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Abstract Introductory college calculus students in the United States engaged in an
activity called Peer-Assisted Reflection (PAR). The core PAR activities required
students to: attempt a problem, reflect on their work, conference with a peer, and revise
and submit a final solution. Research was conducted within the design research
paradigm, with PAR developed in a pilot study, tried fully in a Phase I intervention,
and refined for a Phase II intervention. The department’s uniform grading policy
highlighted dramatic improvements in student performance due to PAR. In Phase II,
the department-wide percentage of students (except for the experimental section) who
received As, Bs, and Cs in calculus 1, compared to Ds, Fs, and Ws (withdrawal with a
W but no grade on a transcript), was 56 %. In the experimental section, 79 % of
students received As, Bs, and Cs, a full 23 % increase. Such increased success has
rarely been achieved (the Emerging Scholars Program is a notable program that has
done so.)

Keywords Explanation . Formative assessment . Peer assessment . Reflection

Introduction

This paper documents the use of reflection tools to improve student success in calculus.
Since the calculus reform movement (Ganter 2001), calculus learning has been a major
research focus in the United States (US), with over 2/3 of departments reporting at least
modest reform efforts (Schoenfeld 1995). Despite some successes, introductory college
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calculus remains an area of persistent difficulty. In the US, each fall semester, over
80,000 students (27 %) fail to successfully complete the course (Bressoud et al. 2013).

Calculus concepts, such as functions (Oehrtman et al. 2008) and limits (Tall 1992),
are notoriously difficult for students. These conceptual difficulties are exacerbated by
the challenges of the high school to college transition (e.g., developing greater inde-
pendence, learning new study habits, forming new relationships; cf. Parker et al. 2004).
Moreover, many students enter college unprepared; only 26 % of 12th grade students
achieve a level of proficient or better on the National Assessment of Educational
Progress (NAEP) exam (NCES 2010). Through K12 instruction, students often develop
learning dispositions that do not align well with the requirements of collegiate math-
ematics (Schoenfeld 1988). All of these factors impede student success in calculus.

To help students succeed in calculus, I engaged in three semesters of study using the
design-based research paradigm (Cobb et al. 2003). Design-based research aims to
make practical and theoretical contributions in real classroom settings (Brown 1992;
Burkhardt and Schoenfeld 2003; Gutiérrez and Penuel 2014). By specifying the
theoretical underpinnings of my design in detail, I developed a practical instructional
tool and refined principles of why it works (Barab and Squire 2004). Over three
semesters of design, I developed a collaborative activity called Peer-Assisted Reflection
(PAR). PAR was developed in a pilot study, tried fully in a Phase I intervention, and
refined for a Phase II intervention.

The core PAR activities required students to: (1) work on meaningful problems, (2)
reflect on their own work, (3) analyze a peer’s work and exchange feedback, and finally
(4) revise their work based on insights gained throughout this cycle. PAR was based on
theoretical principles of explanation (Lombrozo 2006) and assessment for learning
(Black et al. 2003). In particular, PAR leverages the connection between peer analysis
and self-reflection (Sadler 1989) to help students develop deeper mathematical under-
standings (Reinholz 2015).

During Phase I and Phase II of the study, I used quasi-experimental methods to study
the impact of PAR on student outcomes in calculus. The study took place in a
mathematics department with many parallel sections of the same course, all of which
used common exams and grading procedures. This paper focuses primarily on student
understanding as measured by exam performance. Two companion pieces (Reinholz
forthcominga, forthcomingb) provide in-depth analyses of student explanations and the
evolution of the PAR design.

This paper is organized into three major components. The first component describes
the PAR intervention, including its theoretical basis, core activities, and a brief history
of its evolution. The next component focuses on the impact of PAR on student
performance during Phase I and Phase II of the study. Finally, I further elaborate the
intervention by discussing the impact of students’ revisions and the mechanisms that
appeared to make PAR such an effective intervention.

Background

Efforts to Improve Calculus Learning

To date, two of the most notable efforts to improve calculus learning in the US were the
calculus reform movement (Ganter 2001) and Emerging Scholars Program (ESP;
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Fullilove and Treisman 1990). Internationally, calculus continues to be an area of
interest, as evidenced by the recent ZDM special issue focused on calculus research
(Rasmussen et al. 2014). As these researchers note, a number of advances have been
made (e.g., in understanding how students learn specific concepts), but Bthese advances
have not had a widespread impact in the actual teaching of and learning of calculus^
(Rasmussen et al. 2014, p. 512). Accordingly, I focus primarily on the ESP and calculus
reform movement, both of which have had notable impacts on the teaching and
learning of calculus.

The ESP is based on Treisman’s observational study of minority learners (Fullilove
and Treisman 1990); the ESP seeks to reproduce the learning conditions of successful
students from the original study. Students in the ESP attend special 2-hour problem
sessions, twice a week, in addition to their traditional calculus section. In the sessions,
groups of 5–7 students work collaboratively on exceptionally difficult sets of problems;
both the quality of the problems and the collaborative environment are essential
(Treisman 1992). The ESP is open to students of all races, but enrolls primarily
minority students; African American students have increased their success rates by
36 % through their participation (Fullilove and Treisman 1990). Versions of the ESP at
other institutions (e.g., the University of Texas at Austin, the City College of New
York) have also improved outcomes for minority students (Treisman 1992). Although
ESP-style learning has been difficult to implement in regular calculus sections, the ESP
provides evidence of the impact of meaningful problems in a supportive, collaborative
learning environment.

Calculus reform interventions often introduced technology and/or collaborative
group work to help students solve real-world problems. These studies generally
reported positive improvements in engagement and deeper understanding, with mixed
performance on traditional exams (Ganter 2001); however, it is difficult to generalize
from these studies, due to lack of common measures (e.g., many of them did not
compare student passage rates directly). To contextualize the present study, I report on
some notable efforts. The Calculus Consortium at Harvard impacted a number of
universities, with one of the most notable outcomes the gain of 12 % improvement
in passage rates documented at the University of Illinois at Chicago (Baxter et al.
1998). Nevertheless, this finding is limited, because students were not compared using
the same exams. Smaller positive gains were noted in the Calculus, Concepts, Com-
puters, and Cooperative Learning (C4L) program, which showed a 4 % improvement in
course GPA scores (Schwingendorf et al. 2000). Other notable efforts, such as Calculus
and Mathematica (Roddick 2001) and Project CALC (Bookman and Friedman 1999)
did not directly compare student outcomes in Calculus I, but comparisons of the GPAs
of traditional and reform students in subsequent courses showed mixed results. As a
whole these studies show promise, but in many cases the outcomes were difficult to
interpret due to the methodological difficulties of conducting such studies. I attempt to
account for some of these issues in the present study by comparing students using a
common set of exams.

Explanation and Understanding

Although mathematical understanding has been defined in a number of ways, there is
general consistency between recent attempts to create useful definitions (NGAC 2010;
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NCTM 2000; Niss 2003; NRC 2001). These standards and policy documents tend to
focus on learning as both a process of acquiring knowledge and as the ability to engage
competently in social, disciplinary practices (Sfard 1998). The standards focus on
holistic learning, and as a result, focus on a large number of skills and practices. This
is an important shift for improving mathematical teaching, learning, and research, but it
also highlights the difficulty of measuring learning in a meaningful way.

Explanation is a highly-valued mathematical practice, and is considered a Bhallmark^
of deep understanding in the common core state standards (NGAC 2010). This aligns
well with the five NCTM process standards, of which explanation is fundamental to
three (reasoning and proof, communication, and connections) and important to the other
two (problem solving and representation; NCTM 2000). Explanation is also prevalent in
the Danish KOM standards (e.g., in reasoning and communication; Niss 2003).

Explanation also supports learning, because it helps individuals uncover gaps in
their existing knowledge and connect new and prior knowledge (Chi et al. 1994). In
this way, explanation provides students with opportunities to grapple with difficult
mathematical concepts in a supportive environment, so that they can learn to overcome
conceptual difficulties rather than avoid them (Tall 1992).

Focusing on student practices, explanation supports productive disciplinary engage-
ment (Engle and Conant 2002). This framework provides a lens for understanding the
types of activities students engaged in through PAR. Engle and Conant (2002) describe
four principles for productive disciplinary engagement: (1) problematizing, (2) author-
ity, (3) accountability, and (4) resources. As a whole, these principles require that
students work on authentic problems and are given space to address the problems as
individuals, but are held accountable to their peers and the norms of the discipline. PAR
was designed to support such engagements, because it provides students with oppor-
tunities to explain and justify their ideas on rich mathematical tasks, and receive and
incorporate feedback from their peers.

Using Assessment for Learning

The PAR intervention was designed using principles of assessment for learning to
support student understanding. Recognizing students as partners in assessment
(Andrade 2010), such activities focus on how students can evoke information about
learning and use it to modify the activities in which they are engaged (Black et al.
2003). Generally speaking, assessment for learning improves understanding (e.g.,
Black et al. 2003; Black and Wiliam 1998). In the present study, students analyzed
their peers’ work to develop analytic skills that they could later use to reflect on their
own work (Black et al. 2003).

Through reflection, an individual processes their experiences to better inform and guide
future actions (Boud et al. 1996; Kolb 1984). In the context of PAR, these experiences
focused on problem-solving processes, such as metacognitive control, explanation, and
justification. I use the terms analysis and reflection, rather than assessment, to distinguish
PAR from other activities focused on assigning grades, which contain little information to
support such learning processes (Hattie and Timperley 2007).

To self-reflect, a learner must: (a) possess a concept of the goal to be achieved (in
this case, a high-quality explanation), (b) be able to compare actual performance to this
goal, and (c) act to close the gap between (a) and (b) (Sadler 1989). Through actual
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practice analyzing examples of various quality, students can develop a sense of the
desired standard and a lens to view their own work. This allows students to reflect on
and improve their mathematical work (Reinholz 2015).

Many researchers have studied students analyzing the work of their peers (Falchikov
and Goldfinch 2000), but they focus primarily on peer writing (e.g., Min 2006). Most
of these studies have focused on calibration between peer and instructor grades, rather
than peer analysis as a tool for learning (Stefani 1998). Even studies focused on
learning rarely measured quantitative changes in student outcomes (Sadler and Good
2006). The present study is unique because it focuses on the impact of peer analysis on
student outcomes in a domain where such activities are rare.

In this article I define PAR as a specific activity structure, but in theory, PAR could
be implemented in other ways. PAR involves students analyzing one another’s work
and conferencing about their analyses. Through peer-conferencing, students explain
both their own work and the work of their peers, which promotes understanding.

Research Questions

In alignment with prior work, this paper addresses three research questions:

& Did PAR improve student exam scores and passage rates in introductory calculus?
& How did PAR impact student performance on problems that required explanation

compared to those that did not?
& In what ways did PAR appear to support student learning?

The first research question focuses on whether or not PAR can help address the
persistent problem of low student success in calculus. Although PAR targets student
explanations specifically, I was interested in whether or not PAR could improve student
performance more broadly (research question two). I address these two questions
through quantitative analyses of student performance during Phase I and Phase II of
the study. To understand the ways that PAR appeared to support learning, I analyzed
how students revised their work and also conducted interviews with students.

Core PAR Activities

Students were assigned one additional problem (the BPAR problem^) as a part of their
weekly homework (for a total of 14 problems throughout the semester). The core PAR
activities required students to: (1) complete the PAR problem outside of class, (2) self-
reflect, (3) trade their initial work with a peer and exchange peer feedback during class, and
(4) revise their work outside of class to create a final solution. Students turned in written
work for (1)–(4), but only final solutions were graded for correctness. During their Tuesday
class session, students were exposed to each other’s work for the first time (unless they
worked together outside of class). Each student analyzed their partner’s work silently for
5 min before discussing the problem together for five more minutes, to ensure that students
focused on one another’s reasoning and not just the problems themselves. This meant that
students spent a total of approximately 10 min of class time each week dedicated to PAR;
this was a relatively small amount of the 200min of class time that students met each week.
Most of the time students spent working on PAR took place outside of class.
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Through PAR, students practiced explanation; gave, received, and utilized feedback;
and practiced analyzing others’ work. PAR feedback was timely (before an assignment
was due; cf. Shute 2008) and the activity structure (submission of both initial and final
solutions) supported the closure of the feedback cycle (Sadler 1989). Through repeated
practice analyzing others’ work, students were intended to transition from external
feedback to self-monitoring (see appendices A and B for the self-reflection and feedback
forms). To support students to meaningfully engage in PAR conferences, students
practiced analyzing hypothetical work during class sessions and discussed it as a class.

PAR problems were inspired and modified from: the Shell Centre, the Mathematics
Workshop Problem Database (a database of problems used in the ESP), Calculus
Problems for a New Century, and existing homework problems from the course. I
further narrowed the problem sets by drawing on Complex Instruction, a set of equity-
oriented practices for K-12 group work (Featherstone et al. 2011), and Schoenfeld’s
(1991) problem aesthetic. Ideal problems: were accessible, had multiple solution paths
to promote making connections, and provided opportunities for further exploration.
Most problems required explanation and/or the generation of examples; as a result,
each pair of students was likely to have different solutions. Thus, these tasks could be
considered real mathematical problems, not just exercises (related to problematizing; cf.
Engle and Conant 2002).

I illustrate PAR by discussing a student interaction around PAR10 (the 10th assigned
problem). PAR10 required students to trace their hand, use simple shapes to estimate the
enclosed area, and estimate an error bound (see Fig. 1). This interaction was chosen
because it illustrates how peer discussions were able to support meaningful revisions.

To begin, Peter and Lance completed PAR10 as homework. Figure 2 shows Peter’s
work to estimate the error of his method. Peter illustrated his hand and labeled 28 unit
squares that were all entirely inside of the hand. Peter’s method to calculate error was to
Bmake rough estimates^ of how much area he left out, which he reasoned Bshould be
within 5 % of the actual value.^ However, Peter had no bound on the accuracy of his
Brough estimates,^ so he may have actually provided an underestimate, rather than an
upper bound of error. A portion of Peter’s self-reflection is given in Fig. 3. Targeted
checkboxes helped students focus on specific areas of communication.

In class, Peter traded his work with Lance and they spent 5 min silently reading and
providing feedback. Lance’s feedback (see Fig. 4) told Peter to calibrate his units of
measurement to a known unit, but Peter ignored this advice (see Fig. 5).

After exchanging written feedback, the students discussed the problem. Peter had
focused on estimating the error from the inside, while Lance focused on estimating
from the outside, but both solutions were incomplete. These different perspectives
connected productively in the PAR conversation.

[12] Lance: Were you trying to…get an under?

[13] Peter: Yeah, initially.

[14] Lance: What I was thinking was you could make an over-approximation.
Take this right here and create an over-approximation and then subtract
what you got from here with your under-approximation and it should get
you this space.
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[15] Peter: So it’s showing it has to be between those two values. That’s the error.

[16] Lance: Right, that actual value is going to be between your low approxima-
tion and your high approximation.

…

[23] Peter: It says you want to think about bounding your error with some larger
value. So that would make sense then.

Lance asked Peter if he was trying to get an under approximation (line 12), and then
stated that he was trying to get an over approximation (line 14). Peter and Lance
realized that combining these ideas together, they could get bounds on the actual value

PAR10: Hand Area

In this problem, you will trace the shape of your hand and approximate the area of the
picture that you create. Your main tasks are to devise a method for approximating the
area and to show that your approximation is very close to the actual area.

1. Put your hand flat on the grid provided (with fingers touching, no gaps) and trace
the shape of the outline of your hand. Make sure that the shape you trace is a
function (if not, erase the parts of the shape that would make it not a function).

2. Devise a method to approximate the area of the region inside the curve you have traced.
Explain your method in detail, and explain why it should work. (Don’t perform
any calculations yet.)

3. Use the method you descri bed above to approximate the area of the outline of
your hand. (Show your work.)

4. Descri be a method for estimating the error in your method of approximation. (Error
is something you would like to make small! Thus an estimate for the error means
being able to say the error is less than some value.)

5. Calculate an estimate for the error for your method.
6. Explain (in principle) how you could improve your method to make your estimate

as accurate as one could want (i.e., minimize the error). (You do not actually have
to perform the calculations, just explain what you would do.)

Fig. 1 PAR10: Hand Area

Fig. 2 Peter's initial solution to PAR10, Part 4
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from above and below (lines 15 and 16). Peter used this idea to come up with a correct
method for bounding the error (see Fig. 6).

In Peter’s final solution, he calculated an over approximation and an under approx-
imation, and reasoned that the actual value must be between the two. Peter used the
boxes from his initial solution that were entirely inside the hand as an underestimate.
He then added additional boxes that surrounded the outside of his hand and reasoned
that Bsince this will be an over approximation, I know that the true area under the curve
will be less than the area I calculate by error.^While not all PAR conversations resulted
in productive revisions, this example illustrates the PAR process. PAR was designed to
provide students with the authority to grapple with rich problems while holding
students accountable to their peers through conferencing, key components of produc-
tive disciplinary engagement (Engle and Conant 2002).

Development of the Intervention

Although literature supported using peer analysis to promote self-reflection, it did not
specify instruction in detail. Thus, PAR was developed over the three semesters of
study. An in-depth analysis of the evolution of the PAR design is reported on in a
companion piece (Reinholz forthcomingb). For the present paper, I highlight three
crucial areas of development: (1) the use of real student work, (2) randomization of
partners, and (3) student training.

Use of Real Student Work

The basic PAR activity structure was developed in a pilot study in a community college
algebra classroom (during spring 2012). The class consisted of 50 % females and 79 %
traditionally underrepresented minorities (of 14 students after dropouts) who were
simultaneously enrolled in a remedial English class. Experienced educational designers
and community college instructors advised me to have students analyze hypothetical
work to mitigate possible issues from students having their work analyzed by peers.

Fig. 3 Peter's self-reflection

Fig. 4 Feedback received by Peter
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However, even by mid-semester, students struggled to analyze hypothetical work. For
instance, on the 6th homework assignment students were asked to rank order and
analyze four sample explanations. Not a single student provided a clear rationale for
their ordering. Some students also remarked that they did not understand the purpose of
these activities.

To address these difficulties, I instead had students analyze each other’s work and
provide verbal and written feedback. Contrary to initial concerns, students seemed
comfortable and engaged with the activity. Students now received immediate feedback
from their peers as to whether or not their explanations were understood. As one
student, Teresa, described:

I didn’t get it before, why you were always asking us to explain, but now it makes
sense.When you don’t explain things people can’t tell what you’re doing.

Fig. 5 Peter's final illustration of his hand area

Fig. 6 Peter's final solution to PAR10, part 4
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Students were now able to discuss their analyses, and the activity was more
meaningful, because students could see themselves as helping a peer. Because students
had to present to a peer, they were held accountable for the quality of their work by
peers in addition to the instructor (Engle and Conant 2002). Finally, students received
feedback that they could use to revise their own work (providing additional opportu-
nities or Bresources^ for improvement). For all of these reasons, the revised activity
structure was adopted as the basis for PAR. The PAR procedures for how and when
students would engage in this process were solidified at the beginning of Phase I (as
described in the Core PAR Activities section).

Randomization of Partners

During Phase I, a small subset of students had short, superficial peer conferences.
Consider Nicki and Alex’s discussion of PAR10. Nicki had a mostly correct solution

while Alex had only solved half of the problem. In the transcript below, both students
spoke sarcastically, as though they were not using PAR as a serious learning
opportunity:

[2] Nicki: I think you did it right, except for the last 3 parts. (in a sing-song voice)

[3] Alex: Yeah, totally! (sarcastically)

[4] Nicki: Do you know how to do it, just using triangles?

[5] Alex: Yeah, I got that.

[6] Nicki: You gotta add the ones underneath, and subtract the other ones.

[7] Alex: Yep.

[8] Nicki: It looks pretty good, and then for more accuracy, you could do some
more triangles.

[9] Alex: Even more triangles. (sarcastically)

[10] Nicki: And more triangles. (sarcastically)

[11] Alex: I said yours is awesome, and, yeah.

In contrast to most student conversations (e.g., Peter and Lance’s conference above),
Nicki did not discuss the concepts at all. She simply told Alex what to revise (lines 6, 8,
and 10).

Alex provided no feedback, which was atypical. Alex revised his solution, but
apparently did so without understanding, because he still answered the question
incorrectly.

These superficial conversations took place between a small subset of students
who worked with the same partners repeatedly. These students appeared to be
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working with their friends in the class, and usually did not provide useful
feedback, or simply provided answers to one another. This issue was addressed
in Phase II by having students sit in a random seat on PAR day; I did not
observe such conversations during Phase II. Having students sit in a random
seat as they entered the classroom also meant that little to no time was required
for students to find partners.

Training of Students

Students practiced analyzing sample work through a weekly training activity. Each
activity was written to correspond to that week’s PAR problem. Students were typically
given 2–3 min to think about three samples of student work, and then spent about 3–
5 min discussing the work as a class. This is time that other sections would typically
spend on lecture. I provide an example in which students began the class session by
silently analyzing the work given in Fig. 7.

After students analyzed the work silently, they had a whole class discussion about
their analyses. In what follows, students describe some of their observations about what
is problematic about the second sample solution given above (see lines 4, 10, and 14).

[3] Instructor: What about number 2?

(Three students shake their heads no, Patrick, Colton, and Barry)

[4] Patrick: In the lab we just did, we created that graph to show that midpoints
aren’t always more accurate.

[5] Instructor: So midpoints aren’t always the best. What else?

[6] Sue: Is this just general, or about the PAR?

[7] Instructor: These are always about the PAR

Instructions: Classify the “bullseye” (correct explanation), “on the board” (a mostly correct 
idea that is communicated poorly or has a minor error), and “off the mark” (incorrect) 
solutions.

Prompt: Explain (in principle) how y ou could improve your method to make your estimate 
as accurate as one could want (i.e., minimize the error). 

Sample 1: If I took a limit as the width of the rectangles approaches 0 (making the number 
of rectangles approach ), the difference in the area under the curve and the rectangles would 
approach 0. 

Sample 2: You could use midpoints rather than endpoints and it will be more accurate 
because there will be less overlap.

Sample 3: If I had more rectangles there would be less overlap and the approximation 
would be better.

Fig. 7 Sample solutions to the PAR10 training activity
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[8] Sue: Wouldn’t midpoints be better?

[9] Instructor: What do you think, would midpoints be better?

[10] Barry: Would it even matter, because it says Bas accurate as you would
want,^ and you can only get so accurate with midpoints?

[11] Instructor: What do you guys think about that? Did you not hear him, or do
you disagree?

[12] Jim: I couldn’t hear him.

[13] Instructor: Could you shout it from a mountain Barry?

[14] Barry: Yeah, so I just said that the prompt asks how you could
improve the method to make your estimate as accurate as you would
want, but using midpoints you can only make it so accurate, which is a
problem.

After the instructor asked students what they thought about the explanation (line 3),
a number of students shook their heads, indicating they thought it had problems. In line
4, Patrick connected the calculator lab that the class had been working on to the existing
prompt, noting that midpoints don’t necessarily create the most accurate estimate. Sue
was unsure about this, so she asked to clarify (line 8). Rather than answering himself,
the instructor allowed the class to respond (giving them authority in the discussion).
Barry gave an explanation for why the midpoint method is insufficient to produce
arbitrary accuracy (lines 10 and 14). As this brief transcript highlights, students had
opportunities to analyze various explanations and explain their reasoning (developing
authority; cf. Engle and Conant 2002). This gave students opportunities to calibrate
their own observations to the perspectives of their peers and instructor. I now analyze
the impact of the intervention.

Phase I (Fall 2012)

Materials and Methods

Phase I took place in a university-level introductory calculus course in the US targeted
at students majoring in engineering and the physical sciences.1 The course met 4 days a
week for 50 min at a time. Ten parallel sections of the course were taught using a
common syllabus, curriculum, textbook, exams, grading procedures, calculator labs,
and a common pool of homework problems (instructors chose which problems to

1 All research reported in this manuscript was conducted in accordance with the ethical standards in the
Helsinki Declaration of 1975, as revised in 2000, as well as national law, with approval of the appropriate
Institutional Review Board.
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assign). Many of the PAR problems were drawn from this pool, but some were used
only in the experimental section.

The calculus course was carefully coordinated, with all instructors meeting on a
weekly basis to ensure alignment in how the curriculum was taught. Historically, the
course had been taught using primarily a lecture-based format, which I confirmed
through observations of three of the comparison sections. Instructors generally dedi-
cated the same number of days to the same sections within the book and covered
similar examples. The experimental section also used a lecture format, with some
opportunities for student presentations and group work. The primary difference be-
tween the experimental and comparison sections was the use of PAR, as described in
the Core PAR Activities section. Students had some opportunities to analyze hypothet-
ical work to develop analytic skills, but during Phase I the systematic training proce-
dure had not yet been implemented; students only engaged in three training activities
during the entire semester.

Participants

Most sections of the course had 30–40 students, with a few large sections of 50–90
students (see Table 1). Students enrolled in the course as they normally would, with no
knowledge that there was an experimental section. On the first day of class, students in
the experimental section were given an opportunity to switch sections, but none did.
The study classifies as quasi-experimental, because students were not randomly
assigned to sections. While there may be systematic differences in the students
who enrolled in different sections, I have no data to suggest that any particular
section was atypical. As I describe later, the analysis of Exam 1 scores (as a
proxy for a pre-test) indicates that the sections were indeed comparable.
Moreover, demographics were collected during Phase II, and there were no
significant differences between sections.

Michelle, who had a PhD in mathematics education and nearly 10 years of teaching
experience, taught the experimental section and one of the comparison sections.
Michelle taught two sections to help control for the impact of teacher effects. Of the
two sections Michelle taught, I had her use PAR in the larger section, to garner
evidence that PAR could be used in a variety of instructional contexts (not just small
classes). Michelle used identical homework assignments and classroom activities in

Table 1 Phase I data collection table

Experimental Comp. 1 Comp. 2 Comp. 3 Comp. (Other) Total

Instructor Michelle Michelle Heather Logan – –

Students 56 18 38 67 230 409

Participants 53 17 29 54 – 163

Video Obs. 45 6 6 6 – 63

Interviews 14 – – – – 14

PAR Conv. 54 – – – – 54
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both sections, except for PAR (students in both sections completed the PAR problems,
but the comparison students did not conference about their work).

Comparison instructors were chosen who had considerable prior teaching experi-
ence. Heather, a full-time instructor with over a decade of teaching experience, taught
another observed comparison section. Logan, an advanced PhD student, taught the final
observed comparison section. All observed instructors had taught the course a number
of times before. Teachers in the comparison sections taught the course as they normally
would.

Data Collection

To document changes in student understanding, I collected exam scores and final
course grades for students in all sections of the course; all students took common
exams, which allowed me to compare the experimental section to the department
average scores. To study student interactions, I video recorded class sessions of the
experimental section and three comparison sections. I performed all video observations
with two stationary video cameras: one for the teacher, one for the class. As a
researcher, I attended all class sessions, taking field notes of student behaviors and
class discussions. In the experimental section, I also scanned students’ PAR assign-
ments and made audio records of students’ conversations during peer-conferences.
After the second midterm, I conducted semi-structured interviews with students in the
experimental section about their experiences with PAR. A summary of the data
collected is given in Table 1 (enrollment numbers are for students who remained in
the course after the W-drop date, which was approximately halfway through the
semester). Any students who enrolled but did not take the first exam were removed
from all analyses; taking the first exam was used as an indicator of a serious attempt at
the course.

Exam Design and Logistics

A five-member team wrote all exams. After three rounds of revisions, the course
coordinator compiled the final version of the exam. Exams were based on elaborated
study guides (3–4 pages); students were given the study guides 2–3 weeks in advance
and only problems that fell under the scope of the study guides were included on
exams. This ensured that exams were unbiased towards particular sections.

Exams were designed to follow a standard template: one page of procedural
computations, one page of true/false questions, and the rest of the exam was conceptual
problem solving. Depending on the specific topics covered on the exam, other idio-
syncratic problem types were included, such as curve sketching. This typology of
problem types is described in Table 2.

Midterms had nine, mostly multi-part questions on average, and the final exam was
slightly longer. Table 3 shows the breakdown of problems by type for the Phase I
exams, which shows that the exams had a similar breakdown of problems.

Exams were administered in the evenings, each covering 3–4 weeks of material,
except for the comprehensive final exam. Grading was blind, with each problem
delegated to a single team of 2–3 graders, to ensure objectivity. Each team of graders
designed their own grading rubrics, with approval from the course coordinator. These

Int. J. Res. Undergrad. Math. Ed. (2015) 1:234–267 247



rubrics followed standard department procedures for many types of problems, such as
true/false or procedural computations. Students needed to show their work and explain
their reasoning to receive full credit on any problem other than pure computations of
limits, derivatives, and integrals, and multiple-choice questions (in contrast, true/false
questions did require explanations). Partial credit was offered on all problems.

Exam Content

According to a US national study of calculus programs, Bthe vast majority of exam
items (85.21 %) could be solved by simply retrieving rote knowledge from memory, or
recalling and applying a procedure, requiring no understanding of an idea or why a
procedure is valid^ (Tallman et al. forthcoming). In contrast to typical exams, the
exams used in the present study emphasized explanation and deeper problem solving.
Two typical problems are given in Figs. 8 and 9.

Figure 8 is a typical problem-solving problem. Prompts (a)–(c) were a nontrivial
calculus problem (maximization with the use of a parameter), and the final two prompts
(d) and (e) required students to explain and justify their work. Figure 9 provides two
sample prompts from a true/false problem. On average, each exam included four such
prompts.

For true/false questions, students were required to provide an explanation justifying
their answer. Even if they gave a counterexample to show the statement was false, they
needed to provide a written justification of their counterexample to receive full credit.
Problem solving and true/false problems (shown above) all required written explana-
tions, and comprised about two-thirds of each exam (see Table 3). The only problems
from exams in the present study that would accurately be classified as procedural recall

Table 3 Percentage of points by problem type (phase I)

Type Exam 1 Exam 2 Exam 3 Final exam

Problem solving 50 % 50 % 47 % 53 %

True/false 20 % 15 % 15 % 20 %

Pure computation 25 % 19 % 19 % 27 %

Miscellaneous 15 % 16 % 19 % –

Total points possible 99 104 104 150

Table 2 Exam problem types

Problem type Description

Problem solving Non-rote mathematical problems. Over 80 % had multiple parts and required
written explanations.

True/false Students must explain why it is true, or provide a counterexample and explain
why it is false.

Pure computation Procedural practice of limits, derivatives, and integrals.

Miscellaneous Multiple choice, fill-in-the-blank, and curve sketching.
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are the BPure Computation^ problems, which comprised less than 30 % of any given
exam. Although miscellaneous questions did not require explanations, none of them
could be solved through simple recall.

Results

Success in the course was defined as receiving an A, B, or C (the grade requirement for
math-intensive majors like engineering), compared to receiving a D, F, or W (with-
drawal with a Won the transcript, which is not calculated into one’s GPA). I computed
success rates using student course grades, 70 % of which was based on exam scores and
30 % on homework and calculator lab scores. The course coordinator scaled homework
and lab scores to ensure consistency across sections. The experimental section had an
82 % success rate, which was 13 % higher than the 69 % success rate in the comparison
sections. This effect was marginally significant, χ2(1, N=409)=3.4247, p=0.064. This
improvement is comparable to other active learning interventions in STEM, which
result in a 12 % improvement in passage rates on average (Freeman et al. 2014).
Moreover, students in the experimental section were more likely to persist in the
course; the experimental drop rate was only 1.75 %, while the drop rate for non-
experimental sections was 5.87 %.

To account for the nesting of students within classes, I created a two-level random
effects (HLM) model using the lme4 package in R (see Table 4). The null model
included class section and exam number as second-level variables. In the alternative
model, the use of PAR was added as a fixed effect. Only the final three exams were
included, because, as I describe below, Exam 1 was used as a proxy for a pretest score. I
used the anova package in R to compare the two models, χ2(1)=3.9635, p=0.0465*,
which were significantly different. This indicates that PAR had a significant impact on
student exam scores. Michelle’s comparison section (M=66.84 %, SD=23.47)
performed numerically similar to the rest of the comparison sections (M=67.32 %,

A rectangle is inscribed with its base on the x-axis and its upper corners on the parabola  
f(x) = 3P – x2 (where P > 3 ). Complete the following parts of the question to find the 
dimensions of such a rectangle with the greatest possible area.
a) Draw a diagram of the situation, labeling the variable dimensions of the rectangle.
b) Write an equation for a function A that expresses the area of the rectangle in terms of the  
variable(s) defined in (a). What is the domain of this function?
c) Find the dimensions of the inscribed rectangle that will maximize its area.
d) Explain how you know that the value you found in (c) is the maximum area.
e) Describe what happens to the shape of the inscribed rectangle as P increases. (Relate  
your answer to how both the length and the width of the rectangle depend on P.) 

Fig. 8 Sample problem solving problem

Indicate whether each of the following statements is True or False. If the statement is true, 
explain how you know it is true. If it is false, give a counterexample. (A counterexample is 
an example that shows the statement is false.)

a) If , then 
c) If f’(x) > 0 for x < -3 and f’(x) < 0 for x > -3, there must be a local maximum at x=-3.

Fig. 9 Sample true/false problem
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SD=19.37), while Michelle’s experimental section performed considerably better (M=
73.03 %, SD=18.37). Given the small sample size of Michelle’s comparison section, I
combined all of the comparison sections for the remaining analyses.

Table 5 shows the results for each individual exam. To account for the nesting of
students within classes, I used the intracluster correlation (ICC) to compute a variance
inflation factor (Biswas et al. 2007, p. 79). For each exam, the ICC within sections was
small, near 0.01, so t values were divided by about 1.179. To test for the equivalence of
groups, I used students’ Exam 1 scores as a proxy for a pre-test, because Exam 1
occurred early in the semester. Nevertheless, it is likely that instruction in the PAR
section still had an impact on students’ Exam 1 scores, so Exam 1 should not be thought
of as a true pre-test. Table 5 indicates that there were no significant differences in Exam 1
scores, and that all other differences were at least marginally significant (after adjust-
ments). This indicates that the student populations in parallel sections were comparable,
and that the intervention had a significant effect. The numerical (but not statistically
significant) difference in Exam 1 scores is consistent with the interpretation that PAR
instruction had some impact on student scores, but less impact because it was still early
in the semester. Overall, the effect sizes were small to medium (Cohen 1988). To
contextualize these results, I note that active learning interventions in STEM classrooms
result in a 6 % improvement in exam scores, on average (Freeman et al. 2014).

To address understanding of different problem types (research question two), I used
the typology of problem types given in Table 2. Student performance by problem type

Table 4 Comparison of nested models for phase I exam scores

Parameter Model 1 Model 2

Fixed effects [estimate (SE), t-value]

Intercept 67.583 (3.689), 18.2 66.866 (3.60), 18.57

PAR intervention 6.972 (3.06), 2.282

Random effects [Variance (SD)]

Section 11.84 (3.44) 6.02 (2.45)

Exam number 36.19 (6.02) 35.65 (5.97)

Residual 361.48 (19.01) 361.60 (19.02)

Overall model tests

AIC 10061.1 10059.1

BIC 10081.3 10084.4

Deviance 10053.1 10049.1

Table 5 Phase I exam (percentage) scores (SD in parentheses; p<0.01**, p<0.05*, p=0.06†)

Exam 1 Exam 2 Exam 3 Final exam

Experimental (N=56) 70.2 (17.4) 79.8 (14.8) 74.4 (17.6) 67.3 (21.3)

Comparison (N=353) 67.2 (17.8) 75.1 (15.6) 66.4 (19.2) 60.2 (22.7)

Difference 3.0 4.8† 8.0** 7.1†

ES (Cohen’s d) 0.27 0.38 0.27
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(aggregated over all exams) is given in Table 6. As before, all t- and p-values are
adjusted using the ICC correction factor.

Student performance by problem type was calculated as a percentage of the total
possible points for each problem type, to account for the different number of points
assigned to different problem types. Students in the experimental section scored
numerically higher on all aspects of the exams, but differences in problem solving
were not significant. This contrasts with prior studies on calculus reform that showed
that students often fell behind on traditional procedural skills (Ganter 2001).

Discussion

Analyses of student exams addressed the first two research questions: (1) students in
the experimental section had 13 % higher success rates (marginally significant) than the
other sections, and (2) these improvements were evident throughout the exams, not just
on explanation-focused problems (see Tables 4, 5 and 6). Although exams were
analyzed by problem type, this analysis did not account for differences in item
difficulty between items. Finally, using Exam 1 as a proxy for a pre-test score, I
established that there were no significant differences between groups in baseline
calculus understanding, so the effects found can likely be attributed to PAR.

Phase II (Spring 2013)

Materials and Methods

Phase II took place in a subsequent semester of the same calculus course. The same
coordinator ran the course, and the curriculum and lecture-based teaching styles were
the same as Phase I. In the experimental section, students engaged in PAR, just as in
Phase I. There were three revisions to the Phase I design: (1) minor updates to the
reflection and feedback forms, (2) the assignment of random partners (see
the Randomization of Partners section), and (3) weekly training in analyzing work
(see the Training of Students section).

Participants

Phase II once again had a single experimental section with 3 observed comparison
sections. I taught the experimental section, to ensure full implementation of the design.

Table 6 Phase I Mean (percentage) scores (SD in parentheses) by problem type

Experimental (N=56) Comparison (N=353) Difference t p

Problem solving 63.94 (14.4) 59.81 (15.2) 4.13 1.50 0.14

True/false 67.98 (16.4) 58.44 (17.2) 9.54** 3.05 0.003

Pure computation 70.05 (15.7) 61.07 (19.3) 8.98** 2.86 0.005

Miscellaneous 79.85 (12.5) 74.61 (17.0) 5.24* 2.027 0.045
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I was a graduate student with approximately 3 years of teaching experience. I had not
taught introductory calculus in the last 4 years. Comparison instructors were chosen
who had prior experiences with teaching and with this particular course to provide a fair
comparison; some of the other instructors had little teaching experience or had not
taught this course before. Sam, a post-doctoral researcher working on mathematics
education projects, taught one of the observed comparison sections. Graduate student
instructors from Phase I, Tom and Bashir, taught the other two observed sections. These
instructors and I had comparable experience with this course, but their teaching
experiences were more recent. Grading procedures were the same as in Phase I.

Data Collection

The data collected are summarized in Table 7.
Data collection procedures were the same, except for a few minor changes: (1) one

camera was used rather than two to reduce logistical difficulties, (2) a research assistant
conducted interviews and performed video observations (to maintain objectivity), and
(3) students were offered one extra credit homework assignment as an incentive to give
an interview, which greatly increased the number of respondents. Also, I had one of the
comparison instructors (Tom) assign PAR problems as regular homework, which I
collected. Finally, I collected background demographic data for students in the four
observed sections.

Results

There were no significant differences in academic background data (ACT scores and
high school GPA) between the four observed sections. Numerically, the lowest aver-
ages were in the experimental section (mean GPA: 3.43 vs. 3.56, and mean ACTscores:
25.45 vs. 26.3). There were no significant differences in gender or race. The population
of students who answered the survey consisted of 19 % females and 17 % traditionally
underrepresented minorities. While demographics for all students were not collected,
this sampling seemed to be relatively representative of the typical student population of
calculus at this institution. Although students were not surveyed specifically, based on
an analysis of student PAR conversations, none of the students appeared to have limited
English proficiency or were English Language Learners. Although demographics were
not collected for Phase I, these Phase II results suggest that the natural distribution of

Table 7 Phase II data collection summary

Experimental Comp. 1 Comp. 2 Comp. 3 Comp. (Other) Total

Instructor Dan Sam Tom Bashir – –

Students 34 37 31 28 206 336

Participants 34 34 27 24 – 119

Video Obs. 54 6 5 5 – 75

Interviews 22 – – – – 22

PAR Conv. 86 – – – – 86
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students across sections was relatively balanced (i.e. various sections are indeed
comparable).

As in Phase I, student course grades were used to compute student success rates.
Course grades consisted 70 % of exam scores, with the other 30 % assigned to labs and
homework. Once again, the course coordinator scaled student homework and lab scores
to achieve consistency between sections. During Phase II, the experimental success rate
was 79 %, while the comparison success rate was only 56 %. This 23 % difference in
success rates was even larger than the 13 % difference during Phase I. This result was a
statistically significant, χ2(1, N=336)=6.3529, p=0.0117*. To contextualize these
results, I note that active learning interventions in STEM result in a 12 %
improvement in passage rates on average (Freeman et al. 2014). Moreover, students
in the experimental section were more likely to persist in this course; the experimental
drop rate was 10.5 %, while the drop rate for non-experimental sections was 15.25 %.
These drop rates were much higher than during Phase I, likely due to differences in the
students who enroll in the fall and spring versions of this course.

Differences between experimental and comparison sections were also evident in
exam scores (see Table 8). Once again I used a variance inflation factor (mean ICC=
0.03) to adjust the t and p values.

As before, Exam 1 provides a baseline to further establish the equivalence of the
experimental and comparison groups. Because there were no significant differences for
Exam 1 (a proxy for a pre-test), but the differences were significant for the other three
exams, the differences can likely be attributed to PAR. The improvements in exam
performance (row 3) were even larger than in Phase I (row 4). The effect sizes were
medium (Cohen 1988). To contextualize these results, I note that active learning
interventions in STEM classrooms result in a 6 % improvement in exam scores, on
average (Freeman et al. 2014). Once again, the smaller, non-significant differences in
Exam 1 scores are likely an indicator of early benefits of PAR instruction.

As in Phase I, I created nested two-level random effects models to account for the
nesting of students within classes (see Table 9). Using anova to compare the two
models, I found that the PAR intervention had a significant effect, χ2(1)=8.6565, p=
0.00325**. The average exam scores in the experimental section (M=75.2 %, SD=
18.6) were much higher than in the comparison sections (M=64.1 %, SD=21.1)

Research question two was addressed by analyzing exams by problem type. Phase I
results were generally replicated; students in the experimental section did better on all
problem types, even purely computational (see Table 10). Differences for problem
solving and miscellaneous problems were statistically significant, pure computation

Table 8 Phase II exam (percentage) scores (SD in parentheses; p<0.05*, p<0.01**)

Exam 1 Exam 2 Exam 3 Final exam

Experimental (N=34) 68.4 (21.3) 81.7 (16.1) 75.7 (16.8) 75.7 (17.5)

Comparison (N=302) 62.2 (19.1) 66.5 (19.4) 61.5 (22.4) 65.9 (23.1)

Difference (Phase II) 6.2 15.2** 14.2** 9.8*

Effect Sizes (Cohen’s d) 0.62 0.55 0.37

Difference (Phase I) 3.0 4.8* 8.1** 7.1*

Int. J. Res. Undergrad. Math. Ed. (2015) 1:234–267 253



was marginally significant, and true/false was not significant. I report adjusted t and
p values, accounting for intracluster correlation.

It is likely that the differences between the experimental and comparison sections are
overstated for miscellaneous problems. There were a total of 450 points possible across
all exams, with only 35 associated with miscellaneous problems. Because these
problems made up such a small percentage of the exams, they are likely to be less
reliable than categories such as problem solving, which made up approximately 50 %
of the exams.

Discussion

Phase II provided a replication of Phase I’s results; (1) students in the experimental
section had 23 % higher success rates than other sections, and (2) they performed
numerically better on all aspects of the common exams (gains for problem solving and
miscellaneous were significant). Once again, item difficulty was not taken into consid-
eration. During Phase I the impact of PAR was measured while controlling for teacher
effects. Thus, it is unlikely that improvements during Phase II can be attributed entirely
to teacher effects. Moreover, Phase II featured an improved version of the Phase I
design, which likely accounts for at least some of the additional improvement. Phase II
demonstrates that multiple teachers could use PAR successfully.

Table 10 Phase II mean (percentage) scores (SD in parentheses) by problem type

Experimental (N=34) Comparison (N=302) Difference t p

Problem solving 64.51 (12.0) 52.62 (15.6) 11.89** 3.00 0.0042

True/false 59.15 (16.8) 52.25 (18.1) 6.90 1.28 0.21

Pure computation 71.72 (12.9) 64.02 (17.6) 7.70† 1.81 0.076

Miscellaneous 73.29 (14.3) 60.85 (20.7) 12.44* 2.61 0.012

Table 9 Comparison of nested models for phase II exam scores

Parameter Model 1 Model 2

Fixed effects [estimate (SE), t-value]

Intercept 66.98 (2.09), 31.99 65.48 (1.66), 39.55

PAR intervention 12.28 (3.27), 3.75

Random effects [variance (SD)]

Section 19.09 (4.37) 5.11 (2.26)

Exam number 5.10 (2.26) 4.49 (2.12)

Residual 429.67 (20.97) 439.21 (20.96)

Overall model tests

AIC 8254.0 8247.3

BIC 8273.3 8271.5

Deviance 8246.0 8237.3
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Comparison of Phases I and II

Students in the experimental sections numerically outperformed the students in the
comparison sections for all problem types. Nevertheless, there were notable differences
between phases. During Phase I, the differences for true/false and pure computation
problems were significant, while they were not during Phase II. Also, during Phase II
the differences for problem solving problems were significant, while they were not
significant during Phase I. These differences may be attributable to differences in
teaching style across phases; Michelle was much more likely to use IRE-style
questioning in her classroom, emphasizing procedural computations, while Dan was
more likely to require open-ended explanations from the students. Moreover, analyses
did not account for the difficulty of items on exams, which may also account for some
of these differences.

The average success rate for comparison sections during Phase I was considerably
higher than during Phase II (69 % vs. 56 %). This difference was reflected in average
exam scores, which were 5–10 % higher on exams 1–3 comparing Phase I to Phase II
students; notably, Phase II students scored higher on the final exam compared to the
Phase I students, by 5.7 %. In the design of the Phase II final exam, the course
coordinator noted that the previous semesters’ exam was too difficult, and made efforts
to decrease the length and difficulty level of the Phase II exam. The course coordinator
also noted that students during spring semesters historically tend to have lower success
rates than those in the fall, because they are generally students who were not on the
Bstandard^ track, meaning that they may have had to take additional remedial mathe-
matics courses before they could take calculus.

Because Tom and Bashir both taught during Phase I and Phase II, the average scores
from their sections also provide a point of comparison. Bashir’s scores increased
between phases (63.7 to 69.4 %), while Tom’s remained mostly the same (65.5 to
65.8 %). Given the differences in student populations, this seems to indicate that both
instructors improved in their teaching across semesters, but without knowing more
about their specific classes no more definitive conclusions can be drawn. The next
major section describes student revisions, and the section following that describes the
PAR mechanisms that supported learning.

Improvement in Student Explanations

PARwas designed to improve student understanding generally, and student explanations
specifically. While in-depth analyses of student explanations are beyond the scope of this
paper, they are discussed in a forthcoming paper (Reinholz forthcominga). To contextu-
alize student improvements on exams, I provide a brief summary of those results.

Student explanations were analyzed on three of the PAR problems (PAR 5, 10, and
14) to see the progression of student explanations over the course of the semester.
Student work was analyzed from the Phase I experimental section, the Phase II exper-
imental section, and a comparison section from Phase II. Student explanations were
scored using a rubric consisting of four categories: accuracy, mathematical language,
clarity, and use of diagrams. Solutions were double coded, with 94.1 % agreement.

Aggregating explanation scores across the semester, the Phase II section scored
more than 4.5 times higher than the comparison section, and more than 1.5 times higher
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than the Phase I section. The results held across individual dimensions as well, with
Phase I scoring higher than the comparison section on all aspects of their explanations
and Phase II scoring higher than Phase I on all aspects of their explanations. As this
brief summary of some of the results highlights, students improved their explanations
considerably as a result of PAR.

Students Revisions in PAR

The quantitative results from Phases I and II provided evidence of the positive impact
of PAR on student performance in calculus. To better understand how students learned
from PAR, I analyzed PAR assignments in the Phase II experimental section to look for
changes in PAR scores as a result of revision.

Materials and Methods

To understand the impact of PAR for different students in the course, I broke the class
into thirds (High, Middle, and Low), according to students’ final scores on the PAR
assignments. I used a random number generator to select three students from each of
these groups. Of these nine students who were randomly sampled, there were four cases
in which I had recorded a score for their final solution, but did not have a scan of the
student’s PAR packet. These were students who turned in their assignment separately
from the rest of the class, and as a result some assignments did not get scanned. I
dropped these four solutions from the analysis. I had a total of 122 PAR packets to
analyze, each with an initial and final solution.

To measure the impact of PAR on student solutions, I blindly re-scored each
student’s initial and final solutions. Although I did not conduct double scoring to
establish inter-rater reliability, the purpose of this analysis was to investigate changes
in scores, so any systematic biases in scoring should be present in both the scoring of
initial and final solutions.

Results

The sampled students turned in all of their PAR homework assignments, except for two
students in the Low group didn’t turn in PAR14 (the final problem). This was a 98 %
completion rate for PAR homework assignments. In contrast, the comparison section
had only a 70.2 % completion rate for the same problems.

The distribution of initial scores is given in Fig. 10. Students in the Low and Middle
groups had relatively similar distributions of scores; neither group achieved any scores
of 9–10, and most of the scores were distributed from 0 to 5 points. In contrast, students
in the High group had a very different distribution of scores: some students achieved
scores of 9–10, and the majority of initial scores were distributed between 4 and 8.

Figure 7 provides the distribution of final scores on the PAR problems. Of the three
groups, only the High group achieved a considerable amount of 10 scores; there were
no scores of 10 in the low group. In the Middle group there were a number of 8 and 9
scores, with some 8–9 scores in the Low group as well. A comparison of Figs. 10 and
11 shows a considerable shift in the distribution of PAR scores after revision.
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Of the solutions in the experimental section that were turned in, there were only
three instances in which the students did not revise their work from initial to final
solution. It was a single student in the Middle group who did not revise twice, and a
student in the Low group who did not revise once. Students in all groups significantly
improved their solutions after revision, as evidenced by Table 11.

The data in Table 11 suggest that students in the Middle group benefitted most from
PAR. To better understand these results, I looked at the distribution of revision scores. I
grouped the amount of change for each group into four categories: no change, 1–3
points change, 4–7 points change, and 8–10 points change (see Fig. 12).

Figure 12 shows that students in the High group were most likely to make small or
medium improvements to their solutions. Students in the Middle group were the only
group of students that consistently made large improvements to their solutions. Stu-
dents in the Low group were least likely to benefit, making small gains more often than
the other students. To better understand the 12 students who improved their scores by
8–10 points, I analyzed their PAR conversations and consulted my daily field notes. I
identified two potential explanations for such drastic improvements: PAR conversations
and office hours. The results are summarized in Table 12. The PAR conversation was
considered as a potential source of improvement: (1) if a student’s partner correctly
solved the aspect(s) of the problem that the student was struggling with, or (2) the major
errors were discussed in the conversation or written feedback. I considered office hours

Fig. 10 Distribution of initial PAR scores

Fig. 11 Distribution of final PAR scores
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as the source if I had documented working with the particular student on that problem
during office hours. Without observations of students’ revision processes I do not have
sufficient data to claim that these processes caused improvement, but the results suggest
that PAR may support meaningful revisions in these ways.

Discussion

All students made significant improvements to their homework solutions as they
revised from initial to final solutions. Students in the Low and Middle groups had
similar distributions of initial PAR scores. However, students in the Middle group were
much more likely to considerably improve their solutions after revision. These data
suggest that one of the key differences between students who scored in the Low and
Middle groups may be how they benefited from PAR and their revisions. Table 12
indicates that when students made considerable improvements in their revisions it was
mostly due to their PAR conversations and additional time spent working on the
problem after their conferences.

The help-seeking literature suggests that students with moderate need are the most
likely to seek help (Karabenick and Knapp 1988). This is consistent with the finding
that students in the middle group were the most likely to improve as a result of seeking
external help. However, the students in the low and middle groups had relatively
similar initial scores, so it is unclear what factors may have caused some of them to
seek help while others did not. In general, low-performing students may be less likely
to seek help due to low self-efficacy or negative emotions related to failure (Karabenick
and Knapp 1988), which may have been factors at work here. This is an area for future
research.

Table 11 Average PAR scores, by group

Initial score Final score Change t p

High 5.09 7.98 2.89** 8.95 3.4·10−11

Middle 2.82 6.55 3.73** 7.73 1.8·10−9

Low 2.78 5.60 2.82** 6.31 2.6·10−7

Fig. 12 Distribution of revisions
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PAR Mechanisms

Materials and Methods

To understand student experiences with PAR, I analyzed interviews from Phase II. I
focused on Phase II data because there was a much higher response rate than Phase I,
which meant the interviews were more likely to represent a range of opinions. The
following analyses focus on the first interview question that was asked: BLet’s discuss
the PAR; what’s working well and not so well for you?^ I focus on this question,
because it was likely to elicit a balance of positive and negative aspects of PAR.

After transcribing student responses, I read through all of the transcripts multiple
times to identify themes. After a set of themes was identified, I developed codes, both
for positive and negative reactions. Using this set of codes I re-analyzed each student
response and marked whether or not each code was present.

Results

Of the codes that were developed, six appeared most frequently in the data. Codes were
only included if they described responses from at least two students. These codes and
their frequency in the data are summarized in Table 13. Given the frequency of positive
and negative reactions, students were generally quite positive towards PAR.

The positive student reactions described four mechanisms of PAR that appeared to
support learning. PAR required students to work in iterative cycles: students made a
preliminary attempt at a problem, received feedback and thought about the problem
more deeply, revised, and turned in their final solution. Within these iterative cycles,
students encountered new ideas to support their learning: by discussing with peers, by
explaining and hearing explanations, and by seeing the work of others. These four
sources can be consolidated into the acronym IDEA, meaning Iteration, Discussion,
Explanation, exposure to Alternatives. I now discuss these mechanisms. The student
quotes given below are intended to exemplify each category of student responses.

Table 12 Potential sources of considerable improvement on PAR problems

Source Office hours PAR conversations Undetermined

Number of students 5 5 2

Table 13 Frequency of student reactions to PAR (N=22 interviews)

Positive reactions Negative reactions

Iteration Discussion Explanation Alternatives Workload Both confused

6 13 9 11 2 8
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Iteration

Rather than viewing homework as something that is attempted once, turned in, and
forgotten about, PAR forced students to revisit their work. As a result, students seemed
to view their first draft of the problem as a work in progress, and didn’t expect it to be
correct. Six students noted this in their interviews. As Barry said,

I like the PAR. It’s like we get to come to class and be wrong, and that’s okay.
Then later we get to revise our work and be right.

Mike made a similar remark,

PAR is good. I like how we can put our initial solution down, and even if it’s
wrong it doesn’t really matter, because we can just talk about it with a group
member the next day, and figure it out together. And generally you don’t get stuck
on a wrong solution, you figure it out.

This activity structure seemed to increase students’ perseverance. Rather than giving up
when they could not solve a problem on their own, students seemed to realize that getting
input from peers, the instructor, or other resources was often sufficient to help them solve
challenging problems. This perseverance was evident in students’ homework assign-
ments; the number of students who fully completed the challenging PAR problems in the
experimental section was much higher than in the comparison section (98 % vs. 70.2 %).

Discussing the Problem Together

Most students appreciated the opportunity to collaborate with their peers. More than
half of the students (13 of 22) noted this. As Tom said,

I like the PAR because it got you to interact and communicate with the other
students…no one likes to just watch someone talk at a board all day. The self
teaching and student interaction helped…PAR helps us be more social, so you
can talk to other students, set up study groups, and get to know your classmates.

The value of student discussions was exemplified by the first example provided in this
paper, in which Peter and Lance revised their methods for approximating error.

Explanation

Many students came to appreciate the importance of explaining their ideas. Nine
students made mention of this. As Barry noted in his interview,

I like the PAR. I’d take it over the other homework. You do about the same
amount of work, and I think you learn more from it. You have do explain what
you did, rather than just say here, I got this magical number. You actually
understand the process and I think that helps more in learning than just getting
the magical number.
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As Maria said, PAR helped her learn:

how to make it easier to read from another person’s perspective. It’s one thing if I
think it looks good, but other people look at it and say it doesn’t make
sense to me. So it helps me figure out how to communicate better. It
helps me to explain things in a way that is readable to others and not just
myself.

Exposure to Alternatives

Students sometimes recognized errors in their own solutions simply by looking at one
another’s work. Half of the students (11 of 22) noted this. As Harry said,

I really like looking at other people’s initial models. I can see what they are
thinking, it puts me in their head, and I can see that. A lot of times I’m really
wrong and I can see different ways to do the same thing.

This was also evident in students’ conversations. Consider the following excerpt
from PAR7. As soon as the students finished silently reading one another’s work,
Revati exclaimed that she saw her errors,

[1] Revati: I know I did it all wrong. I was reading yours and was like, Boh my
goodness. How did I miss this?^ Okay, so. You did a really good job explaining,
so you have all that right. And your math is all correct so… good job! You could
have turned this in as your final and gotten 100 %

[2] Federico: Okay, thank you. Em, well I think now you know the errors?

PAR provided students with opportunities to analyze, explain, and discuss the work of
their classmates. These opportunities seemed to help students make mathematical
connections and develop deeper understandings of the problems. Students in compar-
ison sections rarely had opportunities during class sessions to explore their peers’
reasoning in depth.

Negative Reactions to PAR

Although students were generally positive towards PAR, there were areas that students
felt could be improved. The most common criticism of PAR was that sometimes both
partners would get stuck and that made it hard to make progress on the problem (8 of
22 students noted this). As Michelle said,

If it’s a confusing problem we just get together and talk about how neither of us
know what is going on or we have no idea how to do it.

The other main issue that students had (only two students noted) was the amount of
work required by the course. Given the large number of assignments they had, PAR felt
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like it was too much on top of an already overloaded course. This criticism was not of
PAR specifically, but of the organization of the course.

Conclusion

This paper focused on how reflection tools could promote improved understanding of
calculus. Through cycles of problem solving, reflection, feedback and analysis, and
revision, students had opportunities to exercise disciplinary authority and were held
accountable to their peers (Engle and Conant 2002). PAR was supported by training
exercises that helped students learn to analyze work and provide feedback. The PAR
activities were conducted using a rich problem set, which provided opportunities for
students to explain their ideas and compare multiple solutions with one another.
Although these problems seemed to be an important part of the intervention, by
themselves they were insufficient; these problems were also assigned in Tom’s exper-
imental section during Phase II with little impact.

Students in the PAR sections were given some opportunities to explain their ideas
during class and engage in group work to support PAR. Although in-depth analyses of
classroom activities are beyond the scope of this paper, similar activities were observed
in some of the comparison classrooms as well (e.g., Heather’s and Sam’s sections).
Accordingly, it seems reasonable to assert that the standard classroom activities in the
PAR sections were not considerably different from the comparison sections; PAR was
implemented in a primarily lecture-based environment, which was typical of calculus
instruction at this institution.

Success rates in the experimental sections were higher than the comparison sections,
13 % in Phase I (marginally significant), and 23 % in Phase II (statistically significant).
This demonstrated the impact of PAR on student success (research question one). These
are impressive gains, showing that the impact of PAR compares favorably with other
active learning interventions in STEM (Freeman et al. 2014). Moreover, these gains
were replicated over two semesters. These gains are important, because student success
in calculus remains an area of concern. The persistence rates were also higher in the
experimental sections during both phases of study; it is possible that the community-
building aspects of PAR may have made students less likely to drop the course.

Improvements were also apparent on exam scores during Phase I (experimental vs.
comparison, same instructor: 6.19 %; and experimental vs. comparison, other instruc-
tors: 5.71 %) and Phase II (experimental vs. comparison: 11 %). Students improved
numerically on all aspects of their exams, both explanations and procedures (research
question two). These are considerable differences, especially given that the experimen-
tal sections included more students who would traditionally drop out of the course. No
significant differences were apparent on Exam 1, which provides a proxy for a baseline
pre-test score to establish the comparability of students in different sections. A com-
panion paper (Reinholz forthcominga) focuses more directly on student explanations,
and provides results consistent with the present findings.

During Phase I, Michelle taught two sections to control for teacher effects.
Michelle’s comparison section performed similarly to the other comparison sections,
which suggests that improvements can be attributed to PAR, not the teacher. During
Phase II, teacher effects were not controlled for specifically. As a result, it is possible

262 Int. J. Res. Undergrad. Math. Ed. (2015) 1:234–267



than some improvements may be attributed to the particular instructor, but given the
impact of PAR during Phase I, and the improvements to the design for Phase II, it is
unlikely that improvements can be attributed entirely to teacher effects. A goal of future
studies would be to further replicate these results through a randomized experimental
design.

The present study also makes an important contribution to literature on assessment
for learning. Despite a large body of work on peer assessment, most of it has focused on
calibration between instructor and peer grades, not how assessment can be used to
promote learning. PAR demonstrates the effectiveness of such techniques, particularly
in a content area where such practices are uncommon. Moreover, the iterative nature of
PAR seemed to help students develop the perseverance required to solve challenging
problems. The impact of PAR on student dispositions is an area for further study.

Design-based revisions provided greater affordances to support student learning
(research question three). In particular, students worked with random partners, had
regular training opportunities, and used streamlined self-reflection and peer-feedback
forms. The underlying principles of having students analyze each other’s work and
provide feedback to each other appear to be productive activities that may work in a
variety of contexts.

PAR was developed with two very different student populations in different con-
texts: primarily traditionally underrepresented minorities in a remedial algebra class and
mostly White students in introductory college calculus. Since this initial study, PAR has
been used in differential equations, introductory mechanics (physics), engineering
statics, and thermodynamics. Given that PAR has been implemented in a variety of
contexts, it appears to be a general method that could be effective across a broad variety
of STEM learning contexts. To implement PAR and the corresponding training activ-
ities requires no more than 20 min of in-class time each week, which means that it is
possible to include PAR as a part of a variety of different classrooms. As the impact of
PAR is studied in new contexts, it will provide further insight into the activity structure
and how students learn through peer analysis.
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Appendix A: Self-Reflection Form (Phase II of Study)
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On a scale from 0% to 100%, how confident do you feel in your solution? _______

Completeness, Organization, and Labeling

Did you answer all questions asked, showing all steps, in the proper order?   Yes____ No____

(If applicable) Did you label and explain all graphs, include units, etc.?   Yes____ No____

Explanations

Did you explain why (not just what)?   Yes____ No____

Use of Language

Did you avoid the use of pronouns (and other ambiguous language)?   Yes____ No____

(If applicable) Did you consult definitions of mathematical terms you used?   Yes____ No____

Justification

Did you justify your solution (in at least 1 of the following ways):    Yes____ No____

By checking if answers to different parts of the question are consistent?

By explaining (in writing) how you know your solution is correct?

In some other way? If so, how? __________

Note: Show explicitly on your solution how you justified your solution.

(Optional:) Is there anything in particular you’d like to discuss with your partner?



Appendix B: Peer-Feedback Form (Phase II of Study)
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