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Abstract

Eigenvector importance ranking allows us to define ranks for states
of a random walk. If the states are disconnected we have a decompos-
able walk. The shadow graph can be used to make connections and
compare the ranks in different components. The biological motivation
for this technique is the graph derived from the distance matrix on
phage proteins with the shadow graph linking all proteins in the same
phage.
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1 Introduction

Eigenvector based importance ranking [1] is used in many applications
such as marketing, influence flow, belief networks, and web searches. The
items to be ranked are nodes in a network. The importance of the jth node is
measured by the jth entry in the principal eigenvector of the matrix describing
the network. For influence ranking, the ijth entry of the matrix describing
the network measures the extent of influence that node i exerts on node j. In
this paper, we present a method for combining importance ranks on disjoint
sets. The rankings of the nodes in each disjoint set remain invariant. Our
technique connects the disjoint sets and re-ranks the nodes relative to all
other nodes. This re-ranking is achieved by using a relation G on the union
of the disjoint sets. We refer to the effect of G as a shadow structure.

Consider m disjoint random walks on sets Si, i = 1, . . . ,m with tran-
sition matrices Mi, i = 1, . . . ,m. The dominant eigenvectors, Vi, of these
disconnected random walks define the rankings in each set. Formally, we
may always write a transition matrix

M =


M1 0 . . . 0
0 M2 . . . 0
...

...
. . .

...
0 0 . . . Mm


on the union S = ∪iSi. Now consider a relation G on S. The matrix G
connects the disjoint Markov chains by making small perturbations on the
disjoint sets Si. This connection allows us to re-rank the nodes in S. As the
perturbation approaches zero, a “shadow” of these connections remains. We
find a shadow vector which is a linear combination of the stationary eigenvec-
tors of the disjoint sets. We define Vi as the unique stationary distribution of
the set Mi. The linear combination gives new ranks of the nodes relative to
all other nodes. Our motivation comes from a bioinformatics problem: the
desire to rank proteins in bacteriophage, i.e., in viruses that predate on bac-
teria. Transition probabilities between proteins can be derived from standard
bioinformatic methods based on similarity or homology. The Markov chain,
associated with these transition probabilities, is decomposable since the pro-
teins fall into different, mutually non-homologous families. The relation G is
used to connect proteins that are present in the same bacteriophage.
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2 The Formal Problem

We begin with definitions that introduce the notation needed in the ar-
guments below.

Definition 1. Given a matrix X, let X0 denote the diagonal matrix whose
jth entry is the sum of the entries in the jth column of X. Note that the
operator ( )0 is linear.

Definition 2. Given non-negative n × n matrices M and G, and ε > 0,
define

Mε = (M + εG)(M + εG)−1
0 . (1)

For our problem, M corresponds to a block diagonal transition probability
matrix of a decomposable Markov chain as shown in (1). We assume that
each of the nonzero blocks is a regular chain [5]. The matrix G perturbs
the decomposable Markov chain and relates the disjoint components. We
assume that Mε is indecomposable for ε > 0. By using G to merge the
distinct Markov processes, we rank the importance of all n nodes in the
connected chain using the unique stationary distribution of Mε. In the limit,
as ε goes to zero, the stationary distribution of any component Si remains
unchanged.

Definition 3. A shadow structure is a pair (M,G), where M is the matrix
of a decomposable Markov chain which is regular on each component and G
is a non-negative matrix such that Mε is regular for ε > 0.

Definition 4. The shadow vector V for the shadow structure (M,G) is the
limit of the unique stationary distribution of Mε, as ε→ 0.

3 The Proof

To calculate and interpret the shadow vector V we will use the tech-
nique of lumping in Markov chains [5]. The techinique lumps the nodes in a
chain by adding incoming probabilities and averaging outgoing probabilities.
Each probability is re-normalized by weights corresponding to the stationary
distribution. In terms of matrices, this is accomplished by

Lump(M) = CMD (2)
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using a collect matrix C that adds the rows and a distribute matrix D that
averages the columns. For a shadow structure (M,G), we are interested in
lumping all the states in the ith component of the decomposable chain M .

Definition 5. Define the collect matrix C of (M,G) as the m× n matrix of
ones and zeros with the ijth entry a one if the jth column of M contains an
entry of the ith block of M and a zero otherwise.

Definition 6. Define the distribute matrix D of (M,G) as the n×m matrix
whose jth column is the normalized eigenvector of M whose support is the
jth block of M .

Notice that the jth column of D is Vj padded with zeros in other blocks.
The following lemma asserts that the linear operators Lump and ( )0 com-
mute. We will need this fact in order to prove Theorem 3. Although C and
D are defined for our specific case, the following lemma is true for any C and
D.

Theorem 1. For any collect and distribute matrices C and D and an n× n
matrix G, (CGD)0 = CG0D.

Proof. Let 1p denote the 1 × p vector of ones. Notice that, for any matrix
Sp×q, 1pS is a row vector whose jth entry is the jth column sum of S.

Now, observe that
1nG = 1nG0. (3)

Also, notice that
1mC = 1n, (4)

since the columns of the m× n collect matrix sum to one.
Since CG0D is a diagonal matrix, then, in order to show that (CGD)0 =

CG0D, it suffices to show that CDG and CG0D have the same column sums.
Thus, it suffices to show that 1mCGD = 1mCG0D. Observe that both CDG
and CG0D are m×m matrices. Then, using (3) and (4),

1mCGD = 1nGD = 1nG0D = 1mCG0D. (5)

Therefore, CDG and CG0D have the same column sums. So, (CGD)0 =
CG0D.

We hope to use this theorem to prove our main result. Next, we formally
define a shadow vector as a stationary eigenvector of the Markov chain with
n states.
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Definition 7. A vector V is a shadow vector for M with respect to G iff
V = limε→0 µε where Mεµε = µε.

We use this formal definition to prove Theorem 2, which functions as the
main result of this section.

3.1 Example

In order to motivate our main result, consider the application of our
method to the two block case. We illustrate a method for finding v which
is the weight on the stationary distribution. We begin by lumping the con-
nected Markov chain [M + εG]. Recall that M ,G are n × n matrices, C is
the collect matrix and D is the distribute matrix. In this example, since
S = S1 ∪ S2, C is a 2× n matrix and D is an n× 2 matrix. Notice,

C[M + εG]D = C

[(
M11 0d1×d2

0d2×d1 M22

)
+ ε

(
G11 G12

G21 G22

)]
D (6)

= C

(
M11 + εG11 εG12

εG21 M22 + εG22

)
D (7)

=

(
CM11D + εCG11D εCG12D

εCG21D CM22D + εCG22D

)
(8)

=

(
1 + εP11 εP12

εP21 1 + εP22

)
(9)

It is important to note that after the above step, we re-normalize the
connected set so that the column sums of the matrix add to one.

This example illustrates that the entries of v are the off-diagonal entries
of P = CGD. Thus, v satisfies the detailed balance condition, which the 2×2

block case always satisfies. Observe that P21v1 = P12v2, for v =

(
v1

v2

)
, and

therefore
v1

v2
=

P12

P21
.

Now we state our main result, Theorem 2.

Theorem 2. Given a nullvector v of C(G − G0)D, let V = Dv, where D
denotes the distribute matrix of M . Then, V is a shadow vector for (M,G).
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This theorem is true, but does not yet have a solid proof.
These results provide a method for finding a shadow vector of a decom-

posable Markov chain M . Now, we consider the case where M = I. Then,
the connected transition probability matrix is Mε = (I + εA)(I + εA)−1

0 ,
where A is any perturbation matrix. The following theorem characterizes
the shadow vector of the lumped Markov chain, for the case where M = I.

Theorem 3. If (A− A0)v = 0, then v is a shadow vector for (I, A).

Proof. Suppose v is a nullvector for (A−A0). Let µε = (I − εA)0v, and note
that v = limε→0 µε. It remains to show that Mεµε = µε. Calculating, we have

Mεµε = (I + εA)(I + εA)−1
0 (I + εA)0v = (I + εA)v. (10)

Moreover, note that

[(I + εA)− (I + εA)0]v = ε(A− A0)v = 0. (11)

Therefore,
(I + εA)v = (I + εA)0v = µε. (12)

Combining (10) and (12) completes the proof.

The following theorem characterizes the relationship between the shadow
vector V for the connected chain and the shadow vector v for the lumped
connected chain.

Theorem 4. If V = Dv is a shadow vector of (M,G), where D is the
distribute matrix of M , then v is a shadow vector of (I, A).

The proof for Theorem 4 is in progress. We hope to use the proof for
Theorem 3 to prove the above statement. However, we can speak about the
elements of the shadow vector v for the lumped Markov chain.

Theorem 5. The components of v can be taken to be the diagonal minors of
(A− A0).

Proof. Define B = A − A0. Recall, from Theorem 4, that if Bv =
→
0, then v

is a shadow vector. In order to show that the components of v can be the
diagonal minors of B, it suffices to show that, if vi denotes the ith diagonal

minor of B, Bv =
→
0. Now, observe that B is a singular matrix, since the

columns of B sum to zero.
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Case 1. Suppose that rank(B) ≤ m − 2. Since B is a singular matrix,
det(B) = 0. Then, using the formula

adj(B)B = Badj(B) = det(B), (13)

we have adj(B) = 0m×m, where

adj(B) = [(−1)(i+j)detB(i|j)]T . (14)

So,
→
0=


β11

β22
...

βmm

 =


v1

v2
...
vm

, where βii is the ith diagonal entry of adj(B),

and Bv =
→
0 .

Case 2. Suppose that rank(B) = m − 1. Since B is singular, det(B) = 0,
adj(B)B = Badj(B) = 0m×m, using (13). Now, let r = rowi(adj(B)) and
c = columnj(adj(B)). Then,

rB = 01×m (15)

and
Bc = 0m×1. (16)

Furthermore, notice that, for a 1×m vector e of ones,

eB = 01×m (17)

because the columns of B sum to zero. Now, using equations (13) and (15),
and the fact that rank(B) = m − 1 iff rank(adj(B)) = 1, r = αe, for some
α ∈ R. Each row is a scalar multiple of the vector e. Thus, the entries in
a row are the same. So, the diagonal entries of B equal the column entries

for any column. Then, B


β11

β22
...

βmm

 = Bc = 0m×1. Therefore, the diagonal

minors can be taken to be the components of v.
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4 Discussion

In section 3, we state that, for the linked Markov chain Mε = (M +
εG)(M + εG)−1

0 , V = Dv is a shadow vector for (M,G). Also, we hope to
prove that if V is a shadow vector for (M,G), then v is a shadow vector for
A when M = I.

When considering these theorems the question arises ‘How does one com-
prehend the role of the vector v?’ According to Theorem 5, v contains the
diagonal minors of (A − A0). This theorem, however, fails to give an inter-
pretation of the role of v. The following two analogies provide a conceptual
understanding of the vector v.

Suppose that two families contain seven people. Three people belong to
Family A and four people belong to Family B. Each family measures the
height of its members and ranks them accordingly. The tallest individual
receives the largest rank and the shortest person receives the smallest rank.
However, Family A measures height with a meter stick and Family B mea-
sures with a yard stick. So, Family A ranks its members after finding heights
in centimeters while Family B ranks its members after finding heights in
inches. Now, suppose that we desire to rank all seven people, using only the
set of heights of each family. Before we assign rankings, we must correctly
scale the units of one set of measurements to match the units of the other
set. Then, we can compare the numbers and rank accordingly.

This example illustrates the functioning of the vector v, which scales the
measurements in order to compare ranks across non-homologous sets. We
obtain the importance rankings for the proteins in a certain set by finding
the stationary distribution for the Markov chain within that set. The en-
tries in this distribution correspond with the measurements from one family.
However, in order to find the importance rankings for nodes in one set rela-
tive to nodes in the m− 1 other sets, we re-scale the rankings of the m− 1
other sets. In terms of the preceding example, we require that the units of
measurement agree for both families. Then, v is a vector that scales the
rankings from the m different sets. Thus, V is a linear combination of the
stationary distribution of the decomposable Markov chain, and v functions
as the weights that enable the ranking of all proteins; these scaling factors
are the diagonal minors of (A− A0).

As a second example of the function of v, suppose that fifty people walk
between three department stores. They also have the ability to walk between
the various sections, for instance men’s clothing and women’s clothing, within
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a store. At each step of time, the people can transition to another section
within a department store or to another department store. Lets suppose for
this example the people shop for 24 hours. The people move from one store to
another store and from one section of the department store to another section
with certain probabilities. This random walk between the three stores, (or
states) forms a Markov chain. Also, the random walks between the sections
in each store form Markov chains.

In this context, the shadow vector ranks the importance of a section in
a store relative to all sections of the stores. The vector v is a stationary
distribution for the three stores. The elements of v are probability weights
that maintain an equilibrium amount of flow in and out of each store. A
weight on a store is the fraction of the day that each person spends in that
store.

This example illustrates the function of v in our application of Markov
processes to protein mutation. A protein set corresponds with a store and
proteins correspond with sections. Mutation from one protein to another
protein, within a non-homologous family, functions as a Markov chain. Also,
mutation from one set to another set is a Markov chain.

Thus, using these two examples, we interpret the function of v as a scaling
factor that enables the ranking of the different families of proteins. This
scaling factor, or weight, contains the diagonal minors of (A− A0).

5 Conclusion

This paper presents a method for ranking the n nodes of M , a decom-
posable Markov chain, with m disjoint Markov chains as blocks along the
diagonal of M . We implement a shadow structure in order to link the dis-
joint Markov chains. The effect of the shadow structure is to merge the
disjoint Markov processes. Then, we can find the shadow vector, the unique
stationary distribution, of the connected probability transition matrix, Mε.
We then use the technique of lumping; we lump the states in the ith compo-
nent of Mε. Our main result, Theorem 2, states that V = Dv is the shadow
vector for Mε, where D is the distribute matrix of M . We hope to prove that
if V = Dv is the shadow vector for (M,G), then v is the shadow vector for (I,
A), the case where M=I. This theorem states that if V is the shadow vector
for the connected chain, before lumping, then v is the shadow vector for the
connected chain, after lumping. Furthermore, we prove in Theorem 5 that
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the vector v contains the diagonal minors of (A−A0), for A the perturbation
matrix of the lumped chain. We interpret v in two ways. This vector serves
as a scaling factor that enables the ranking of the elements of the disjoint
chains. Also, v contains the weights that equalize the flow among the lumped
components.
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