−a + t1p
r)(pa + t2p

r)

⇒ pi + cpr = pi + pr(t1t2p
r + t1p

a + t2p
i−a)

Ergo, we have that c is a multiple of p. That is, if x = pi + cpr is reducible then
i > 1 and c is a multiple of p.

Lemma 37. Let x = pi + cpr. If i = 1, then x is irreducible. If i > 1, then x
is irreducible if and only if c is not a multiple of p.

Proof. The fact that i = 1 implies that x is irreducible is immediate by looking
at the p-adic value. Hence, assume i > 1. We want to show that x is irreducible
if and only if c is not a multiple of p. Assume c is a multiple of p. Then we
have that pi + cpr = p(pi−1 + c

pp
r) is a valid factorization in our monoid. That

is, if x is irreducible then c is not a multiple of p. Above we argued that if x is
reducible, then c is a multiple of p, so we have that if c is not a multiple of p
then x is irreducible.

Lemma 38. ρ(HΓ) ≤ r, and if p = 2 we can improve the bound to ρ(HΓ) ≤
r − 1.

Proof. Note that due to the irreducibility criterion we have that if x ∈ HΓ is
such that vp(x) > r, then the element will be of Type I and it will be reducible.
Also note that all the non-unit elements are multiples of p. Hence, L(x) ≤ vp(x),
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`(x) ≥ vp(x)
r , and so ρ(x) ≤ r.

In the case when p = 2, we have that v2(x) ≥ r implies that x is reducible,

so L(x) ≤ v2(x) and `(x) ≥ v2(x)
r−1 , and hence ρ(HΓ) ≤ r − 1

Theorem 39. If p is a prime such that p > 2, then ρ(HΓ) = r. Furthermore,
if p = 2, then we have that ρ(HΓ) = r − 1.

Proof. Assume first that p = 2. If r = 1, 2, then ρ (HΓn) = 2, and we have
half-factoriality. Hence assume that r > 2. Pick t such that 1 + 2r−1t is a
multiple of 3. Then, 1 + 2r−1t = 3k for some k. Note that k will be congruent
to 3 modulo 4 because 1 + 2r−1 ≡ 1 (mod 4). Then, let m be such that

m =
k(3k)2r−3 − 1

2

Note that we will have that m is an odd integer. Hence,

(1 + 2)(1 + 2m) = (3)(k(3k)2r−3) = (3k)2r−2 = (1 + 2r−1t)2r−2

⇒ (2r−1 + 2r)(2r−1 +m2r) = (2 + 2rt)2r−2

By the irreducibility criterion we see that both above factorizations are into
irreducibles, one of length 2r− 2 and another of length 2. By our above lemma
we have that ρ(HΓ) = r − 1.

Now assume that p > 2. Consider (p + (pr−1 − 2)pr)2r, this element is the
product of 2r irreducibles by the criterion given in the last paper, so this is a
factorization of length 2r. Also,

(p+ (pr−1 − 2)pr)2r = p2r(1 + (pr−1 − 2)(pr−1))2r = p2r[(pr−1 − 1)2]2r

= [pr(pr−1 − 1)][pr(pr−1 − 1)4r−1]

This last expression is a factorization of length 2 since the elements are irre-
ducible by the irreducibility criterion of elements of Type I.

4.3 Γ of size 2

Another natural question is to see what happens when Γ has size 2, since the case
when it has size 1 (an ACM) has already been studied in depth. Say Γ = {a, b}
has modulo n. There are different possibilites for what the multiplication table
for Γ might look like.

4.3.1 Type F monoids

Definition 16. We call a monoid Type F if it satisfies Γ = {a, b} and a2 ≡ a ≡
ab and b2 ≡ b modulo n. From now on define α = gcd(a, n) and β = gcd(b, n).
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Let us first try to characterize when a Type F monoid will have finite elasticity.
By Theorem 8 result, we see that there are only two options: Both α and β are
both powers of primes, or one is a power of a prime dividing the other (which
is a composite number). The following theorem shows that the fomer can never
happen (which is somewhat interesting).

Theorem 40. If HΓn is a Type F monoid with finite elasticity, then the gcd
set contains a composite number.

Proof. Assume for sake of a contradiction that there is a monoid HΓn such that
both α and β are prime powers. Then α = pc1 and β = qc2 . Since a2 ≡ a ≡ ab
and b2 ≡ b we have:

n | a(a− 1)

n | b(b− 1)

n | a(b− 1)

Define n′ = n/(pvp(n)). Hence, n′ | n implies n′ | a(b − 1). If p 6= q then n′ is
coprime with a, so we would have n′ | b− 1. We have that q | n′ so q | b− 1, but
this is a contradiction with the fact that q | b. Hence, p ought to be equal to q.

Hence, say that α = pc1 and β = pc2 . Since n | a(a − 1), then we have that
n′ | a − 1. Hence, n′ · δ1 + 1 is a multiple of pvp(n), and in a similar manner
n′ · δ2 + 1 is a multiple of pvp(n). Hence, n′(δ1 − δ2) is a multiple of pvp(n), but
since n′ is coprime with p we have that δ1 − δ2 is a multiple of pvp(n). That is,
δ1 = δ2 + zpvp(n). If z = 0, then a = b (a contradiction), and if z > 0, then
a > n (another contradiction).

By virtue of the above theorem we have that if HΓn is a Type F monoid with
finite elasticity, then the gcd-set is of the form {pt, x} with p | x. The next
natural question is to check if pt is the gcd given by a or the one given by b.

Lemma 41. Let Γ = {a, b} be a Type F monoid with modulo n. Then, if
HΓ <∞ we have that gcd(b, n) = pt and gcd(a, n) = x with p | x.

Proof. We have proven above that given that the monoid has finite elasticity
then the gcd set is {pt, x}, so all we need to show is that gcd(b, n) correspond to
pt. Assume not for a sake of a contradiction. Then we have that gcd(b, n) = x,
and gcd(a, n) = pt. Let q | x be different from p (this can be done since x is
composite), so we have n | ab − a, then q | ab − a, but since q | b we have
that q | a, a contradiction since gcd(a, n) = pt. Ergo, it must be the case that
gcd(a, n) = x and gcd(b, n) = pt.

Theorem 42. Given that Γ = {a, b} is a Type F monoid with gcd(a, n) = x
and gcd(b, n) = p with p | x, then ρ(HΓ) = k where k is the smallest integer
such that pk ∈ HΓ. Assume further vp(a) = 1.
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Proof. Say k is minimal such that pk ∈ HΓ. It is easy to see that we must have
pk ≡ b (mod n). Then with this in mind say y ∈ HΓ is such that vp(y) ≥ k+ 1.

If y = a+ nt, then we have that

a

p
+
n

p
t ≡ 0 (mod pk)

Note that the solution for the above equation is given by t = α + cpk where α
will be given by α = (apk−a)/n. Clearly, such an α satisfies the above equation,
so all we need to do is to check that α is indeed an integer. Note that since
pk ≡ b (mod n) we have that apk ≡ a (mod n). Thus,

y = a+ n(α+ cpk)

= pk(a+ nc)

is a factorization within the monoid. If y = b + nt, the construction is similar.
Hence if y is irreducible then vp(y) ≤ k. Ergo,

ρ(HΓ) ≤ k

.
Now consider the element

a(pk)`(a(
a

p
)k`) = akl+2

. Note that a(a/p)k` is going to be in the monoid since the lcm of the Delta-
set=gcd(a, n) = x, then x | a so

x | a(
a

p
)k`

. As ak`+1 and pk` are in HΓ, we have that by Corollary 14, a(ap )k` ∈ HΓ. This
element has elasticity of at least

k`+ 2

`+ 2

, as its longest factorization is of length k`+2 and it has a factorization of length
`+ 2. Letting `→∞ we witness a sequence of elements that show ρ(HΓ) ≥ k.
By the upper bound above, we see that ρ(HΓ) = k.

Remark: In general, when vp(a) is arbitrary, a similar sequence will instead
bound the elasticity below by k

vp(a) , showing that k
vp(a) ≤ ρ(HΓn) ≤ k.
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5 Semi-Regular Congruence Monoids

Recall that a monoid is considered semi-regular if the gamma set contains both
units and non-units. As expected, semi-regular congruence monoids display fac-
torization properties similar to both singular and regular arithmetic congruence
monoids. In fact, some of the factorization properties of specific elements of
semi-regular monoids remain unchanged from their ACM counterparts.

Proposition 1. Let HΓn be a semi-regular congruence monoid, then Γn con-
tains 1.

Proof. Suppose that HΓn is a semiregular congruence monoid, such that Γn =
Γ×n ∪ Γ•n with both non-empty. Because Γ×n is non-empty, there exists at least
one element x ∈ Γ×n . If x = 1, then clearly Γn contains 1. If x 6= 1, then take
powers of x. Since Γn must be multiplicatively closed, all powers of x must be
in Γ×n , and since x is a unit, some power of x must equal 1. Therefore if Γn
contains a unit, Γn contains 1.

Lemma 43. Let Γn = Γ×n ∪ a with a nonunit a2 ≡ a (mod n) for a fixed
modulus n. If x ∈M1,n is irreducible in M1,n, then x is also reducible in HΓn .

Proof. Let x be an irreducible element in M1,n and assume that x is reducible
in HΓn . Then x = yz where either y, z ∈Ma,n or y ∈M1,n and z ∈Ma,n. First
suppose y, z ∈ Ma,n, then yz ≡ a (mod n), but because a 6≡ 1 (mod n) there
is a contradiction. Next suppose that y ∈ M1,n and z ∈ Ma,n. Then yz ≡ a
(mod n) and again there is a contradiction because a 6≡ 1 (mod n). Hence x is
irreducible in HΓn .

Our research focused on two subcases of semi-regular congruence monoids dis-
cussed in the following subsections.

5.1 The Case When Γn = {1, n}, and n = pk

Although some properties directly generalize from the ACM case, it is not always
the case that a CM is made up of arithmetic congruence monoids. An important
distinction to be made is given by the following definition.

Definition 17. Let a monoid HΓn be a harmonious monoid if it can be written
as the union of Arithmetic Congruence Monoids, such that for multiplicatively
closed Γn = {γ1, γ2, γ3 . . . γm}, γi ≡ γi2 (mod n) for all i.

Theorem 44. Let HΓn be a semi-regular, harmonious monoid such that Γn =

{1, n} for a modulus n, where n = pk. Then ϕ(pk)+3
2 − 1

k ≤ ρ (HΓn) ≤ ϕ(pk)+2k.

Proof. Let Γ = {1, n} be multiplicatively closed, and let n = pk, such that

pk ≡ p2k (mod n). Construct an element x ∈ HΓn , such that

x = (p2k−1 · rφ(pk)−1)k · (p2k−1 · sφ(pk)−1)k
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where ϕ is Euler’s totient function, r is a rational prime with r congruent to
a primitive root modulo n, and s is a rational prime with s ≡ r−1 (mod n).
Because HΓn contains all multiples of pk, x is clearly an element on the monoid.

Because pk - rφ(pk)−1 and pk - sφ(pk−1, it follows that (p2k−1 · rϕ(pk)−1) and

(p2k−1 · sφ(pk)−1) are both irreducible in Mpk,pk . Since neither rϕ(pk)−1 nor

sϕ(pk)−1 has a subproduct that is congruent to 1 modulo pk, both (p2k−1 ·
rφ(pk)−1) and (p2k−1 · sϕ(pk)−1) are irreducible in HΓn as well.
The smallest power of p that is reducible in HΓn is p2k, hence the largest power
of p that remains irreducible is p2k−1. Furthermore, the smallest power of p
that is an element of the monoid is pk. Therefore, the shortest factorization
of x will contain the maximum power of p2k−1 found in the element, and the
longest factorization will contain the maximum power of pk found in the element.
Hence:

x = (p2k−1 · rφ(pk)−1)k · (p2k−1 · rφ(pk)−1)k = (pk)4k−2 · (r · s)(φ(pk)−1)k.

It follows, then that the elasticity of this element is

ρ(x) =
4k − 2 + (φ(pk)− 1)k

2k
=

(φ(pk) + 3)k − 2

2k
=
φ(pk) + 3

2
− 1

k
.

From Theorem 6, we obtain an upper bound of ϕ(pk) + 2k for the elasticity.

Hence ϕ(pk)+3
2 − 1

k ≤ ρ (HΓn) ≤ ϕ(pk) + 2k.

5.2 Γn Contains Units and a Composite Divisor of n

An immediate difference worth noting between this case and the one prior, is
that the amount of units included in the gamma set is irrelevant here. Our
results apply to the case when Γn contains a composite divisor of n (including
when Γn contains n) regardless of the number of units found in Γn. In the pre-
vious case, the inclusion of additional units drastically changed the factorization
properites.

Theorem 45. Let n be a fixed modulus, Γ× be non-empty, d | n, d2 ≡ d
(mod n), d be composite, and Γ = Γ× ∪ {d}. Then HΓn has infinite and full
elasticity.

Proof. First note that:
HΓn = HΓ×n

∪Md,n

= HΓ×n
∪ (Md,d ∩M1,f )

where f = n
d . Let x ∈ Md,n, x = dφ(f)m+2, where φ is Euler’s totient function.

Since d is composite, d = ab where gcd(a, b) = 1. Hence we can rewrite x as:

x = dφ(f)m+2 =
(
d · aφ(f)m

)(
d · bφ(f)m

)
.
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Since d ∈Md,d ∩M1,f , we have:

d ≡ 1 (mod f) =⇒ ab ≡ 1 (mod f)

=⇒ gcd(a, f) = gcd(b, f) = 1

=⇒ aφ(f) ≡ bφ(f) ≡ 1 (mod f).

Therefore d · (aφ(f))m, d · (bφ(f))m ∈ Md,d ∩ M1,f . We need to show that
d · aφ(f)mand d · bφ(f)m are both irreducible in HΓn . Since d2 - d · aφ(f)m and
d2 - d · bφ(f)m, it follows that both d · aφ(f)m and d · bφ(f)m are both irreducible
in Md,n. Assume that d ·aφ(f)m is reducible in HΓn . Then d ·aφ(f)m = xy where
x ∈ HΓ×n

and y ∈ Md,n. Since y ∈ Md,n, y = dk where k ≡ 1 (mod f), but
k 6≡ 1 (mod n). Hence:

d · aφ(f)m = xy =⇒ d · aφ(f)m = x(dk) =⇒ aφ(f)m = xk.

Because every rational prime that divides x must also divide a, and a | n, the
gcd(x, n) 6= 1, which contradicts x ∈ HΓ×n

. Therefore d ·aφ(f)m and d ·bφ(f)m are
both irreducible in HΓn . Recall that L(x) represents the number of irreducible
factors in the longest factorization of x. Here, it is clear that L(x) ≥ φ(f)m+2.
Because x cannot contain a factor found in HΓ×n

, the longest factorization is
dependent on how many factors of d are in x. Hence L(x) = φ(f)m + 2. Now
looking at the elasticity of x we obtain:

ρ(x) =
φ(f)m+ 2

2
.

Since m is arbitrary, we conclude that ρ(HΓn) =∞. Because Γ contains a unit,
by 3, HΓn contains a prime element q. Hence for any integers r and s, with
r ≥ s ≥ 1, and φ(f) > 1 we can construct an element y ∈ HΓn :

y = dφ(f)(r−s)+2 · qφ(f)s−2 =
(
d · aφ(f)(r−s)

)
·
(
d · bφ(f)(r−s)

)
qφ(f)s−2.

Since L
(
dφ(f)(r−s)+2)

)
= φ(f)(r − s) + 2, l

(
dφ(f)(r−s)+2

)
= 2, L

(
qφ(f)s−2

)
=

l
(
qφ(f)s−2

)
= φ(f)s−2, and dφ(f)(r−s)+2 has no factors in HΓ× , it follows that:

ρ(y) =
φ(f)(r − s) + 2 + φ(f)s− 2

2 + φ(f)s− 2

=
φ(f)r

φ(f)s

=
r

s
.

If φ(f) = 1, then without loss of generality replace r and s with 2r and 2s
respectively. Therefore HΓn is fully elastic.

This case is significant because it is the first time in the research of both CMs
and ACMs alike to find a monoid with infinite elasticty that is also fully elastic.
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