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a b s t r a c t

We investigate the strategies used by 64 advanced secondary mathematics students to identify whether
a given pair of polynomial representations (graphs, tables, or equations) corresponded to the same
function on an assessment of coordinating representations. Participants also completed assessments of
domain-related knowledge and background skills. Cluster analysis of strategies by representation pair
revealed patterns in the participants' strategy use. Two clusters were identifiable on tasks that required
matching equations to graphs and graphs to tables. We identified overlap between these two clusters,
suggesting that while the representation pair influenced strategy choice, there was also a general
distinction between students who used more and less sophisticated strategies. However, students who
used more sophisticated coordination strategies were similar to the others on measures of domain-
specific knowledge or background skills. We consider implications for future investigations testing in-
terventions to promote coordinating representations.

© 2017 Elsevier Ltd. All rights reserved.
Problems in advanced secondary mathematics often require
students to coordinate multiple external representations of func-
tional relationships (Chang, Cromley, & Tran, 2016; Ferrara, Pratt,&
Robutti, 2006; Janvier, Girardon, & Morand, 1993; Leinhardt,
Zaslavsky, & Stein, 1990; Moschkovich, Schoenfeld, & Arcavi,
1993). Teaching with multiple external representations can foster
student understanding of important mathematical concepts and
relationships (Brenner et al., 1997), and school mathematics policy
documents recommend teaching with multiple representations
(Department for Education, 2013; National Governors Association
Center for Best Practices & Council of Chief State School Officers,
2010). The recommended focus on multiple representations
builds upon decades of research by educational psychologists
(Ainsworth, 2006; Mayer & Moreno, 2002; Rau, 2016) and math-
ematics educators (Acevedo Nistal, Dooren, Clarebout, Elen, &
Verschaffel, 2009; Brenner et al., 1997; Hiebert & Carpenter, 1992;
Leinhardt et al., 1990; Parnafes & Disessa, 2004; Yerushalmy, 1991)
showing the benefit of multi-representational approaches.
r).
Accordingly, numerous teachers (e.g., Eichler & Erens, 2014) and
curriculum authors (Chang et al., 2016) target skills such as con-
structing, coordinating, and reasoning with multiple representa-
tions as goals for instruction.

In order to design effective interventions to promote students'
skills in coordinating multiple representations (CMR), researchers
must identify related knowledge bases (Rau, 2016) and must also
identify effective coordination strategies (Ainsworth, 2006). This
study uses cluster analysis (Milligan & Hirtle, 2003) to identify
profiles of CMR strategy use, and it extends prior research which
has shown that students must have some domain-specific knowl-
edge to coordinate representations in technical disciplines (Rau,
2016). We focused this initial work on representations of func-
tions common in secondary mathematics: linear, quadratic, and
cubic polynomials.

CMR strategies are actions used to identify whether two rep-
resentations correspond to the same underlying function. For
example, Fig. 1 shows a sample CMR task with an equation and
graph. One CMR strategy is matching points on the graph with
coordinates generated from the equation. Alternatively, a student
might identify that the shape of the graph does not match the
degree of the equation. Identifying and coding strategies is one way
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Fig. 1. Sample equation-graph item.
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to begin understanding CMR skills. Analysis of strategy profiles
helps identify patterns in strategy use. In what follows we present
the results of a cluster analysis of the strategies used by 64
advanced secondary mathematics students to coordinate pairs of
polynomial representations presented as items similar to Fig. 1. The
results of this analysis suggest directions for future interventions
designed to develop coordination skills.

1. Conceptual framework and prior research

Ainsworth's (2006) framework on multiple representations
undergirds our focus on CMR, and Siegler's work on strategy se-
lection (Siegler, 2005) motivated our decision to examine how
students use strategies while solving the CMR tasks.

1.1. CMR and coordination strategies

Ainsworth's (2006) DeFT (Designs, Functions, Tasks) framework
integrates research on teaching and learning withmultiple external
representations. Ainsworth, citing Yerushalmy (1991), described
how teaching students to coordinate representations of functions
in school mathematics is non-trivial. Rau's (2016) review suggests
that efforts to teach CMR should account for both knowledge of
individual students and socio-cultural characteristics of represen-
tation usage. Acevedo Nistal et al. (2009) argue that problem
solving strategies and representational flexibility are connected to
both the characteristics of the representations in use and the
characteristics of the students interacting with the representations.
This study builds on these frameworks through focusing on CMR
task demands and knowledge. Less work in the area of CMR has
explored how students deploy strategies to coordinate represen-
tations, and how these strategies are connected to characteristics of
the representations that are considered. In order to explore profiles
of strategy use in relation to the characteristics of representations
we drew on Siegler's work on strategy selection.

Siegler's overlapping waves theory (2005) describes how, in
general, learners use more sophisticated strategies across devel-
opment. However, learners who can use a more sophisticated
strategy may use a less sophisticated strategy on some problems,
meaning strategy choice is not determined by level of development.
For example, on the problem 3 þ 8, a child who has used the more
sophisticated strategy of counting on from the larger summand
may continue counting on from the smaller summand in some
subsequent trials. Siegler notes that students choose strategies that
“fit the demands of problems and circumstances and that yield
desirable combinations of speed and accuracy, given the strategies
and available knowledge that children possess” (Siegler, 2005, p.
771). Recent research has used Siegler's approach to analyze
problem solving strategy choice among elementary and secondary
mathematics students (Booth, Lange, Koedinger, & Newton, 2013;
Jurdak & El Mouhayar, 2014), and we extend that work here in
the area of CMR.

In contrast with Siegler's approach which studied the develop-
ment of strategies to solve one type of problem, we use cluster
analysis to explore profiles of strategy use for solving different types
of problems. This exploratory work requires approaches like cluster
analysis rather than variable-centered approaches like regression.
This analytical technique, which is relatively rare in studies of
strategy analysis, is described in more detail in the Methods
section.
1.2. CMR strategies and views of function

Three of the most common function representations in school
mathematics are graphs, tables, and equations. A review of litera-
ture on CMR skills identified that many secondary mathematics
students struggle to coordinate representations with graphs
(Chang et al., 2016; De Bock, van Dooren, & Verschaffel, 2015). As
students learn to use and interpret graphs, one important devel-
opment is transitioning from making point-by-point comparisons
to more holistic comparisons of functions and graphs (Friel, Curcio,
& Bright, 2001; Leinhardt et al., 1990; Yerushalmy, 1991). Making
point-wise connections reflects a “process” view of a function,
while global comparisons treat functions as “objects”
(Moschkovich et al., 1993). Given nearly any representation pair, it
is possible to identify whether two representations are the same
function by matching ordered pairs (using a process view), but
other strategies may yield accurate answers in less time. For
example, as in Fig. 1 above, a student may answer more accurately
and quickly by evaluating the global features of the function. Global
features include the slope (for linear functions), direction, or degree
(using an object view). Friel et al. (2001) suggest that comparing
equations and graphs using a point-by-point method is a less so-
phisticated strategy than using global properties. However, this
distinction may not necessarily apply to the coordination of tables
and equations, where point-by-point comparisons are the only
feasible option. In cases where point-by-point matching is the only
option, however, point-wise CMR strategies may still vary by
expertise. This highlights the importance of considering the rep-
resentation pair in analyses of CMR strategy choice.

CMR strategies influence both problem solving speed and ac-
curacy. That there is a tradeoff of speed and accuracy in problem
solving is well documented (Wickelgren, 1977). Increasing speed
generally decreases accuracy, while focusing on increased problem
solving accuracy can slow performance. However, the speed-
accuracy relationship is moderated by the strategy used to solve a
problem. Some strategies allow problem solvers to increase accu-
racy while simultaneously maintaining or increasing increased
speed. In this study, global comparisons of a function's shape or
direction allow for relatively fast and accurate CMR. In contrast,
point-by-point comparisons can be accurate, but time consuming,
particularly when many values are calculated.
1.3. Summary

Prior research indicates that CMR strategy choice is related to
both the level of student development in the domain and student
characteristics such as background knowledge and skills. In the
case of CMR, this study builds on prior work that has investigated
connections between students' background skills, their domain-
specific knowledge and their success coordinating multiple repre-
sentations (Ainsworth, 2006; Cromley et al., 2017; Rau, 2016). We
address the following research questions:



1 Advanced Placement® is a trademark registered and/or owned by the College
Board, which was not involved in the production of, and does not endorse, this
research.

2 In this paper, eye-tracking data are not analyzed.
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1. What strategies do secondary students use to solve polynomial
CMR tasks?

2. How are students' strategy profiles different by representation
pairs in CMR tasks?

3. Is it possible to identify distinct groups of students based on the
proportion of strategies used? If yes, then
a. Do the groups fall along a continuum from less sophisticated

to more sophisticated strategies for CMR?
b. Is one group more successful than the other on background

characteristics and related measures of mathematical
proficiency?

2. Methods

2.1. Participants

Participants were 64 advanced secondarymathematics students
enrolled in calculus and pre-calculus attending suburban high
schools in the Mid-Atlantic US. The mean age of the participants
was 16.9 (SD ¼ 0.8) at the time of participation. The sample con-
sisted of 60% female and 79% white students. As a proxy for socio-
economic status, we measured maximum parental education; 80%
of families had at least one parent with a Bachelor's degree or
above.

2.2. Measures

Participants completed multiple measures, including a de-
mographic questionnaire, a series of paper-and-pencil measures on
spatial skills, a researcher-designed test of calculus conceptual
knowledge, measures of graph and table skills and calculus profi-
ciency, and, finally, a CMRmeasure inwhich participants verbalized
their thoughts while attempting to coordinate two polynomial
representations. Detailed descriptions follow.

2.2.1. Spatial skills measures
Participants were presented with measures of spatial skills

because these malleable skills may be related to CMR success
(Cromley et al., 2017; H€offler, 2010; Uttal et al., 2013; Wai, Lubinski,
Benbow, & Steiger, 2010). Three spatial skills measures, a Mental
Rotations Test (MRT), a Paper Folding Test (PFT), and a Hidden
Figures Test (HFT) were administered to participants. We used the
MRT-A in a CAD-redrawn version of Vandenberg and Kuse (1978)
from Peters et al. (1995). Participants were instructed to find the
two rotated versions of a “target” 3-D figure from four figures.
Following the guidelines for administering the MRT-A, participants
were given three minutes to complete all 12 items. The MRT-A has
been associated with diagram comprehension in prior research
with 157 undergraduates (Voyer & Hou, 2006), and shows good
reliability (Cronbach's a ¼ 0.910). We found evidence for good in-
ternal consistency with our sample (Cronbach's a ¼ 0.831).

We provided three minutes for the participants to complete the
first 10 items of the PFT (Ekstrom, Frech, Harman, & Derman, 1976),
a measure of spatial visualization from Educational Testing Ser-
vices. In each item participants were shown five diagrams of a sheet
of paper with one to three folds, and another diagram of a square
sheet with a hole punched in it. Participants were asked to identify
which one of the five unfolded sheets would match the diagram of
the hole-punched folded sheet. Ekstrom, French, and Harman
(1979) found that the PFT had good reliability with high-school
aged samples (Cronbach's a ¼ 0.84 with N > 2500). We also
found evidence for good internal consistency in the present study
(Cronbach's a ¼ 0.700).

We provided three minutes for the participants to complete the
first 16 items of the HFT (Ekstrom et al., 1976), another measure of
spatial visualization by the Educational Testing Service. For each
item, participants were asked to identify a simple two-dimensional
figure embedded within a complex geometrical figure. The HFT has
been found to have good reliability with 40 college-aged students
(Cronbach's a ¼ 0.88; Stankov, 1988). We did not find acceptable
internal consistency with our sample (Cronbach's a ¼ 0.325), and
therefore excluded the HFT scores from further analyses.

2.2.2. Calculus conceptual knowledge measure (CCM)
We constructed a 32-item measure assessing students' con-

ceptual understanding of calculus, including derivatives, functions
and limits, and the chain rule. Many of these items were adapted
from released Advanced Placement® Calculus AB exams.1 Each of
thesemultiple-choice items emphasized understanding conceptual
relationships rather than calculations. We found evidence for
excellent internal consistency reliability with our sample (Cron-
bach's a ¼ 0.937).

2.2.3. Graph/table skills measure (GTS)
We constructed a measure comprised of six released graph

items and five released table items from National Assessment of
Educational Progress (Grade 12), National Assessment of Adult
Literacy, and Adult Literacy and Lifeskills survey (National Center
for Education Statistics, 2017). The selected multiple-choice items
were from the “Easy” groups. Participants were given sixminutes to
complete the measure. We did not find evidence for acceptable
internal consistency with our sample (Cronbach's a ¼ 0.347), and
therefore excluded the Graph/Table Skill measure from further
analyses.

2.2.4. Pre-calculus conceptual measure (PCA)
To measure students' conceptual understanding of multiple

representations of functions, we used the eight-item “Understand
function representations” subscale of the Pre-Calculus Concept
Assessment (Carlson, Oehrtman, & Engelke, 2010) purchased from
Rational Reasoning, Inc. The paper-and-pencil measure has been
well validated with students in middle school through college;
prior research provided extensive evidence supporting validity and
reliability (Cronbach's a¼ 0.730).We found evidence for acceptable
internal consistency in the present study (Cronbach's a ¼ 0.692).

2.2.5. Calculus proficiency measures
Tomeasure calculus proficiency, we compiled ameasurewith 11

released Advanced Placement® Calculus AB exam multiple-choice
questions. In contrast with the conceptual measure, this assess-
ment included a mixture of calculations and manipulations. Par-
ticipants were given 15 min to complete the measure. We found
evidence for good internal consistency with our sample (Cron-
bach's a ¼ 0.716).

2.2.6. CMR measure and concurrent think-aloud protocol
To assess students' coordinating multiple representation skills

and investigate what strategies students used for CMR tasks, we
administered 12 coordinating multiple representations (CMR)
items on a Tobii T60 eye-tracking apparatus.2 We obtained data on
time used to complete the CMR items from the eye-tracker device.
Participants concurrently followed a think-aloud protocol (Ericsson
& Simon, 1998) while completing the CMR measure. Participants
were asked to read a pair of representations (e.g., a graph and an
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equation) shown on the screen of the eye-tracker and to determine
whether or not each pair of representations expressed the same
underlying function. Fig. 1 shows one of the items used in the
assessment. As presented in Table 1, four questions presented
equation-graph pairs, four questions presented equation-table
pairs, and the remaining four questions were graph-table pairs.
We do not distinguish the order of presentation because both
representations were visible simultaneously. Six CMR items
matched, and six did not. Thematched andmismatched items were
counter-balanced within representation pair types. We found
acceptable internal consistency reliability for this 12-item scale
with our sample (Cronbach's a ¼ 0.650).

2.3. Procedure

We obtained parent consent and student assent, then admin-
istered the study measures to participants individually in a session
for approximately 70 min at school during non-class time (e.g.,
extracurricular activity sessions). Students received gift cards in the
amount of $10 as compensation for their participation in the study.
After completing all paper-and-pencil measures, the participants
completed the CMR measure while following a think-aloud proto-
col. While participants read the prompts, the equations, and the
reminders, we reminded the participants to read out loud. Most
importantly, as the participants solved the problems they were
reminded to verbalize their thoughts.

2.4. Data and coding

2.4.1. Transcription and coding of think-alouds
The think-aloud protocols were transcribed verbatim. The

transcripts were coded for strategy use and verbalized arithmetic.
The codes were applied to each utterance, roughly corresponding to
a phrase containing a subject and a verb such as “the negative x
squared matches the parabola.” Each utterance received one and
only one code. One coder coded all utterances (N ¼ 2344 coded
utterances), and a second coder re-coded the transcripts of 35% of
participants. The second coder was trained on the 65% of the
transcripts that were not double-coded until 100% agreement was
reached. For the double-recoded transcripts (N ¼ 1166 coded ut-
terances), the two coders agreed on 995 utterances (85.3%),
yielding a Cohen's k ¼ 0.827.

2.4.2. Coding for strategy use
Research question 1 is what strategies do secondary students

use to solve polynomial CMR tasks? We answered this question
Table 1
Summary of items on CMR assessment.

Item Representation paira Polynomial degreeb Dir

1 E-G 2,3 N
2 G-E 1,1 Y
3 T-G 3,3 Y
4 E-T 3,3 Y
5 G-T 1,1 Y
6 T-E 2,2 Y
7 E-G 3,3 Y
8 E-T 2,2 Y
9 T-E 3,3 Y
10 G-E 2,2 N
11 G-T 1,1 Y
12 T-G 3,3 Y

a The pair of representations shows both the representation type (E¼ Equation, G¼ Gr
E-G and G-E as the same pair of representations.

b The degree of the polynomials shows the degree from left to right. For example, Quest
corresponded with a degree-3 function.
through coding the think aloud protocols. The codes for strategy
use were developed using a combination of a priori and emergent
codes. A priori codes focused on the two major strategies available:
local point-by-point comparisons and global evaluations (Friel
et al., 2001; Moschkovich et al., 1993). These initial codes were
refined in order to capture the various strategies used. Ultimately,
we coded seven main strategies used by students while solving the
CMR questions.

Matching ordered pairs (MOP), was coded when a participant
coordinated an ordered pair across the two representations (i.e.,
“point testing”). For a graph-table problem, a participant who
matched ordered pairs would verbally compare each ordered pair
in the table with its equivalent point on the graph. For an equation-
graph or table-graph pair, MOP was coded when the participant
verbalized the y-value for a given x-value and located the corre-
sponding ordered pair on the graph. Many times when students
used theMOP strategy, they verbalized arithmetic calculations such
as “negative 2 times 1 squared plus 25 is 27.” Such verbalized
arithmetic was coded separately (see below).

Matching intercepts is a common strategy secondary students
use to solve function coordination problems (e.g., Moschkovich,
1999). Therefore, we created distinct codes for instances of
matching intercepts. WhenMOP strategies involved the x-intercept
or y-interceptwithout the participant mentioning the word intercept,
these utterances were coded as MOPX and MOPY, respectively.
When students explicitly named the x-intercept or y-intercept
when matching ordered pairs, these utterances were coded as
MINTX or MINTY. In the case of MOPX or MOPY it was not clear
whether the student was attending the intercept, or if the intercept
happened to be next in the sequence of points the student was
matching. In contrast, MINTX and MINTY indicate the student
explicitly attended to the intercept. Instances of MOP,MOPX,MOPY,
MINTX, andMINTYweremutually exclusive, and these five strategy
codes were considered as individual variables in further analyses.

The sixth strategy code describes a participant evaluating
(EVAL) global properties of the function like the order (degree), the
direction, the magnitude of the leading coefficients, or the magni-
tude of the constants. Table 2 shows examples of various utterances
coded as EVAL. Initially we coded EVAL subcodes for specific
evaluation strategies (e.g. comparing the degree of an equation to
the shape of a graph). However, not all representation pairs allowed
for all sub-codes of EVAL, so for the purpose of this analysis we
combined all EVAL codes because they all indicate attending to
global properties of the graph.

Finally, the last set of codes involves participants checking their
work (CHECK), which were mainly verbalizations of verifying a
ection match? Y-intercept match? Did functions match?

Y N
Y Y
Y Y
Y N
Y N
Y Y
Y Y
Y Y
Y N
Y N
Y Y
Y N

aph, T ¼ Table) as well as the left-right order of presentation. In the analysis we treat

ion 1 showed an Equation and Graphwhere the equationwas degree-2 and the graph



Table 2
Definitions of and examples of coded utterances from think-aloud data.

Code Definition Example

MOP Matching ordered pairs, not including those that are intercepts “Let's see, it's 2, put it on the graph, equals negative 20.”
MOPX/MOPY Matching an ordered pair that is the x-intercept (MOPX), or y-

intercept (MOPY) but without the student mentioning the word
intercept

“Ah … Looking at the graph, looks like when x equals 3, y equals 0. So when I
plug 3 into the equation. 3 times 2 equals 6.6 plus 6 is 12.”
“So when x is equal to zero the function for y should be negative 20, which it is.”

MINTX/MINTY Matching x-intercept (MINTX) or y-intercept (MINTY). When
students explicitly refer to the intercept

“We set the function equal to zero, that is 2x equals 6 so x equals 3 and that is in
fact the x-intercept.”
“It says plus 20 when it looks to be around 25 for the y-intercept.”

EVAL Evaluating direction/order/magnitude “Values are increasing at a rate of 2 in the table and it seems to be in the graph.”
“Tome that doesn't look like an x squared function that looks to be like x cubed.”
“It looks like the slope should be steeper.”

CHECK Re-evaluating a statement or decision previously made or verbalizes
the need for more information

“I'm going to look at x is negative 3 and find that on my graph and see where ah,
yea it looks like that's about the right y value for the negative 3, ah maybe
slightly off, it looks like it's probably more like 5.”

4 We used a hierarchical cluster analysis procedure based on squared Euclidean
distances with the Ward's method on standardized scores (Milligan, 1996) of
within-person proportion of strategy use (i.e., Z scores of occurrences of a particular
strategy within a question type per student/occurrences of all strategies within a
question type). We chose the hierarchical clustering method due to the exploratory
nature of our study, where we did not have a hypothesis to support specifying a
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calculation or verbalizations of “let me check more” points.

2.4.3. Coding for arithmetic
Participants frequently verbalized calculations. As an additional

measure of mathematical proficiency, we coded students' utter-
ances of correct arithmetic calculations as Arithmetic-Correct
(ARIC). Incorrect arithmetic calculations were coded with
Arithmetic-Incorrect (ARII).3 We examined the percentage of cor-
rect arithmetic calculations over all arithmetic calculations articu-
lated by participants within each CMR question type (e.g., % of
correct arithmetic calculations ¼ ARIC/[ARIC þ ARII] for equation-
table questions).

2.4.4. Time used for CMR items
Finally, we used time stamped data to calculate the mean time

from presentation of a problem until the student stated an answer
to each CMR item.

2.5. Data analysis

Table 3 shows the descriptive statistics of the coded think aloud
data including time used, frequency of verbalizations of strategy
use, and accuracy answering each type of CMR question separately
across question typesdequation-graph, equation-table, and graph-
table. Table 3 also contains descriptive statistics for the paper and
pencil measures. One notable observation in Table 3 is that students
used approximately the same number of strategies for the
equation-graph and equation-table items, while they used more
strategies per graph-table item. We examined the partial correla-
tions between the frequency of verbalizations of strategy use and
accuracy, controlling for time used, to understand whether the
frequency of verbalizations of strategy use had an association with
accuracy of answers for equation-graph, equation-table, and graph-
table questions (Table 4).

We also explored correlations among the percent of strategies
used. Two strategies, MOP and EVAL had a negative correlation (r
[65]¼ -0.30, p¼ 0.030). One plausible explanation for this negative
correlation is that students who useMOP are less likely to use EVAL,
and vice versa. It is possible that MOP and EVAL are different
strategies at different ends of a continuum of strategy sophisticat-
ion, similar to the example of addition strategies from Siegler's
research on strategy development. Alternatively, it is possible that
students use these strategies differently depending on the problem
characteristics (as Ainsworth suggests). To test whether strategies
3 Note that arithmetic calculations are not a strategy, but are part of the other
strategies coded above (i.e., MOP, MOPX, MOPY, MINTX, MINTY, EVAL, and CHECK).
were different by representation pair, we used cluster analysis, a
technique that allowed us to explore the relationship between
strategy use and problem type or task demands.

Research question 2 asks, how are students' strategy profiles
different by representation pairs in CMR tasks? To identify profiles
of strategies students used to solve each CMR question type, we
employed a cluster analysis (Milligan & Hirtle, 2003) on the fre-
quency of verbalizations of strategies by each representation pair in
the CMR measure. Cluster analysis is a person-centered approach
that uncovers homogeneous groups underlying a set of data
(DiStefano & Kamphaus, 2006), and it serves our purpose of iden-
tifying a number of strategy-use profiles (i.e., clusters). Within each
cluster, participants are similar with regard to their strategy use.
Between clusters, participants are distinct with regard to their
strategy use from those in the other clusters.4

Research question 3 follows up on research question 2. It asks, if
identifiable clusters by strategy are found, then do the groups fall
along a continuum from less sophisticated to more sophisticated
strategies for CMR? Also, is one group more successful than the
other on background characteristics and related measures of
mathematical proficiency? To answer both parts of research ques-
tion 3 we evaluated the obtained cluster solutions by comparing
the subgroups with respect to various outcomes, including accu-
racy in answering each type of CMR item, time used to complete
each type of CMR item, other mathematics-related outcomes (i.e.,
arithmetic calculations during the CMR and scores on the paper-
and-pencil measures), and scores on assessments of background
knowledge and skills. We then interpreted the cluster analysis
findings in light of the correlational results.
3. Results

3.1. Descriptive statistics

As shown in Table 3, on average students scored 84% correct on
the full scale of CMR (SD ¼ 0.17; number of items, k ¼ 12). Mean
accuracy (i.e., percentage correct) on equation-graph and graph-
particular number of clusters which is required by a flat clustering approach (e.g., k-
means). We determined the number of clusters using the dendrogram to observe
the decreases in agglomeration coefficients, we also considered the cluster size, and
validated our hierarchical clustering solutions with a k-means approach (Halkidi,
Batistakis, & Vazirgiannis, 2001).



Table 3
Descriptive statistics of CMR measure accuracy, time used, number of strategies used, and sum scores of paper measures.

CMR accuracy (% Correct) CMR time spent CMR strategies used Paper-and-pencil measure sum scores

Total EG ET GT Total EG ET GT Total EG ET GT MRT PFT PCA CCM APC

M 0.84 0.86 0.81 0.85 450.9 141.0 172.1 137.9 34.3 9.1 8.4 16.9 4.7 7.0 3.8 15.8 3.1
SD 0.17 0.20 0.24 0.22 189.4 61.8 78.9 61.7 11.2 2.9 4.7 8.5 2.9 2.0 2.1 6.1 2.7
Min. 0.25 0.25 0.00 0.25 172.8 53.6 54.6 51.6 6.0 0.0 0.0 1.0 0.0 2.0 0.0 0.0 0.0
Max. 1.00 1.00 1.00 1.00 1110.3 348.7 464.8 354.9 63.0 15.0 23.0 48.0 12.0 10.0 8.0 23.8 10.0
Skew. �1.50 �1.52 �1.52 �1.30 1.0 0.9 1.2 1.1 0.1 �0.9 0.9 1.2 0.6 �0.3 0.0 �0.7 0.6
Kurt. 2.06 1.92 2.48 0.60 2.0 0.7 2.5 1.6 �0.1 1.9 1.4 2.4 �0.2 �0.4 �1.0 �0.5 �0.3

Note. N ¼ 67. *p < 0.05. **p < 0.01. CMR ¼ Eye-Tracking Coordinating Multiple Representations items. EG ¼ Equation-Graph items. ET ¼ Equation-Table items. GT ¼ Graph-
Table items. MRT ¼ Mental Rotation Test sum scores. PFT ¼ Paper Folding Test sum scores. PCA ¼ Precalculus Placement Assessment items sum scores. CCM ¼ Calculus
Conceptual Measure sum scores. APC ¼ Advanced Placement® Calculus items sum scores.

Table 4
Bivariate correlations among CMR measure accuracy, time used, number of strategies used, and sum scores of paper measures.

CMR accuracy (% Correct) CMR time spent CMR strategies used Paper-and-pencil measure sum scores

Total
1

EG
2

ET
3

GT
4

Total
5

EG
6

ET
7

GT
8

Total
9

EG
10

ET
11

GT
12

MRT
13

PFT
14

PCA
17

CCM
18

APC
19

1 e

2 0.667** e

3 0.868** 0.465** e

4 0.744** 0.248* 0.511** e

5 0.264* �0.025 0.254* 0.334** e

6 0.222 �0.086 0.263* 0.219 0.800** e

7 0.258* 0.005 0.242* 0.329** 0.953** 0.638** e

8 0.216 �0.021 0.174 0.322** 0.900** 0.637** 0.794** e

9 0.448** 0.296* 0.382** 0.401** 0.650** 0.398** 0.662** 0.614** e

10 0.185 0.032 0.235 0.068 0.097 0.240 0.018 0.084 0.208 e

11 0.396** 0.223 0.415** 0.328** 0.557** 0.236 0.632** 0.495** 0.747** 0.278* e

12 0.313** 0.258* 0.198 0.328** 0.523** 0.316** 0.523** 0.513** 0.844** �0.216 0.346** e

13 0.169 0.145 0.180 0.139 0.171 0.049 0.198 0.166 0.233 0.034 0.300* 0.170 e

14 0.270* 0.313* 0.315* 0.033 �0.009 �0.008 0.009 �0.042 0.091 �0.089 0.225 0.033 0.272* e

17 0.498** 0.363** 0.441** 0.401** 0.121 0.049 0.170 0.046 0.262* 0.116 0.338** 0.164 0.352** 0.262* e

18 0.271* 0.239 0.239 0.190 0.185 0.008 0.246 0.155 0.286* �0.039 0.451** 0.184 0.303* 0.240 0.518** e

19 0.360** 0.293* 0.389** 0.152 0.100 �0.090 0.162 0.112 0.312* �0.059 0.432** 0.244 0.352** 0.197 0.457** 0.628** e

Note. N ¼ 67. *p < 0.05. **p < 0.01. CMR ¼ Eye-Tracking Coordinating Multiple Representations items. EG ¼ Equation-Graph items. ET ¼ Equation-Table items. GT ¼ Graph-
Table items. MRT ¼ Mental Rotation Test sum scores. PFT ¼ Paper Folding Test sum scores. PCA ¼ Precalculus Placement Assessment items sum scores. CCM ¼ Calculus
Conceptual Measure sum scores. APC ¼ Advanced Placement® Calculus items sum scores.
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table questions was similar, but students scored slightly lower on
equation-table questions (M ¼ 0.81, SD ¼ 0.24; k ¼ 4 for each
question type). Students used on average 450 s (SD ¼ 190) to
complete all 12 items, using relatively more time on equation-table
items (M ¼ 172, SD ¼ 79) compared to equation-graph and graph-
table items. Students applied more strategies (utterances of all
strategies used) to solve graph-table problems (M ¼ 18, SD ¼ 7)
than to solve the equation-graph and equation-table problems.

Students' mean scores on the paper-and-pencil measures are
presented in Table 3. We did not find violation of normality for any
variables of CMR accuracy, time, counts of strategies, or sum scores
of paper-and-pencil measures (see Table 3 for descriptive statistics
including kurtosis and skewness).
3.2. Bivariate and partial correlations

3.2.1. Full CMR
Table 4 shows bivariate correlations among accuracy, time, and

verbalizations of strategy use for the full CMR scale by the 3
question types. For all 12 items on the CMR measure, accuracy is
positively associated with the frequency of verbalizations of strat-
egy use (r[65] ¼ 0.443, p < 0.001). We also found a significant but
small positive correlation between accuracy and total time used (r
[65]¼ 0.264, p¼ 0.031). Importantly, even after accounting for time
used, there is still a significant positive correlation between accu-
racy and verbalizations of strategy use (ras.t[64] ¼ 0.377, p ¼ 0.002).
These results indicate that while applying more strategies requires
more time, using more strategies is associated with better overall
performance on the 12 items.

3.2.2. Equation-graph items
For equation-graph items we did not find any significant cor-

relations among accuracy, time, and verbalizations of strategy use.
The partial correlation between accuracy and verbalizations of
strategy use, controlling for time used, is also non-significant
(ras.t[64] ¼ 0.054, p ¼ 0.666).

3.2.3. Equation-table items
For equation-table questions, we found significant positive

correlations between accuracy and time used, and between accu-
racy and verbalizations of strategy use (r[65]¼ 0.415, p < 0.001 and
r[65]¼ 0.242, p¼ 0.048, respectively), but no significant correlation
between time used and verbalizations of strategy use. Importantly,
after controlling for time used, there is still a significant positive
correlation between accuracy on equation-table questions and
verbalizations of strategy use (ras.t[64] ¼ 0.349, p ¼ 0.004). These
results indicate using more strategies is associated with better
performance on the equation-table questions even after controlling
for time used.

3.2.4. Graph-table items
For graph-table questions, we found significant positive
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correlations between accuracy and time, and between accuracy and
verbalizations of strategy use (r[65] ¼ 0.322, p ¼ 0.008 and r
[65] ¼ 0.328, p ¼ 0.007, respectively). However, no significant
correlation was found between accuracy and verbalizations of
strategy use after controlling for time used (ras.t[64] ¼ 0.200,
p ¼ 0.108).

To briefly summarize findings from the correlation analyses,
higher accuracy in answering equation table questions is associated
with verbalizations of strategy use, but accuracy is not related to
either verbalizations of strategy use or time used for equation-
graph and graph-table questions. The lack of expected correla-
tions between accuracy and verbalizations of strategy use or time
used for equation-graph and graph-table questions as well as the
negative correlation between the proportion of EVAL and MOP
prompted us to investigate question 2, whether students were
using different profiles of strategies on these items.

3.3. Cluster analysis

To further understand which of the seven coded strategies (i.e.,
MOP, MOPX, MOPY, MINTX, MINTY, EVAL, CHECK) may be associ-
ated with different performance on equation-graph, equation-ta-
ble, and graph-table items, we used hierarchical cluster analysis to
identify the strategies applied by the participants to solve each of
the three types of questions.

3.3.1. Cluster analysis on strategies for equation-graph items
For the equation-graph questions on the CMR assessment,

cluster analysis results indicated two distinct clusters of students
who differed in use of specific strategies: cluster-1 students
(n ¼ 49) applied evaluation of direction, order or magnitude in
about 60% of strategies coded (EVAL) and 25% of cluster-1 strategies
were matching the y-intercept while explicitly referring to it
(MINTY). Independent-samples t tests of accuracy, time used, and
arithmetic calculations for answering equation-graph items, and
scores on the paper-and-pencil measures were conducted to
explore these profiles of strategy use. The members of cluster-1
used EVAL significantly more (t[63] ¼ 8.697, p < 0.001, d ¼ 2.362)
compared to cluster 2 (note we report effect sizes, d. as well as p-
values for each significant comparison). Cluster-2 students (n ¼ 16)
used all seven strategies, with significantly more MOPX (i.e.,
matching the x-intercept without explicitly referring to it) than
Fig. 2. Strategy profiles for the four equation-graph que
cluster 1 (t[15.9] ¼ �5.029, p < 0.001, d ¼ �1.726; see Fig. 2 for
strategy use profiles). We found about 9 total verbalizations of
strategy use per equation-graph question by students in each
cluster while solving equation-graph problems; there was no sig-
nificant difference between the two clusters of students in terms of
the number of verbalizations of strategy use (see Table 5; t
[63] ¼ 0.049, p ¼ 0.961). These patterns of strategy use for
equation-graph problems led us to label the two clusters EVAL-ers
and DO-ALL-ers.

Comparing the two equation-graph clusters on various outcome
measures, we found the members of the two clusters did not differ
significantly in accuracy answering the equation-graph CMR
questions (t[63] ¼ -0.417, p ¼ 0.678). However, the EVAL-ers used
significantly less time than the DO-ALL-ers to complete the
equation-graph items (t[63] ¼ �2.251, p ¼ 0.028, d ¼ -0.677; see
Table 5 for performance comparison). Thus, the use of cluster-1
strategies (60% EVAL þ 25% MINTY) is associated with using less
time for CMR problem solving without compromising the accuracy.
Conversely, the DO-ALL-ers (cluster-2 students) required more time
to solve the equation-graph CMR problems.

The two clusters observed on equation-graph itemswere similar
on many other aspects of prior mathematical proficiency measured
in this study, except for the percentage of arithmetic calculations in
their total verbalizations of strategy use (ARI Rate) for equation-
graph questions (t[16.1] ¼ �2.783, p ¼ 0.013, d ¼ -0.933) and the
Calculus Conceptual Measure scores (t[39.0] ¼ �2.233, p ¼ 0.031,
d¼ -0.579; Table 5). TheDO-ALL-ers articulated a higher percentage
of mental arithmetic calculations than EVAL-ers during equation-
graph problem solving. A highly plausible explanation for this dif-
ference is that mental arithmetic co-occurred with point-wise
matching-representations strategies. We return to the calculus
conceptual measure difference in the Discussion.

3.3.2. Cluster analysis on strategies for equation-table items
Cluster analysis results indicated two distinct profiles of stra-

tegies that students used to solve the four equation-table problems
(Fig. 3). For these equation-table items the two groups of students
mainly applied point matching strategies with the main difference
relating the frequency of using the strategies MOP andMOPY. Recall
that MOP includes matching ordered pairs that are not intercepts
and MOPY includes matching the y-intercept without explicitly
naming the intercept. Independent-samples t tests of accuracy,
stions. ***p < 0.001, **p < 0.01, *p < 0.05, ~ p < 0.10.



Table 5
Equation-graph questions: performance by cluster.

Equation-graph questions M (SD) Paper-and-pencil measure scores M (SD)

Cluster in EG n Strat. Accu. rate Time** ARI rate* ARIC rate MRT PFT PCA CCM* APC

1. EVAL-er 49 9.4 (2.5) 0.85 (0.21) 136 (30) 0.04 (0.06) 0.92 (0.25) 4.8 (2.7) 6.9 (2.0) 3.6 (2.2) 15.0 (6.4) 2.8 (2.6)
2. DO-ALL-er 16 9.3 (2.3) 0.87 (0.18) 157 (32) 0.14 (0.14) 0.99 (0.02) 4.6 (3.5) 7.1 (1.9) 4.5 (1.9) 18.2 (4.3) 3.8 (2.7)

Note. Strat. ¼ Verbalizations of strategy use. Accu. Rate ¼ Rate of accuracy of answers. ARI Rate ¼ Percentage of verbalizations of arithmetic calculations in total verbalizations
of strategy use for a type of representation pairs. ARI-C Rate ¼ Percentage of verbalizations of correct arithmetic calculations in all arithmetic calculations for a type of
representation pairs. MRT ¼ Mental Rotation Test scores. PFT ¼ Paper Folding Test scores. PCA ¼ Precalculus Placement Assessment measure scores. CCM ¼ Calculus Con-
ceptual Measure scores. APC ¼ Advanced Placement® Calculus measure scores. ***p < 0.001, **p < 0.01, *p < 0.05, ~ p < 0.10.

Fig. 3. Two clusters of students who used different strategies for the four equation-table questions. Note that listwise deletion was applied to handle missing data, which led to
N ¼ 64 for this analysis. ***p < 0.001, **p < 0.01, *p < 0.05, ~ p < 0.10.

Table 6
Equation-table questions: performance by cluster.

Equation-table questions M (SD) Paper-and-pencil measure scores M (SD)

Cluster in ET n Strat. Accu. rate** Time** ARI rate*** ARIC rate MRT PFT PCA* CCM APC*

1. MOP-er 52 9.6 (4.3) 0.86 (0.22) 188.5 (77.1) 0.50 (0.18) 0.88 (0.15) 4.9 (2.9) 7.1 (2.1) 4.1 (2.1) 16.4 (6.0) 3.5 (2.7)
2. MOPY-er 12 5.4 (2.9) 0.67 (0.18) 110.1 (45.3) 0.27 (0.18) 0.89 (0.13) 3.5 (2.2) 6.3 (1.2) 2.7 (2.0) 13.4 (5.8) 1.3 (1.0)

Note. Strat. ¼ Verbalizations of strategy use. Accu. Rate ¼ Rate of accuracy of answers. ARI Rate ¼ Percentage of verbalizations of arithmetic calculations in total verbalizations
of strategy use for a type of representation pairs. ARI-C Rate ¼ Percentage of verbalizations of correct arithmetic calculations in all arithmetic calculations for a type of
representation pairs. MRT ¼ Mental Rotation Test scores. PFT ¼ Paper Folding Test scores. PCA ¼ Precalculus Placement Assessment measure scores. CCM ¼ Calculus Con-
ceptual Measure scores. APC ¼ Advanced Placement® Calculus measure scores. ***p < 0.001, **p < 0.01, *p < 0.05, ~ p < 0.10.
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time used, and arithmetic calculations for answering equation-
table items, and scores on the paper-and-pencil measures were
conducted to explore these profiles of strategy use. Cluster-1 stu-
dents (n ¼ 52) used significantly more MOP strategies (70%; t
[62]¼ 8.010, p < 0.001, d¼ 2.693) and fewer MOPY strategies (20%;
t[62] ¼ �7.847, p < 0.001, d ¼ �2.134), whereas cluster-2 students
(n ¼ 12) employed significantly more MOPY (65%) and fewer MOP
(20%) strategies than cluster-1 students. Note, however, that
cluster-1 students also uttered significantly more total verbal-
izations of strategy use than cluster-2 students (10 and 5, respec-
tively see Table 6; t[62] ¼ 3.187, p ¼ 0.002, d ¼ 1.132).

Comparing the two clusters in answer accuracy and time used,
we found the cluster-1 students, who applied 70% matching or-
dered pairs other than intercepts (MOP) when solving the
equation-table questions had a significantly higher percentage
correct in answering the equation-table CMR questions (t
[62] ¼ 2.760, p ¼ 0.008, d ¼ 0.937), though they also used more
time on these questions (t[62] ¼ 3.378, p ¼ 0.001, d ¼ 1.240; see
Table 6 for performance differences). In other words, the extent of
MOP as employed by cluster-1 students is positively associated
with better performance in solving equation-table problems. In
light of the significant positive partial correlation between strategy
use and accuracy for equation-table questions, we can tell that
using more strategiesddoing more MOP in particulardis worth-
while in order to have better performance on equation-table
questions.

The two clusters of students were similar on many other aspects
of mathematical proficiency measured in this study, except for
percentage of arithmetic calculations in total verbalizations of
strategy use (ARI Rate) for equation-table questions (see Table 6; t
[62] ¼ 3.894, p < 0.001, d ¼ 1.24), scores on Pre-calculus Placement
Assessment measure scores (PCA; t[62] ¼ 2.201, p ¼ 0.031,
d ¼ 0.717), and scores on the AP Calculus measure (APC; t
[44.5] ¼ 2.591, p ¼ 0.012, d ¼ 1.058). Cluster-1 students were more
accurate in equation-table questions, articulated more mental
arithmetic than cluster-2 students, and scored slightly higher than
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cluster-2 students on the pre-calculus and AP Calculus measures.

3.3.3. Cluster analysis on strategies for graph-table
For graph-table questions, cluster analysis results indicated two

clusters of students who differed in strategy use, though the cluster
sizes were largely incomparable: It appears a very small cluster
(n ¼ 6) of students employed significantly more matching while
referring to x- and y-intercepts (MINTX, MINTY) and matching or-
dered pairs, not including intercepts (MOP) than the other cluster.
However, these two clusters did not differ in accuracy or time used
to complete the graph-table items. On balance, we do not consider
this 2-cluster solution practically meaningful.

3.3.4. Cluster membership overlap
Research question 3a asks whether cluster membership can be

described along a continuum from less sophisticated to more so-
phisticated CMR strategies. In order to further examine patterns in
the students' verbalizations of strategy use for equation-graph and
equation-table items, we conducted a chi-square test of indepen-
dence of distribution with the two clusters identified for the
equation-graph items and the two clusters identified for equation-
table questions. The test results indicate nonindependent distri-
bution of equation-graph clusters (i.e., EVALers and Do-All-ers)
within the two equation-table clusters (i.e., MOPers and MOPY-
ers; x2[1] ¼ 4.231, p ¼ 0.027). The EVALers, who solved the
equation-graph items in less time with no sacrificed accuracy,
tended to be the MOPers when answering equation-table items.
Recall that on the equation-table itemsMOPers weremore accurate
than theMOPYers (see Table 7). This analysis indicates that EVALers
and MOPers used more sophisticated strategies, and the non-
independence of cluster membership suggests an affirmative
answer to Research question 3a. Additionally the dominant stra-
tegies used by these students shifted based on the representation
pair in the CMR task.

The cluster analyses show that performance on different types
of representation pairs (i.e., equation-graph and equation-table) is
associated with different strategies. Evaluation of direction, order,
or magnitude (EVAL) appears to be associated with faster perfor-
mance without compromising accuracy for answering equation-
graph questions, and doing more matching of ordered pairs, not
including intercepts (MOP) seems to be associated with better
performance on equation-table questions, even though it takes
more time. Across these two types of representation pairs, students
who adopted EVAL for equation-graph questions and solved these
questions more quickly were more likely to adopt MOP for
equation-table questions and they solved the equation-table
questions with a higher accuracy but not as quickly as the stu-
dents who simply matched the y-intercepts.

Research question 3b asks whether one of the groups is more
successful than the other on background characteristics and related
measures of mathematical proficiency. We cannot provide a
definitive answer for research question 3b because the data are
mixed on whether the cluster members were more successful than
the other on the other measures of mathematical proficiency or
background characteristics such as spatial skills. None of the spatial
Table 7
Distribution members in clusters for equation-graph items by clusters for equation-
table items.

Equation-graph items

EVALers Do-All-ers Total

Equation-Table Items MOPers 42 10 52
MOPYers 6 6 12
Total 48 16 64
skills measures differed across the clusters. For the mathematics
assessments we found mixed results. One unexpected result on the
Equation-Graph cluster solution was the EVAL-ers scored lower
than the Do-ALL-ers on the pre-calculus (PCA) and the calculus
measures (APC and CCM), and the difference in means was signif-
icant on the CCM.

4. Discussion

This investigation identified seven strategies students use on
CMR tasks, and used cluster analysis to explore how students' use of
CMR strategies connects to both student characteristics and task
demands (Ainsworth, 2006). Our research questions focused on 1)
characterizing the strategies secondary students use to solve
polynomial CMR tasks, 2) identifying whether strategies differed by
representation pairs in the stimuli, and 3) investigating differences
in the groups of students who used different strategies profiles.

We addressed research question 1 through developing the
coding scheme for strategies on the CMR assessment. We identified
seven strategies that students used to solve CMR tasks. Research
questions 2 and 3 were investigated through statistical analysis of
the study measures and strategies. This two-step process included
1) analysis of descriptive statistics and correlations between the
frequency of strategy use, time, and accuracy on CMR items, and 2)
cluster analysis to identify different strategy profiles on the
equation-graph, equation-table, and graph-table items, followed by
tests of differences in study measures by cluster. In answer to
research question 2, we identified two clusters based on profiles of
strategy use for the equation-graph (EVAL-ers and DO-ALL-ers) and
equation-table (MOP-ers and MOPY-ers) CMR items. We were not
able to identify a meaningful cluster for the graph-table items.

We found an affirmative result for research question 3a: the
EVAL-ers and MOP-ers used more sophisticated strategies than
their counterparts on the CMR task. A Chi Square test of group
membership showed that the students who used EVAL strategies in
the equation-graph condition were also more likely to be in the
more successful cluster (MOP) for the equation-table representa-
tion pair. Recall the EVAL-ers solved equation-graph questions
more quickly than the DO-All-ers without loss of accuracy, and the
MOP-ers solved the equation-table items more accurately than the
MOPY-ers.

Finally, research question 3b asked whether one group was
more successful than the other on background characteristics and
related measures of mathematical proficiency. We did not find a
consistent pattern in results. The mixed results with the mathe-
matics assessments for the equation-graph solutions (i.e., the fact
that EVALers had non-significantly lower scores on the PCA, CCM,
and APC than the Do-All-ers) is somewhat difficult to interpret. One
possible explanation for this difference is that the content of the
CMR assessment was distinct from, and not as difficult as, the
content on the CCM or APC. Students could have developed accu-
rate and fast CMR strategies such as EVAL before having developed
calculus skills. This trend was reversed on the Equation-Table
cluster solution where the MOP-ers had higher means on the pre-
calculus and calculus assessments, and the difference in means
was significant for the PCA and APC measures. In order to explore
the relationship between strategies and different forms of content
knowledge, one possible direction for future work may be to
include a more heterogeneous sample, including students from
non-advanced secondary mathematics courses. Similarly, the
relationship between strategies and content area knowledge could
be explored using assessments of less advanced secondary math-
ematics (e.g. algebra from early secondary grades) in order to un-
derstand strategy profiles and cluster differencesmore fully. Finally,
that we found no differences on the background spatial skills
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measures between the clusters suggests that CMR strategies may
be a direct target of an instructional intervention.

The cluster solutions of strategy profiles by CMR stimuli type
support the research-based claim that different representations
may afford different coordination strategies (Acevedo Nistal, Van
Dooren, & Verschaffel, 2014; Ainsworth, 2006; Siegler, 2005). We
caution that the inferences from this study are limited by both the
sample and the structure of CMR prompts that were designed to
prompt particular forms of correct and incorrect reasoning. The
sample size and composition may help explain the unexpected
results in comparing cluster solutions and results on the mathe-
matics assessments. We conjecture that with a larger sample
including students from a wider selection of secondary mathe-
matics courses we may be able to refine our understanding of CMR
strategy profiles, and the connection between strategy selection
and participant's traits. Additionally, we note that limited time for
our CMR assessment constrained the design of the CMR prompts.
Pilot work indicated that items with mismatched y-intercepts were
too easy. Therefore, all mis-matched functions on the CMR test had
matching y-intercepts. However, one side effect of this choice was
that the strategies MOPY and MINTY were never sufficient for
identifying a mismatch. With different CMR prompts these strate-
gies might increase in prominence.

4.1. Future directions

Overall, this analysis suggests that the representation pair in a
CMR task influences the profile of CMR strategies advanced sec-
ondary students use. This finding aligns with both research on
representations in mathematics (Acevedo Nistal et al., 2014;
Moschkovich et al., 1993) as well as research on strategy choice
(Booth et al., 2013; Jurdak & El Mouhayar, 2014; Siegler, 2005). As
discussed above, one extension would be to replicate this study
with a more heterogeneous sample, possibly incorporating easier
mis-matched items. Another avenue for future development of this
workmay be to investigate how the degree of polynomial functions
interacts with the representation pair and the strategy use. The
number of possible permutations for representations made it
impractical for us to test all possible representation pairs with all
possible combinations of degree 1, 2, and 3 polynomials and all
possible matches/mismatches. However, in future iterations of this
work it may be possible to extend our battery of CMR assessment
items to investigate how the degree of the polynomials influences
CMR strategies.

The findings presented here can be used to refine models of
CMR and strategy selection as it relates to more general constructs
such as mathematical proficiency. For example, this work can
extend the work of Wilmot, Schoenfeld, Wilson, Champney, and
Zahner (2011) who validated an assessment of college readiness
by examining how many connections students made while coor-
dinating representations. In addition to the number of connections,
this study and prior work on CMR suggests that students' strategies
for coordinating representations can be an important target for
development.

Finally, the results of this study provide some guidance for
modifying CMR stimuli that might direct participants' attention to
key features of representation pairs. Using this strategy framework,
we can analyze whether modifications to stimuli will prompt some
respondents to use accurate CMR strategies that require less time.
In the long-term this can lead to interventions that will improve the
quality of students' skills coordinating representations.
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