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1 Introduction

During the eight weeks between June 4th and July 27th, the 2007 SDSU
REUT phage research group investigated mathematics pertaining to viruses
that predate on bacteria called phages. The aim was to contribute original
research that can be applied towards phage analysis software called Phage
Communites by Contig Spectrum (a.k.a. PHACCS). This online tool has
the capacity of modeling the structure and estimating the diversity of un-
cultured viral communities [1]. The term Phylogeny refers to evolutionary
history. Biologist are interested in the family tree like phylogeny organization
of organisms.[2] Underneath the larger goal, the personal goal was to produce
a probabilistic model to characterize the evolutionary behavior of the phage
evolution. Others had previously attempted this though without sufficient
justification. The first efforts involved numerous failed attempts employing
combinatorial and category theoretical arguments to justify previous models
Ultimately, the model was constructed using an analogy argument solidified
by category theory[3].

2 Mathematical Background

The following is a lecture partially given and maintained throughout the pro-
gram by Andrew Detzel to provide the operational Probability and Markov
Chains knowledge for the group based on [4, 5, 6]. It and the brief cate-
gory theory intro following it furnish sufficient information to allow a typical
mathematics undergraduate to understand the remainder of the document.

2.1 Probability

Let Ω be a set and let σ be a collection of subsets of Ω. We call σ a σ−algebra
if:

a) A ∈ σ ⇒ Ac ∈ σ, and

b) A1, A2, A3, ... ∈ σ ⇒
⋃∞
i=1Ai ∈ σ.

In English, this simply means that a σ − algebra is a set of subsets of
Ω that is closed (like in Algebra) under the operations of union and compli-
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ment. In probability, events are represented by subsets of a set of outcomes,
and the set of these events is the σ − algebra. An ordered pair of a set with
one of its σ − algebras like (Ω, σ) is called a measurable space. A measure µ
on a set Ω is a function µ : σ → [0,∞) such that:

a)µ(A) ≥ µ(∅) = 0, ∀A ⊆ Ω, and

b) if {Ai}∞i=1 is a countable collection of disjoint sets in σ then

µ(
⋃
i∈I Ai) =

∑
i∈I µ(Ai).

A probability function P on Ω is a measure on Ω such that P(Ω) = 1. In
this case, we call Ω the Outcome Space. For example, heads, tails is the out-
come space for a coin flip and the σ−algebra would be {∅, {heads}, {tails}, {heads, tails}}
the probabilities would be defined as follows: P(heads) = P(tails) = 1/2,
P(heads, tails) = P(∅) = 0, and P(heads

⋃
tails) = P(Ω) = 1.

If a probability distribution is defined on a continuum like R then it is
called continuous and if the outcome space is discrete like Z, it is called
discrete. In the continuous case, the probability function is defined by a
density function. So, if f is the density function of P, then P(A) =

∫
A
fdµ.

Proposition 2.1. P(A) = 1− P(Ac)

Proof. A
⋃
Ac = Ω and A is disjoint from Ac so 1 = P(Ω) = P(A

⋃
Ac) =

P(A) + P(Ac) and thus P(A) = 1− P(Ac).

Given outcome space a Random Variable -denoted by a capital letter- is a
function on the outcome space. For example, if we define C by C(heads) = 1
and C(tails) = 0, then C is a random variable. Consider the coin-flip ex-
ample. Observe it would make sense to say P(C = 1) = P(heads) since
heads = C−1(1). So, given a probability function P, we can assume define
probabilities of values of a random variable X as follows:

P(X = x) = P(X−1(x)).

Similarly for a set B of values that X can take, we can define

P(X ∈ B) = P(X−1(B)).
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With definition we can say that the random variable X has the distribu-
tion P . Henceforth Ω will be an outcome space, P will be a distribution on
that space and X will be a random variable on Ω with distribution P.

2.1.1 Expectation, Means and Variance

Now that we have axiomatically defined probability, several other quantities
interest us. If P is a discrete distribution then define E(X) =

∑
x∈Ω xP(X =

x). If P is a continuous distribution with density function f , then we define
E(X) =

∫
Ω
xf(x)dx. In either case we call E(X) the Expected Value of X.

The Mean of a distribution is the expected value of a random variable with
that distribution. Now, we call the quantity σ2 := E((X − E(X))2) the
Variance of X or V ar(X) and we call

√
(σ2) the Standard Deviation of X

or SD(X).

2.2 Central Limit Theorem

Theorem 2.2. Given a sequence of independent and identically distributed
random variables X1, X2, ... with finite variance σ2 and expected value µ, then
the distribution of (

∑n
i=1Xi)/n converges to a normal distribution with mean

µ and variance σ2.

Proof. This proof requires the inverse Fourier transform which is beyond the
scope of this document.

2.3 Markov Chains

A Stochastic Process (Xt)t≥0 is a sequence of random variables indexed by
time. If the time-index is discrete we would denote the process by (Xn)n≥0. A
Stochastic Process (Xn)n≥0 is said to be a Markov Chain if P(Xn = in|X0 =
i0, X1 = i1, ..., Xn−1 = in−1) = P(Xn = in|Xn−1 = in−1). We call the set of
values that the Markov chain takes the State Space and we will denote it by
S. Unless explicitly stated, for the remainder of this paper, (Xn)n≥0 will be
a Markov Chain with state space S. We will also refer to a Markov Chain
with the term random walk.
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2.3.1 Transition Probabilities

The probability pij := P(Xn+1 = j|Xn = i) is called the 1-step Transition
Probability. The matrix P whose i− jth entry is pij is called the Transition
Matrix of (Xn)n≥0. As it turns out (the proof will follow) the i − jth entry

of the matrix P n (denoted by p
(n)
ij ) is the probability P(Xm+n = j|Xm = i).

We call the pnij’s the n-step Transition Probabilities. These turn out to not
be hard to calculate sometimes.

In the case where the transition probabilities are independent of time,
the problem reduces to finding the nth power of the transition matrix but
as we ALL remember from Linear Algebra, we can diagonalize our matrix
then raise it to a high power so that P (n) = UD(n)U−1 where D is the di-
agonal matrix of eigenvalues of P . Thus after a little bit of thought we can
conclude that ∃ constants a1, a2, ...ak such that pnij =

∑k
j=1 ajλ

n
j where λj,

i = 1, 2, ..., k are the eigenvalues of P .

Example. Let P =

 0 1 0
0 1/2 1/2

1/2 0 1/2


The eigenvalues of P are: 1, i/2,−i/2, so pnij = a+ b(i/2)n + c(−i/2)n for

some constants a, b, c.

Theorem 2.3. (Xn)o≤n≤N is Markov iff for all i1, i2, ..., iN ∈ I:

P(X0 = i0, X1 = i1, ..., XN = iN) = λiopi0i1pi1i2 · · · piN−1
piN , where λ is

the distribution of X0.

Theorem 2.4. Let (Xn)n≥0 be Markov with transition matrix P . Then,
given that Xm = i, (Xm+n)n≥0 is Markov with transition Matrix P and is
independent of X0, X1, ..., Xm.

Theorem 2.5. Let (Xn)n≥0 be Markov with transition matrix P and suppose
X0 has distribution λ. Then:

(i) λP (n) is the vector whose ith entry is the probability of being in state
i at time n, and

4



(ii) P(Xn = j|X0 = i) = pij.

Proof. (i) P(Xn = j) =
∑

i0,i1,...,in−1
P(X0 = i0, X1 = i1, ..., Xn = j) =∑

i0,i1,...,in−1
λi0pi0i1pi1i2 · · · pin−1in = (λP (n))j

(ii) Conditioning on X0 = i just means (by the previous theorem) λi = 1 and
λj = 0 for i 6= j. Thus, by part (i) P(Xn = j|X0 = i) =∑

i0,i1,...,in−1
λi0pi0i1pi1i2 · · · pin−1in =

∑
i1,...,in−1

λipii1pi1i2 · · · pin−1in = p
(n)
ij .

Corollary 2.6. Corollary to Perron-Frobenius Theorem
Given a stochastic matrix P such that all entries of P (n) are strictly positive
for some n, then:

a) P has 1 as an eigenvalue,

b) all other eigenvalues of P have absolute value less than 1, and

c) P has a unique eigenvector of eigenvalue 1 with all positive entries. (If
we scale it so that the entry sum is 1, then this is our stationary distribution).

2.3.2 Reducibility

One natural question that arises in Markov chains is starting from state i,
what states do I have a chance of getting to. We say that state i leads to
state j and write i → j if ∃n ∈ N 3 p

(n)
ij > 0. We then say state i com-

municates with state j and write i ↔ j if i → j and j → i. The first
thing one would see is that ”communication” is an equivalence relation. So
then the natural thing to discuss is communication classes. These classes
are subsets of the state space which are separated from the other parts of
the graph. If your transition matrix is associated with a single class, it is
called irreducible. Otherwise, it is irreducible. Consider the transition matrix

P =


0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
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As one can see the Markov Chain represented by P is on two triangles 1, 2, 3
and 4, 5, 6 so if the Chain starts at 1, 2 or 3 it will never reach 4, 5 or 6 and
vice-versa. This is where the shadow graphs come in. For our phage-matrices
we want our matrix to be irreducible so we would give minute ε sized tran-
sition probabilities to make out matrix irreducible, for example, the matrix
P above would become:

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 ε 0 0
0 0 0 0 1 0
0 0 0 0 0 1
ε 0 0 1 0 0


so that now there is a connection between 1, 2, 3 and 4, 5, 6.

2.3.3 Hitting Probabilities and Expected Hitting Time

One natural question to ask is, starting from state i what is the probability
that a chain hits state j? Let’s define hji = P(Hit j|X0 = i) and kji = E(Time
to hit j|X0 = i). We call hji a hitting probability and kji an expected hitting
time.

Example.
Consider a chain with matrix

P =


1 0 0 0

1/2 0 1/2 0
0 1/2 0 1/2
0 0 0 1


So, starting from state 2 what is the probability that the chain gets to state
4 and how long would you expect it to take to reach 1 or 4?

Consider h4
2 and k4

2. Let’s take a step. In one step, starting from state 2
we must move to state 1 with probability 1/2 or state 3 with probability
1/2. Thus, h4

2 = p21h
1
2 + p23h

3
2 = 0 + 1/2h3

2 and k4
2 = 1 + p21k

4
1 + p4

23 = ∞
(since starting from 1, one will never get to 4). The process we used here
generalizes to give us the following Theorems:
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Theorem 2.7. The vector of hitting probabilities h = (hji , i ∈ I) is the min-
imal non-negative solution to the system:

hjj = 1

hji =
∑

k∈I pikh
j
k

Theorem 2.8. Similarly, the vector of mean hitting times kj = (kji , i ∈ I)
is the minimal non-negative solution to the system:

kjj = 0

kji = 1 +
∑

k pikh
j
k

2.3.4 Invariant Distributions

Recall, if X0 has distribution λ then the vector whose ith entry is the prob-
ability of being in state i at time n is λP (n). Our last main question then
is, given a transition matrix P , does there exist a distribution π such that
πP = π?

2.3.5 Rich Example

Consider a Markov Chain with transition matrix:

P =



1/4 1/2 0 0 1/4 0 0
0 0 1 0 0 0 0
0 1/2 0 1/2 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0


Consider the asymptotic behavior of the figure and determine transition prob-
abilities from each state to each other.

2.4 Continuous Time Markov Processes

Let I be a countable set. A Q-Matrix on I is a matrix Q = (qij : i, j ∈ I
such that
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(i) qij ≥ 0 for all i 6= j.

(ii)
∑

j∈I qij <∞ and qii = −
∑

j∈I qij

The way to construct a Q matrix is to make qij the rate at which a
process goes from state i to state j for off diagonal entries and define qii =
−

∑
j∈I qij, sort of a leaving rate of state i. Let (Xt)t≥0 be the continuous

time stochastic process which has these rates. Now make a family of matrices
P (t) where pij := P(Xt = j|X0 = i). Observe these are stochastic matrices.
In this case we call (Xt)t≥0 a Markov Process with Now, as it turns out, if
we make our Q-matrix with these rates then, (Xt)t≥0 is a Markov Process
and P (t) = e(tQ) defines a continuous time transition matrix for (Xt)t≥0, i.e.
pij(t) = P(Xt = j|X0 = i). ***Note that a continuous time process is Markov
if P(Xtn+1 = j|Xt0 = i0, Xt1 = i1, ..., Xtn = i) = P(Xtn+1 = j|Xtn = i)

2.4.1 Invariant Distributions

If (Xt)t≥0 is a Markov Process with Q-matrix Q and transition matrix P ,
then a distribution π is an Invariant Distribution of (Xt)t≥0 if πQ = 0.

2.5 Categories and Functors

All of the following comes from a single source.[7]

Definition 2.9. A Category is an ordered triple (C, hom(C), ◦) where C is a
set of objects, hom(C) is a set of morphisms where each morphism assigns a
unique (source) object in C to a (target) object in C and a binary operation
◦ such that if f : a→ b, g : b→ c, and h : c→ d are morphisms then:

(f ◦ g) ◦ h = f ◦ (g ◦ h) (1)

and for each object x there is a unique identity 1x : x→ x such that if f is a
morphism from a to b then

1b ◦ f = f = f ◦ 1a (2)

Definition 2.10. A Functor F : C → D is a map from a category C into a
category D.

Definition 2.11. A Functor F : C → D is said to be covariant if for each
morphism f : x→ y F (f) : F (x)→ F (y).
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3 Final Research Paper

The culmination of Andrew Detzel’s research during the 2007 SDSU math
REUT is given by the following research paper. It has received much and
invaluable direction by Peter Salamon and is targeted to be a brief paper in
a journal on the order of Physica A.

An Electrical Network Phage Evolution Model Based on Protein Dis-
tances Andrew Detzel July 27, 2007

Abstract
The aim of this paper is to present a model for phage evolutionary
information flow analogous to a random walk on an electrical network
by considering evolutionary distance like electrical resistance. In the
process, we convert a protein distance network into an inter-phage
distance network then assign a transition matrix for a random walk to
the distance network. The set of distance networks forms a category
with the morphisms defined by the map we use to convert protein
distances into phage distances as does the set of transition matrices
and partitions with morphisms being the lumping of matrices with
respect to the partitions. The conversion from phage distance network
to transition matrix is a functor which is covariant with respect to the
morphisms defined for the distance networks. With the model in place,
we can employ centrality measures which are important for phylogeny.

Nucleotides are the building blocks of DNA. Three nucleotides code for amino
acids which compose proteins. Empirical data can roughly determine inter-
amino acid evolution rates which can in turn be used to create a Markov
Model simulating amino acid and protein evolution as done by the likes of
Simon Whelan and Nick Goldman [8]. In the context of phage phylogeny, a
similar model for species evolution is desired. These evolutionary distances
are analogous ro resistance in an electrical network, that being a network in
which the edges are weighted with real-valued resistances[9].

Consider a protein distance network D∗ (in matrix form), suppose it is
m×m. Each of these proteins corresponds to a phage, say there are n phages.
Thus, we form a partition φ1, φ2, ...φn of the network by letting each φi be
the set of proteins contained in phage i. We now wish to convert D∗ into a
phage distance network D so we define the nodes of D to be φ1, φ2..., φn and
assign distances to the edges as follows:

dij =
|φi||φj|∑
k∈φi,l∈φj

1
d∗kl

. (3)
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This matrix yields a (simple) distance network where the weights are the
harmonic means of all the pairwise protein distances of the phages. We use
the harmonic means as they turn out to be the morphisms which makes
our transition from distance networks to random walk transition matrices a
covariant functor. For the purposes of our evolution model, we now change
forms of our evolutionary electrical network from distance/resistance to close-
ness/conductance as [9] provides our random walk model for this form of the
network. The conductance of an edge ij is given by:

cij =

{
1
dij
, ij ∈ Edges(D)

0, otherwise
(4)

We note though, that in phages, multiple phages sharing a single protein is
so rare [10] that we ignore the possibility making our conductance network
a simple one. It follows that our conductance then aligns exactly with a
parallel notion of closeness in a network. There are many ways of measuring
closeness though the most obvious in this case and a very well established
one [11] is given by the closeness cij of two nodes (phages) being:

cij =

{
1
dij
, i 6= j

0, i = j
(5)

Since the closeness and conductance are the same in this case, we denote
both by cij.

The next step is to consider the evolutionary flow along our evolutionary
closeness/conductance network. We apply the conductance random walk
model as defined in [9]. That is, we define a random walk ({Xt}, P ) on C
by:

pij :=
cij∑
j cij

. (6)

The map defined above from distances (and partitions) to transition ma-
trices is a covariant functor which preserves the morphisms defined by equa-
tion (1) [3]. We notice that the diagonal entries of the transition matrix
are zero since the phages don’t share proteins. This allows us to take the
interpretation of our model to be the jump process underlying the real-time
evolution. In other words, the time this model runs on is on the count of
evolutionary transitions as opposed to real-time.
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Of immediate interest to phylogeny is influence flow and importance rank-
ings of phages. The most obvious quantity would be the random walk’s
equilibrium distribution. Given a large enough population and enough time
elapsed, the equilibrium distribution yields about the relative proportion of
phage species and thus a ranking of importance. A value Ci called random
walk centrality quantifies how central phage i is with respect to its receptiv-
ity of evolutionary flow [12]. This would provide a ranking of which phages
have the greatest evolutionary advantage as opposed to just some frequency
of phages that is converged to over time (equilibrium distribution).
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