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We use  the  DNR  framework  to  analyze  a classroom  episode  introducing  negative  inte-
ger  exponents,  comparing  and  contrasting  our  analysis  with  Sfard’s  recent  commognitive
analysis  of  a similar  episode  concerning  multiplication  of signed  numbers.  Students  in both
episodes  objected  to the  standard  rules  for  integer  products  or exponents,  and  they  per-
sisted  in  preferring  their own  rules  even  after  the  teacher  justified  the  standard  ones.  We
examine how  pattern-based  justifications  may  not  address  students’  intellectual  needs,  and
we  suggest  other  pedagogical  strategies  that  promote  student  reasoning.

© 2013 Elsevier Inc. All rights reserved.

. Introduction

Students face many challenges as they confront new mathematical ideas, especially ideas that extend the scope of previ-
usly secure knowledge, or require its modification. Brousseau (1997) distinguished between epistemological obstacles and
idactical obstacles in this regard. Epistemological obstacles are inherent in resolving tensions between the new material and
xisting conceptual schemes, and may  exhibit parallels with the historical path of development of the new ideas. Didactical
bstacles result from the particular teaching strategies employed, either in presenting the new material or earlier in laying
he foundations of the existing knowledge. Particular didactical obstacles might thus be avoided by alternative pedagogical
hoices. Epistemological obstacles cannot be so avoided, but can actually be beneficial for developing students’ mathematical
hinking.

New material that students learn might take the form of theorems deducible from current knowledge, or might consist
f definitions or conventions logically independent of it.1 For example, the Pythagorean Theorem follows from appropriate
eometric foundations, but the definition of a zero exponent is a pure convention. One might define the term convention so
roadly that it includes all mathematical choices that are not forced upon us logically, including the choices of foundational
xioms and definitions. However, this is far more inclusive than our present interest. For us, a convention is an agreement
bout what a mathematical term or notation will mean, often extending the scope of an existing term like “multiplication” to
 larger set of numerical arguments in a way that preserves certain properties. For example, even after the concept “factorial”
s defined, the notation 0! is still meaningless. The convention that 0! = 1 simplifies certain formulas. Another example of a
onvention is that

√
x denotes the positive square root. Teachers may  create didactical obstacles, such as confusion between

∗ Corresponding author. Tel.: +1 858 5342904.
E-mail addresses: jrabin@ucsd.edu (J.M. Rabin), fuller.evan@gmail.com (E. Fuller), harel@math.ucsd.edu (G. Harel).

1 The term theorem may  seem pretentious at the middle school level, but we  adopt it to stress the distinction between what is provable and what is
greed upon by convention.
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definitions and theorems, if they are not aware of which category the new material belongs to and/or do not make their
students aware of it.

The distinction between theorems and conventions is actually more subtle than it initially appears. For example, a the-
orem may  depend on previously adopted conventions: the theorem that every integer greater than 1 has a unique prime
factorization depends on the convention that 1 is not considered to be a prime number. For a useful analogy, consider a
game such as chess. The rules of chess are conventions, adopted because they lead to an interesting and enjoyable game.
They did not have to be what they are, and indeed they evolved over time. However, once these rules are adopted, there
are objective facts (theorems) about chess. For example, a king and queen can force checkmate against a lone king. Math-
ematics develops, both historically and in the classroom, in a cycle of adopting conventions, proving theorems about their
consequences, adopting further conventions, and so on. It is a legitimate part of this process to “look forward”, exploring the
consequences of alternative possible conventions before deciding which one to adopt. Furthermore, what is a convention in
one instructional treatment of some topic may  be a theorem in another: when there are equivalent definitions of the same
concept, either one can be adopted as “the” definition and the other is then a theorem. Within a particular instructional
treatment, however, it should be clear what is agreed upon as a convention and what is justified as a theorem. Students (and
teachers) are often unaware of the major role of conventions in mathematics, and we believe this role should be made more
explicit in the classroom.

In this paper we are concerned with the introduction of new material in one topic area: negative integers and arithmetic
operations on them. This involves a dramatic extension of the previously developed whole number system. It depends on
specific conventions, and it presents both epistemological and didactical obstacles. Our discussion focuses on a classroom
episode in which the teacher introduces negative integer exponents. We  compare and contrast it with similar episodes
involving multiplication of signed numbers as presented and analyzed by Sfard (2007).

Sfard’s analysis is based on her theoretical framework of commognitive conflict. Learning about negative numbers is
framed as the acquisition of a new discourse that is incommensurable with the old discourse of natural numbers. The ter-
minology recalls Kuhn’s analysis of scientific revolutions (Kuhn, 1970), according to which these result in such a dramatic
revision of concepts and terminology from the old science to the new that statements in one scientific language cannot even
be translated into the other, let alone arbitrated by some common set of criteria. Therefore Sfard seems to view the episte-
mological obstacles involved in this negative number “revolution” as far outweighing any didactical obstacles: “As implied
by the commognitive analyses, the difficulties revealed on these pages, rather than being an unintended result of particular
instructional approaches, were part and parcel of the process of learning” (Sfard, 2007, p. 612). We  think this implicit labeling
of the difficulties revealed by her analysis as epistemological leads to an undue pessimism about the potential for didactical
improvement.

Our own analysis is based on the DNR theoretical framework (Harel, 2008a, 2008b), as outlined below (the initials stand
for the three central principles of the framework: Duality, Necessity, and Repeated Reasoning). Although there are common
elements in the two analyses, we place more weight on the potential for controlling didactical obstacles. Extending arithmetic
to include negative integers does require adopting conventional definitions, but these can be motivated (necessitated, in DNR
terminology) on the basis of existing knowledge and problematic situations (and therefore need not be accepted purely on
authority). Thus, we see more continuity than incommensurability between the existing knowledge and the new material.
We use the Necessity Principle to make conjectures about students’ intellectual needs relevant to learning about negative
numbers, and to suggest alternative instructional treatments addressing these needs.

Our work makes several contributions. First, we extend the limited research on teachers’ understanding of the distinc-
tion between mathematical conventions and theorems (Levenson, 2012) and corresponding pedagogical strategies. Second,
despite copious anecdotal evidence that teachers and students alike are mystified by the rules for signed number operations,
there is surprisingly little research on the basis for their difficulties (one example is Thompson & Dreyfus, 1988). We  apply the
Necessity Principle of the DNR system to conjecture the intellectual needs underlying some student difficulties. Indeed, both
our episode and Sfard’s feature students objecting on intellectual grounds to the justifications presented by their teachers,
which we interpret as evidence that these justifications do not address their intellectual needs. Third, teachers often make
use of numerical patterns to justify mathematical claims. We  confirm Sfard’s observation that such justifications may  not be
convincing to students, or even understood by them as justifications. Our analysis indicates why  pattern-based justification
may  not address students’ needs and what strategies might improve on it. Finally we provide examples of how an analysis
based on the Necessity Principle can lead to concrete pedagogical recommendations.

2. The signed number multiplication episodes

In examining mathematical discourse, Sfard (2007) analyzed teaching episodes concerning the rule for multiplication
of signed numbers. These took place in an Israeli junior secondary school in a class of 12–13-year-old students. The class
was observed over 30 1-h meetings devoted to the topic of negative numbers, and the discussion of multiplication of signed

numbers spanned several class periods. The observations of interest began when students were given the task of deciding the
value of the product of a positive number with a negative number, e.g. (+2) × (−5). One group decided that multiplication by
+2 means adding the other number to itself, so the answer is −10. However, another student, Roi, argued that the unsigned
product 10 should always be given the sign of the “bigger number” (in absolute value). This leads to the same answer in
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his case, but for example (+7) × (−5) would be +35 (since 7 > 5).2 A class discussion ensued, and not only did the students
ail to collectively agree on the “correct” rule as the teacher had expected, but the majority endorsed Roi’s proposal. We
ote that the teacher had provided students with three visual representations to support their thinking: the number line,
rrows (vectors on the number line), and “magic cubes” which increase or decrease the temperature of a liquid they are
dded to by one degree. However, these representations did not seem to play any significant role in the students’ thinking
r argumentation in the episodes quoted. Ultimately, the teacher resolved the debate using her own authority:

T: I want to explain what Sophie [an advocate of the “correct” rule] said. What she said is true . . . and this is the right
answer.

During a subsequent class, students were asked to determine the value of a product of two negative numbers, e.g.
−3) × (−2). Without a positive factor, there is no interpretation in terms of repeated addition, and most students could not
btain an answer, although Roi’s rule is still applicable (and incorrect). The teacher then presented a “derivation” based on
eneralizing a pattern:

2 × 3 = 6
2 × 2 = 4
2 × 1 = 2
2 × 0 = 0

ontinuing this pattern, one should conclude that

2 × (−1) = −2
2 × (−2) = −4

nd so forth. Having substantiated Sophie’s rule for positive times negative, the teacher began anew with a similar pattern:

3 × (−3) = −9
2 × (−3) = −6
1 × (−3) = −3
0 × (−3) = 0

nd “therefore”

(−1) × (−3) = +3
(−2) × (−3) = +6

nd so forth: negative times negative is positive.
The response of the students to this attempted justification is interesting: they rejected it. One said:

Shai: I don’t understand why we need all this mess. Is there no simpler rule?

ophie herself was dismissive:

Sophie: And if they ask you, for example, how much is (−25) × (−3), will you start from zero, do 0 × (−3), and then
keep going till you reach (−25) × (−3)?

That is, rather than interpreting the pattern as an attempt at justification, she viewed it as a needlessly cumbersome
omputational algorithm [to find (−25) × (−3), one has to list all products from (−1) × (−3) to (−25) × (−3), increasing the
esult by 3 each time]. Indeed, the teacher used the word “compute” to describe what she was doing at one point (Sfard,
007, p. 591). In the end, students remained confused about how to operate on negative numbers.

. Theoretical framework

Sfard’s (2007) analysis of the preceding episodes is based on her commognitive (“communication” + “cognition”) approach
o the study of learning. Basic tenets of this approach include the following. Thinking is the individualized form of com-
unication, that is, communication with oneself, and it originates in interpersonal communication. Mathematics is a
orm of discourse, and thus “Learning mathematics may  now be defined as individualizing mathematical discourse, that
s, as the process of becoming able to have mathematical communication not only with others, but also with oneself”

2 Sfard suggests that Roi is generalizing from a definition of addition of a positive and a negative number: subtract the unsigned numbers, and attach
he  sign of the bigger number.
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(Sfard, 2007, p. 573). Two types of such learning may  be distinguished, namely object-level learning, which is the expansion
of the existing discourse, and meta-level learning, which involves changes in the meta-rules of the discourse. This dichotomy
recalls Kuhn’s distinction between normal science and revolutionary science (Kuhn, 1970). Normal science applies estab-
lished methods to solve well-defined problems, and provides criteria for recognizing acceptable solutions. In revolutionary
science, fundamental definitions, procedures, and theories may  change, and the resulting new science has been held to be
incommensurable with the old. When student and teacher employ different discourses, the student encounters a commog-
nitive conflict,  “a situation in which communication is hindered by the fact that different discursants are acting according to
different meta-rules (and thus possibly using the same words in differing ways)” (Sfard, 2007, p. 574), which may  eventually
result in the student adopting the teacher’s new discourse. Sfard endorses the view that such discourses are incommen-
surable, so that in a sense the student cannot have good intellectual reasons to adopt the new discourse as long as she
remains within the conceptual framework of the old. Commognitive conflicts are not factual disagreements that could be
resolved by appeal to objective features of the world or by mathematical proof, but rather disagreements about the adoption
of conventions governing discourse. Thus, students must gradually accept the new discourse based on the teacher being an
“expert interlocutor” and can only later figure out the “inner logic” of the new discourse.

Sfard observes that the topic of negative numbers is particularly likely to precipitate a commognitive conflict, one of
the first such genuine conflicts that learners have experienced in mathematics. In their experience with natural numbers,
mathematical claims were ultimately grounded in the properties of an obvious physical model, for example by counting
discrete objects. Negative number operations lack such an obvious model,3 and discourse about them is governed (implicitly,
for students at this level) by the choice of certain axioms (notably the distributive property) that this extension of the concept
of number is required to preserve. This change in the meta-rules of discourse and justification creates a commognitive conflict.

Our analysis of a similar episode involving the adoption of rules for operations on negative numbers is based on the
DNR theoretical framework (Harel, 2008a, 2008b). The premises and principles of this system are wide-ranging, and we
summarize only those most relevant to our analysis. The most important for us is

The Necessity Principle: For students to learn what we  intend to teach them, they must have a need for it, where
“need” means intellectual need, not social or economic need.

What makes this principle effective in the analysis and design of teaching and learning situations is an explicit list of
types of intellectual need that have historically led to the creation of new mathematics (both content and methods) (Harel,
2008b, 2013), and that can be pedagogically fostered in the classroom (Fuller, Harel, & Rabin, 2011); A synopsis of this list
follows:

The Need for Certainty: the need for proof; to remove doubts or determine whether a claim is true or false.

The Need for Causality: the need to explain; to understand what makes a phenomenon occur, or what makes a claim
true. Note that there are proofs, for example by contradiction, or by exhaustively verifying a large number of cases,
which arguably do not explain.

The Need for Computation: the need to quantify, to calculate exact or approximate values, as well as to improve the
efficiency of algorithms.

The Need for Communication: the need to persuade others, to adopt unambiguous definitions and notations, to agree
on standard forms of expressions, arguments, or algorithms, [in Sfard’s terms] to agree on the meta-rules of discourse.

The Need for Connection and Structure: the need to organize knowledge into a structure, to generalize or subsume,
to determine unifying principles or axioms.

Learning in DNR is defined as “a continuum of disequilibrium–equilibrium phases manifested by (a) intellectual and
psychological needs that instigate or result from these phases and (b) ways of thinking and ways of understanding4 that are
utilized and newly constructed during these phases” (Harel, 2008b; Harel & Koichu, 2010). Thus, learning is not principally
about communication, but about the construction of new knowledge in response to intellectual needs. To necessitate a
piece of mathematical knowledge in DNR is to embed the knowledge in a problematic learning situation that appeals to or
stimulates one or more of the listed intellectual needs. DNR-based instruction presumes as a working hypothesis that this
can be done: students can develop intellectual reasons to extend their existing knowledge. This notion includes and clarifies
what is often called “motivation” for adopting conventions. We  will present concrete pedagogical suggestions for bringing

this about in Section 6.

DNR also contains a typology of proof schemes, ways of thinking that individuals may  use to satisfy their own  need for
certainty, even if the mathematical community does not regard them as conclusive or correct (Harel & Sowder, 1998). These

3 Models for negative number operations are readily available in the modern world—elevators, temperatures, credits/debits, and so forth—and these are
used  in many textbooks, but such models are initially incompatible with those that students have previously relied upon for natural numbers. Reconciling
the  new and old models requires reflective abstraction, to use Piaget’s terminology. This is an epistemological obstacle.

4 Ways of thinking and ways of understanding are technical terms in DNR, linked by the Duality Principle. Roughly, ways of thinking are mathematical
habits of mind, while ways of understanding are concrete products of mathematical activity such as theorems, proofs, or algorithms.
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nclude accepting claims on another’s authority (authoritative proof scheme), appealing to observation, measurement, or a
imited number of examples (empirical proof schemes), and various forms of logical reasoning (deductive proof schemes). As

ore specific examples, we mention Result Pattern Generalization (RPG), an empirical proof scheme in which, for example,
he universal validity of a numerical pattern is accepted based on the verification of a limited number of examples (results),
nd Process Pattern Generalization (PPG), a deductive proof scheme in which the validity is established by reasoning on the
asis of the process that generates the pattern (Harel, 2008a).

. The negative exponents episode

The new episode we will analyze comes from a larger study that we have discussed elsewhere (Harel, Fuller, & Rabin, 2008;
arel & Rabin, 2010). Classroom observations were made of several teachers who had participated in a DNR-based summer
rofessional development program. This episode occurred in a tenth-grade Algebra 1 classroom in the southwestern United
tates, so the students were somewhat older (about age 15) and more advanced than those in Sfard’s study. The teacher’s
oal was to introduce negative integer (and zero) exponents and the rules for working with them. Our data consist of
ideotapes (which were transcribed) of the class, and notes from a debriefing conversation with the teacher a few days after
he lesson.5 We  did not interview the students or collect their written work. However, the camera zoomed in on about half

 dozen students’ papers, allowing us to read their work. The episode unfolds over about 25 min, half the class period.
Students had previously worked problems involving exponential growth, particularly repeated doubling, and the teacher

anted to lead them to the definition of negative integer exponents. Referring to a problem in the textbook, he said:

T: What I’d like you to do is work with a neighbor . . . and finish the rest of that table. Let’s see if you can figure out
the rest of the numbers that go into it. Real quick . . . figure out the table.

The table in question is the following:

y = 2x y = 5x y = 10x

22 = 4 52 = 25 102 = 100
21 = 2 51 = 5 101 = 10
20 = � 50 = � 100 = �
2−1 = � 5−1 = � 10−1 = �
2−2 = � 5−2 = � 10−2 = �

Based on his instructions, his behavior throughout this episode, and the debriefing conversation, it was clear that the
eacher expected this activity to be easy, unambiguous, and convincing for the students (“Real quick”), perhaps because
f their experience recognizing patterns and applying Result Pattern Generalization. More importantly, he seemed to view
his as an instance of determining unique correct answers (“figure out the rest of the numbers”) rather than agreeing on a

athematical convention. Students worked for about 10 min  as the teacher circulated to help them. Some were confused,
ut many completed the table according to the nonstandard (but visually appealing) pattern that a−x = −ax. Various students
ook a0 to be 0, 1, or a. No worksheet visible in our videotape contained fractional entries as required by the “correct” pattern,
nd no student advocated fractional values during the class discussion.

From the viewpoint of RPG, the students’ pattern is as logical as the teacher’s intended answer. The limited set of examples
n the table allows many plausible generalizations. While working with individual students, and then while addressing the
ntire class, the teacher repeatedly directed their attention to a table of positive powers of 2 [extended from the first column
f the textbook table; note the similarities with Sfard’s last episode], pointing out the pattern that 2x is halved when x
ecreases by 1 and explicitly directing them to continue this pattern. However, they still resisted extending the pattern to
ractional entries, and the teacher’s growing frustration became apparent. Eventually, he tried an independent visual source
f justification, using a computer projector:

T: Okay, let me  get your attention for a second. Maybe this will illustrate it in a different way. What I’ve done on the
screen is I’ve graphed a function. It’s y = 2x.

The graph he displayed was the standard one that any calculator would produce for this function, with the entire real
xis as domain: a continuous curve extending to negative as well as positive values of x, having positive slope and concave
p. He pointed out that indeed the graph shows that decreasing x by 1 halves y, even when x is negative. This appeal to the
mpirical proof scheme (visual evidence) still did not convince students, who argued, for example:
S1: I’m confused because I don’t understand how the 2 and the 1 [presumably meaning the negative exponent −1]
equal ½.  I thought that would be a −2. Because I’m confused.

T: Okay, that’s logical reasoning.

5 The conversation, conducted by one of us, was designed to help the teacher reflect on his goals for the lesson and to what extent the classroom activities
chieved them. As part of it, the teacher viewed some excerpts from the videotaped lesson.
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S1: Even though that’s a pattern it doesn’t work.

T: What’s happening each time? This is getting halved each time, right?

S1: I don’t understand that. I don’t understand how 2 to −1 could equal ½?

S2: Yeah, it looks like it was going to be a negative.

T: Can you see what was happening on the curve over here? Regardless of where I looked at the curve.

S1: I know, but when we did two positive ones you got 2, so when you get two negative ones would be negative [some
students still use this language for exponents, so e.g. “two positive ones” seems to mean 2+1].

S2: That’s what I thought, too.

T: You thought this [y coordinate for x = −1] would be a −2?

S2: Yes, because it’s −1.

T: [considering how the graph would look if the student were right] So it would go from, our line would come down
here, and when it went to −1, all of a sudden it jumps down to −2, −4.

S1: [inaud]

T: Okay, let me  see if I can think of a reason why it doesn’t do that. Let me  go a little bit longer here and see if you can
accept what I’m describing.

At the board, the teacher filled in the empty cells in the table, emphasizing the “correct” pattern of repeated division by
2, 5, or 10. Students saw the pattern but were still not convinced:

S: I get the pattern and why you’re doing it, it’s just dividing itself. But I don’t understand, I don’t know . . . But how
does 2? Forget it. I just don’t get how it could go like that.

Another student seemed to be confusing 2−x with (−2)x, because she expected the sign to alternate for even and odd
values of x. Of course, that would be another plausible candidate definition.

The disagreement continued, and eventually the teacher had to present the “correct” definition a−x = 1/ax purely on his
own authority, giving the social need:

T: This is what you need for your homework.

Various explanations can be suggested for the students’ difficulties in accepting the teacher’s desired answer. On the
simplest level, they may  be confusing 2−x with (−2)x or even 2(−x). They may assume that a sign change in a problem causes
a sign change in the answer, or they may  be avoiding fractions because of discomfort with them. On the other hand, some
of their statements suggest a Need for Causality, or for Computation. Despite seeing the pattern, S1 does not understand
“how the 2 and the 1 equal ½”: what formula or process with inputs 2 and 1 gives the output ½? (The fragment “But how
does 2?” may  express the same need.) That is, students believe there must be a rule for computing 2x when x is negative,
involving 2, x, and multiplication, as there is when x is positive. Since division is not involved, such a rule should give a
negative integer result, not a fraction. Merely fitting into a pattern in a table does not sufficiently explain what causes 2x to
have a particular value; only a computational rule can do so for them. Although a−x = 1/ax is a computational rule, it does not
seem satisfying to students. We conjecture that this is because students’ understanding of exponents involves multiplication
rather than division, so any computational formula for exponents should involve multiplication but not division. We  note
that Sfard’s students also seemed uncomfortable with the pattern-based justification (which, in that case, they interpreted
as an unnecessarily cumbersome algorithm), preferring Roi’s computational rule. Sfard (p. 593) cites Roi’s comment that
“there must be a law, one rule or another” as evidence that the students’ discourse assumes that “whenever one dealt with
entities called numbers, there had to be formulas that would tell one what to do”. We  interpret this as the same sort of Need
for Computation that we identify in our episode.

We emphasize that our attribution of a Need for Causality or Computation to the students is conjectural. Methodologically,
the best evidence for an intellectual need is what eventually satisfies that need, or could satisfy it (Harel, 2013). Since the
students’ intellectual needs were not satisfied during the lesson, and in the absence of interview data, we offer our own
interpretation of the students’ statements and behavior.

The teacher in our study did an admirable job involving students as arbiters of correctness, but he was hampered by
his belief that what he had to justify is a theorem when it is actually a convention (if this distinction existed for him). This

convention is adopted so that the law of exponents ax+y = axay will hold in greater generality, but this law played no explicit6

role in the class discussion. Consequently, the teacher had no deductive argument for preferring his desired pattern to those
advocated by students. The teacher appealed to the graph of y = 2x, which he displayed for the class. During the debriefing

6 This law is implicit in the teacher’s insistence that 2x−1 should always be half of 2x , although he may  not be aware of the connection.
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onversation, he said, “I didn’t think it was going to be that difficult. I had a graph on the sketch pad so I could show them
hat y is halving all the way down through. And to me,  walking into the classroom, this is the evidence, how can they argue
ith that?” This justification is purely empirical and authoritative. So far, in this classroom, the function 2x is defined for
atural numbers x only. What is at issue is precisely how to define it for negative (let alone rational or real) x. A full graph
annot be drawn until after this issue is resolved. When a student questions why  the graph could not look different, the
eacher takes this objection seriously and acknowledges that he has no convincing reason. However, the logical relationship
etween graphs and functions is never clarified: a function must be defined before it can be graphed (unless one takes the
raph itself as the definition).

We  note that reflection on the meaning of exponents and how this changes to admit negative exponents could be another
eans by which to persuade students to adopt the correct rule. One could alter the interpretation of exponents so that while

n for a natural number n means a × a × · · · ×a (n times), a−n would mean “undoing this:” i.e. the number that, when multiplied
y a × a × · · · ×a (n times) gives 1. Of course, this effectively makes a−n the multiplicative inverse of an and thus is similar
easoning to using the law of exponents, and it would require further alteration to extend to rational exponents. Reflection on
he meaning of exponents, even for natural numbers, played almost no role in the classroom discussion. The slight exception
not quoted above) was the teacher rejecting a student suggestion that 2−4 = 2(−2)(−2)(−2)[sic] because it is not multiplying

 by itself.
One might ask, in Sfard’s episodes as well as our own, whether the teachers’ reliance on patterns is an instance of RPG or

f PPG? As in PPG, the teachers’ arguments do emphasize the process generating the pattern and not merely the empirical
esults of a few examples, but we hesitate to call their presentations deductive. In fact, the question is based on a false
remise. Recall that RPG and PPG are both classified as proof schemes: they are intended to address the Need for Certainty.
hat is, there should be a well-defined mathematical question to answer, and a conjecture about that answer to validate. The
uestion itself specifies the process intended to generate all the examples that should fit the conjectured pattern. For example,
sking for the sum of the first n consecutive odd natural numbers specifies the process that generates every specific instance
f this question. The conjectural answer, n2, could be justified by PPG reasoning amounting to mathematical induction
perhaps informal). However, in Sfard’s episodes and ours, the issue (from our perspective) is not one of achieving certainty
egarding a conjecture, but rather necessitating the adoption of a mathematical convention.7 This is not the intended context
or RPG or PPG reasoning. What is lacking in particular is a good reason, grounded in a well-defined question being asked,
or continuing the pattern.

. Comparison of episodes

The two episodes share many characteristics regarding the mathematical content, the pedagogical strategies, and the
ehavior of the teachers and the students. First, the mathematical content of each episode is the development of rules
or extending mathematical operations from natural numbers to integers. Such rules are mathematical conventions, not
heorems. For Sfard this is a meta-level task, not object level. In DNR, such knowledge would not arise from the Need
or Certainty but rather from the needs for Communication, for Connection and Structure, and possibly for Causality or
omputation. Neither teacher seems to be aware that this content is a convention and not a theorem. Sfard’s teacher says,
s previously quoted,

T: I want to explain what Sophie said. What she said is true . . . and this is the right answer. [Italics added.]

In her notes following the lesson she wrote, “I can see that even my  repeated emphasis on the correct proposal did not
elp.” And Sfard writes (p. 588), “The teacher hoped, however, that the explicit confrontation between the two alternatives
ould soon lead the class to the unequivocal decision about the preferability of Sophie’s proposal.” Our teacher, like Sfard’s,
ses the language of correctness or truth rather than agreement on a convention: “figure out the rest of the numbers”, “this

s the evidence, how can they argue with that?”. The strategies of presentation and justification adopted by both teachers
re surely influenced by their beliefs that they are teaching theorems.

It is essential that teachers be able to epistemologically distinguish mathematical conventions from theorems. Such a
istinction is necessary to be able to focus on changes in the meta-rules of discourse and justification. The curriculum contains
any other examples of content that is conventional in nature, for example, the “PEMDAS” rules for the order of operations,

r the rules for writing radical expressions in simplest or reduced form. Levenson (2012) studied teachers’ awareness of the
istinction between definitions (conventional) and theorems (provable) in the context of zero exponents. She interviewed
hree experienced junior high school teachers in Israel (none of whom majored in mathematics). All three stated that a0 = 1
s a theorem, and only one immediately saw an = a × a × · · · ×a (n times) as a definition. Moreover, only one was  sure that

efinitions could not be proved (and another insisted that some definitions could be proved). Although Levenson’s sample
ize is also small, this suggests that distinguishing definitions from theorems is problematic for many teachers.

7 Some treatments take the relevant properties as formal axioms and prove the rules for products or exponents with negative numbers (see below for
n  example), but neither of these teachers did so.
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Second, both teachers assumed that their students could easily determine and agree upon the “correct” rule. Sfard’s
teacher seemed confident that the “evidence” provided to the students was so compelling as to allow only one outcome,
while our teacher took the halving pattern and the graphical evidence to be incontrovertible.

Third, both teachers used patterns as the primary justification they presented. This may  reflect the familiarity of Result
Pattern Generalization in students’ prior classroom experience. Elementary mathematics curricula often include a large
number of pattern recognition or discovery exercises. Despite contributing to students’ number sense, awareness of patterns,
and ability to make conjectures, they can foster the undesirable belief that merely observing a pattern in a limited number
of examples entails that the pattern is correct and unique. Both textbooks and teachers may  implicitly endorse the empirical
proof scheme by relying on patterns for justification. As illustrated above, in both episodes the students suggested several
other ways of generalizing the results, demonstrating the limits of RPG reasoning.

It is instructive to expand on how the patterns used by the teachers embody the relevant mathematical properties, namely
the distributive property in Sfard’s case and the laws of exponents in our own. In Sfard’s case, the distributive property
a(b + c) = ab + ac is the fundamental axiomatic link between addition and multiplication. The special cases a(b ± 1) = ab ± a
contain the essential information when the variables are integers. Suppose that addition of signed numbers has been defined
already, but multiplication has not. Then for consistency with the distributive property the product ab should be defined
in such a way that increasing (respectively, decreasing) b by one unit increases (respectively, decreases) the product by
a. Starting from a base case such as a × 0 = 0, this determines the “correct” values of all products. In the case of positive
integers, the definition of multiplication as repeated addition embodies this requirement, but a more general viewpoint is
needed for negative integers. This is precisely what the patterns used by Sfard’s teacher accomplish. However, they are not
explained in these terms, and the teacher may  not be aware of the connection. In response to a query like Sophie’s about
needing to extend the pattern to find a large product, a more direct explanation could be emphasized. Suppose a and b are
positive integers. To find a × (−b) using the distributive property, one can notice that 0 = a × (b + (−b)) = a × b + a × (−b), so
that a × (−b) = −(a × b). With this established, a similar argument finds (−a) × (−b).

In our case of negative exponents, the key property is 2a+b = 2a × 2b, or the special case 2a+1 = 2a × 2. For positive exponents
this property is ensured by the definition that exponentiation is repeated multiplication.8 More generally, for integers, it
requires that 2a be defined in such a way that increasing (respectively, decreasing) a by one unit multiplies (respectively,
divides) the result by 2. This was exactly the pattern that our teacher directed the students to employ. The two  contexts are
thus precisely analogous.9

Fourth, neither teacher made explicit the underlying axiom that guided the change in discourse: the desire to preserve
the distributive property in the multiplication episode, or the laws of exponents in the other episode. These axioms provide
a reason—separate from the teacher’s authority—for extending definitions in particular ways. Such axioms often appear
in elementary curricula simply as names for obvious facts about numbers, which students must know but that play no
particular role in justification or problem solving. The teachers presumably know these axioms by name but may  not be
explicitly aware of how they underlie the patterns used or the conventions adopted. However, classroom discussions like
those presented here can provide valuable opportunities for using these axioms in a nontrivial way  and making their roles
an explicit object of mathematical discussion. We  are not suggesting that arithmetic should be taught in a formal deductive
manner starting from such axioms, or that the term “axiom” should even be used. Rather, the axioms function as basic
properties summarizing the classroom community’s experience with numbers and quantities. Reflecting on their role can
be a step toward a future understanding of the deductive structure of mathematics.

Fifth, neither teacher could convince the class that the pattern (s)he preferred was  more correct than, or preferable to,
the alternative proposed by students. The teachers were surprised by the fact that students remained unconvinced, and
struggled to find an explanation that students would accept. It is possible that the teachers had trouble accepting that
more than one pattern can fit a finite set of data or can be persuasive. As for the behavior of the students, in both episodes
they proposed an alternative to the teacher’s rule and clung to it tenaciously; the teacher’s authority rather than his/her
arguments ultimately settled the debate. The students’ alternatives took the form of computational rules, and the students
interpreted the teacher’s attempt at justification as being a computational algorithm that did not make sense (instead of a
pattern-based justification) and rejected it as such.

We  conjecture that the students’ objections were based on their Need for Causality or for Computation. That is, they
needed to know why the outcome of a process of exponentiation or multiplication was a fraction, or had the claimed sign,
and this need was not addressed by the existence of a pattern that the result fit into. They expected a computational recipe
that incorporated appropriate operations to address this need.

6. Pedagogical implementation of the necessity principle
The major didactical obstacle common to both episodes arose from the teachers presenting a situation requiring the
adoption of a convention, but framing the task for students differently: as one of determining a provably correct answer.
This led to confusion and resistance on the students’ part. The DNR framework suggests alternative pedagogical treatments

8 In fact, it is a theorem for natural number exponents.
9 Once again the general case could be found at once by seeing that 1 = 2b+(−b) = (2b)(2−b), so 2−b = 1

2b .
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hat might avoid this obstacle. One possible way to avoid student objections, such as those voiced in these episodes, is to help
hem feel intellectual need for the desired content (or some framework that would help settle the debate). The Necessity
rinciple requires that instruction address an intellectual need in order for students to learn. Intellectual need is not “one size
ts all”: what constitutes intellectual need for a student depends on that student’s prior knowledge, beliefs, mathematical
ophistication, and so forth (Harel, 2013). We  have already observed that the definitions of arithmetic operations on negative
umbers are conventions rather than theorems. However, there are rational reasons to adopt conventions in general and
hese conventions in particular. In this section we suggest some alternate instructional treatments that have the potential
o address the intellectual need of the students in Sfard’s episode and our own. In general, these may  be of two types: those
hat rely on a physical model for the operations, and those that deal with intrinsically mathematical criteria. We  expect
hat reliance on models will gradually decrease as students progress: for younger students anything called “multiplication”
hould prove its usefulness in typical multiplicative situations, while for advanced students the desire to preserve certain
undamental properties may  be sufficient.

Since the students in both studies seem to have a Need for Causality/Computation, we suggest addressing this directly by
epackaging the pattern-based evidence explicitly as a computational method. Example problem: Mary suggested computing

 × (−3) as 2 × (1 − 4) = 2 − 8 = −6. John used the same idea but computed 2 × (4 − 7) = 8 − 14 = −6. Is it coincidental that they
btained the same answer? Will all students using this idea obtain the same answer? If so, what causes this agreement?

Using the distributive property10 as a computational tool may  be natural for students because of familiar decimal algo-
ithms like 2 × 26 = 2 × (20 + 6) = 40 + 12 = 52. Using it in this way  to “compute” signed products involves the same ideas
fard’s teacher appealed to but has several advantages. It is explicitly computational, requiring only multiplication of pos-
tive numbers. It focuses attention on the distributive property rather than keeping it hidden, and it sets up a puzzle that
equires reasoning from the students rather than mere pattern recognition. Students might settle on the “purest” form of the
dea, computing 2 × (−3) as 2 × (0 − 3), as easiest to use. Once students show that such computations do yield a well-defined
nswer, one can change viewpoints and propose that 2 × (−3) be defined as the common result of all such computations. This
pproach shows clearly why 2 × (1 − 4) must have the opposite sign from 2 × (4 − 1). Students can extend their reasoning to
xplore whether the distributive property will continue to hold when applied to expressions explicitly containing negative
umbers, e.g. (−2) × (5 − 3). They can then use it similarly to define products of two  negative factors, such as (−3) × (−2).
uch formal computations, later verified to give well-defined results, often lead to the creation of new mathematics, as in
he historical cases of negative and complex numbers. For example, Cardano’s formula for solving a cubic equation produces
xpressions involving complex numbers even when the roots are real. This provided an intellectual need to define those
xpressions in such a way  as to agree with the known real roots.

We emphasize that this approach is not a deductive proof of the rules for multiplying signed numbers. It is an exploration
f whether the use of the distributive property for computation is well-defined in this extended context of signed numbers:
ill it produce unique results independent of the choices made by users? If so, then we have the option of adopting it as a

onvention for extending the meaning of “multiplication” to this context.
A teacher could also explore alternate proposals such as Roi’s in depth to make their consequences explicit. Roi’s rule of

aking the sign of the number larger in magnitude leaves 3 × (−3) undefined, violates the distributive property in examples
ike 3 × [2 + (−2)], and would assign very different values to 2.99 × (−3) and 3.01 × (−3), which would make estimation of
roducts problematic (formally, it has the consequence that a product is not a continuous function of its factors).

The Need for Communication is the most natural basis for adopting conventions, and it can provide reasons for adopting a
ew discourse. Here is a treatment of negative exponents from this point of view, based on a physical model. Two  scientists,

 and B, are studying the growth of bacteria in a Petri dish. The bacteria double in number every hour. Scientist A begins his
bservations at a time he designates as t = 0 h, with 1000 bacteria in his dish. His population after t hours will be A(t) = 1000 × 2t

acteria. Scientist B enters the lab 5 h later and begins observing the same dish at time t = 5, which she calls T = 0 using her
wn clock. She finds that the population fits the function B(T) = 32, 000 × 2T. Question: how should scientist B describe the
bservations made prior to her arrival, by scientist A? For example, how does she express the fact that the population 3 h
efore she arrived was 4000?

This question creates a need to make sense of the natural answer, B(− 3) = 32, 000 × 2−3 = 4000, just as Cardano needed
o make sense of “known” real values for expressions involving complex numbers. Of course, scientist B may insist that
egative exponents are undefined, and may  invent a completely new notation for the function giving the population in
er past. However, writing B(T) = 1000 × 2T+5 may  increase her comfort with substituting T = −3. Since nothing about the
acteria themselves changes at time T = 0, why change the function describing them? We have a natural notation which has
ot yet been assigned a meaning, so why not assign it the natural meaning in this context? Why  not take advantage of the
pportunity for communication by observing that the substitution t = T + 5 makes both functions agree?

Of course, in the situation described, something about the bacteria did change at t = 0 when Scientist A began the experi-

ent. But nothing prevents us from imagining that Scientist A instead walked in on an experiment in progress, begun even

arlier by someone else. In this way we create the abstraction of a process that continues in a uniform way into the indefi-
ite past and future. The exponential function we are defining is intended to model such processes and therefore should be

10 Technically, the hypothetical students are using the distributive property over subtraction rather than addition, which could lead to its own discussion.
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defined in a uniform way for all integer arguments. If the scientists consider that the bacteria grow at a uniform rate even
for times shorter than an hour, so that during any time interval the population is multiplied by a factor depending only on
the length of that time interval, they can continue their analysis to define rational powers of 2 as well. (This will make more
sense if the absolute numbers are much larger and fractions of a bacterium are ignored.) For example, 21/2 is the factor by
which the population increases in half an hour, and must equal

√
2 so that the population doubles in two  consecutive half

hours.
The analogous experiments in Sfard’s situation of signed-number multiplication would involve the distance-rate-time

formula d = rt. The two scientists observe the positions of an object moving along a straight track at a constant speed, but
one begins her observations earlier than the other. For example, Scientist A observes the object at position d = 2t at time t,
while Scientist B, arriving 5 min  later, observes it at d = 2T + 10 when her own watch reads T. They can also allow the rate r
to have either sign in order to distinguish the two  directions of travel along the track.

In terms of our earlier question of whether pattern-based arguments for mathematical conventions are examples of RPG
or PPG, the function of the physical model in these context-based teaching strategies is to provide a good reason (in terms
of the model) for a specific pattern. The convention would then be to apply the general pattern uniformly, so that the same
rules work outside the context of the physical model and for any numbers considered (within the new domain).

7. Conclusion: contrasting the DNR analysis with the commognitive analysis

Although a commognitive analysis leads to some of the same observations about these episodes as the DNR analysis, we
think that considering the Necessity Principle as a lens for analysis yields additional benefits. Specifically, it allows further
analysis of the students’ reactions to their teachers’ presentations and suggests concrete pedagogical recommendations. We
think there is additional nuance to the following statements of Sfard’s (2007).

“According to commognitive analysis, learning about negative numbers involves a transition to a new, incommensu-
rable discourse” (p. 597).

“All the parties to the learning process need to agree to live with the fact that the new discourse will initially be seen
by the participating students as somehow foreign, and that it will be practiced only because of its being a discourse
that others use and appreciate” (p. 609).

“This process of thoughtful imitation seems to be the most natural way, indeed the only imaginable way, to enter into
new discourses. It is driven by the need to communicate [In this context, DNR would consider this a social rather than
intellectual need].  . . The learners accept a rule enacted by another interlocutor as a prelude to, rather than a result of,
their attempts to figure out the inner logic of this interlocutor’s discourse” (p. 610).

A simplistic reading of these statements might suggest that students cannot initially learn these kinds of ideas in a
meaningful way; rather, they must go along with the teacher’s ideas despite not understanding the logic of these, and the
logic will come later. We  would disagree with this contention, and we believe that the more subtle issue in the episodes is
how the nature of the justification or activities is appropriated by students. For this, we agree with Sfard that the students
may need to go along with the teacher’s suggested activities or means of justification before fully understanding these. For
instance, consider our example of whether computations like 2 × (1 − 4) = 2 − 8 = −6 and 2 × (4 − 7) = 8 − 14 = −6 must always
agree. Students may  not be used to comparing different computations and considering why  they will or will not yield the
same result. However, we would say that these ideas are fairly natural in that students can be brought to appreciate them
within a relatively short time (potentially during the same class period they are first introduced).

We think that the Necessity Principle allows for concrete improvements in the instructional approaches used in these
episodes. It is true that a student confronted with a new type of discourse cannot be immediately aware of all the implications
of adopting that new discourse. Mathematicians who  introduce new concepts and methods also do not initially see all
their ramifications. (Indeed, the ramifications of even simple mathematical ideas are likely inexhaustible and still being
uncovered.) However, it does not follow that adopting a new discourse must always be a pure leap of faith. The original
creator of the new discourse had intellectual reasons for creating it, and obviously did not adopt it from another person. One
can bring students to see the need being addressed and enough advantages of the new ideas to make it rational to pursue
them further. Teachers, as expert guides or translators, should be fluent in both the students’ “old” discourse and the “new”
discourse of the mathematical community. They should introduce the new discourse only after students have an intellectual
need for it. To do so effectively, they should know what has necessitated new mathematical discourses historically, and what
necessitates them pedagogically.

The episodes examined illustrated both epistemological obstacles—such as the unavoidable issue of not being able to
naturally interpret a product of two negative numbers in terms of equal groups of objects—and didactical obstacles—such
as both teachers’ insistence that there was a “right answer”. We have argued that (1) these kinds of situations can provide

rich opportunities for student reasoning (taking advantage of the epistemological obstacles, while minimizing the didactical
obstacles) and (2) DNR-based instruction provides concrete suggestions for improving the teaching of these episodes by
providing necessity for the conventions adopted, in contrast to the commognitive framework in which the expectation is
that students adopt a new discourse even though it is foreign to them and they will only later understand why it works.
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