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ABSTRACT
Interrater reliability studies are used in a diverse set of fields. Often, these investigations involve three or
more raters, and thus, require the use of indices such as Fleiss’s kappa, Conger’s kappa, or Krippendorff’s
alpha. Through two motivating examples—one theoretical and one from practice—this article exposes
limitations of these indices when the units to be rated are not well-distributed across the rating categories.
Then, using aMonte Carlo simulation and information visualizations, we argue for the use of two alternative
indices, the Brennan–Prediger coefficient and Gwet’s AC2, because the agreement levels reported by these
indices are more robust to variation in the distribution of units that raters encounter. The article concludes
by exploring the complex, interwoven relationship between the number of levels in a rating instrument, the
agreement level present among raters, and the distribution of units that are to be scored. Supplementary
materials for this article are available online.

1. Introduction

In fields as diverse as educational research, medicine, and busi-
ness, a common need arises: the ability to measure how closely
a group of raters agree when scoring some phenomenon. This
closeness, known as interrater reliability (IR) or interrater agree-
ment (IA), is particularly helpful in assessing the usefulness of
the instrument that generated the ratings, the thoroughness of
training the raters have received, and the clarity of the idea to
be scored (e.g., creativity in mathematics problems, diagnostic
tests in medicine, leadership in workplace bosses). The chal-
lenge in defining such IR/IA measures is that one must decide
what “agreement” means, and these choices can sometimes lead
to surprising results.

Before delving further, it is important to clarify how the term
“interrater reliability” is used in this article. Unfortunately, this
term has seen differing interpretations in the literature, depend-
ing on discipline and context. For example, in the field of orga-
nizational research, interrater reliability measures the degree
of rank-order agreement among raters, while interrater agree-
mentmeasures how close raters’ actual values are to one another
(LeBreton and Senter 2008). Thus, two teachers’ test scores have
high IR if they simply put the students in a similar order (from
best to worst), even if the particular grades are very different. In
contrast, researchers in the medical field tend to use the phrase
interrater reliabilitywhen the goal is tomeasure how close raters’
actual values are to one another (Gwet 2014). Thus, the term IA
in one field is the same as the term IR in a different field.

In addition to this confusion, the study of IR (in medicine)
and IA (in organizational research) has seen significant

CONTACT David Quarfoot quarfoot@gmail.com Center for Research in Mathematics and Science Education, San Diego State University, San Diego, CA  and
University of California, San Diego, CA.
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/TAS.
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/TAS.

methodological development over the past 50 years. While
IR/IA was originally calculated using nominal data scales with
two raters and no missing scores, it has since expanded to
include all types of data (nominal, ordinal, interval, and ratio
levels of measurement), two or more raters, and even missing
data (see, e.g., Janson and Olsson 2001). For the work below,
we follow the terminology and meaning of authors like Gwet
who use the phrase “interrater reliability” to mean the amount
of agreement present in the actual scores, and adopt a modern
stance that includes the use of multiple raters (three or more)
and an interval level of measurement.

The goal of this article is two-fold. First, through the use of
two motivating examples, one manufactured and one real, we
revisit a paradox well-documented in the literature on interrater
reliability, but with an eye toward the case ofmultiple raters. The
artificial example seeks to pique the reader’s interest from a theo-
retical perspective, showing that in a contrived setting, it is pos-
sible to experience counter-intuitive results. The real example,
a dataset dealing with experts’ assessments of Geometry prob-
lems, shows that this theoretical concern should be an actual
concern, that is, the weaknesses inherent in standard IR indices
can naturally be brought to the fore.

Spurred by these examples, the second goal is to explore
the robustness (a term defined in Section 4) of many of the
most common multirater (three or more) IR indices in more
detail. While there has been some discussion of this topic in
the research literature, it is limited to the simplest of setups: two
raters, scales with only two rating categories, data at the nominal
level, equal sensitivity and specificity levels (i.e., how often raters
label category 1 choices as category 1, and category 2 as category

©  American Statistical Association
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374 D. QUARFOOT AND R. A. LEVINE

Table . Scores of three hypothetical teams judging pilots’ years of experience.

Team  P P P P P P P
Rater        
Rater        
Rater        

Team  P P P P P P P
Rater        
Rater        
Rater        

Team  P P P P P P P
Rater        
Rater        
Rater        

2), and related situational constraints. While these simplifica-
tions do allow for the derivation of closed-form expressions for
the observed level of agreement and expected level of agreement
due to chance (and hence, the IR value), they fail to explore the
full richness of the IR landscape. It is now common to see stud-
ies with three ormore raters, data at the ordinal and interval lev-
els, and instruments with a large number of rating categories. As
such, we use a Monte Carlo simulation to widen the exploration
of the IR landscape.

2. A Theoretical Example

Consider first a theoretical case: Three teams of raters are assem-
bled to estimate the number of years of experience they believe
a set of airplane pilots have. Each team has three members and
is located in a different city. For a given team, the three mem-
bers will score a total of seven pilots (denoted P1 through P7),
spending a day with each pilot. Table 1 shows the results from
the three teams.

Intuition suggests that Team 1 should have the best IR, fol-
lowed very closely by Team 3, with Team 2 somewhat worse.
Looking at the data, it appears that while Team 1 was in a city
with mostly rookie pilots, they agreed in all cases but one (P7).
Team 3 had more diversity in its pilots and disagreed on only
two pilots (P6 and P7). Meanwhile, Team 2 encountered quite a
mix of experience levels and disagreed on the experience levels
of all seven pilots.

It turns out that intuition is largely betrayed by the most
commonly used IR indices. Table 2 presents the IR scores, to
three decimal places, for these three teams using three differ-
ent indices: Fleiss’s kappa (a generalization of Scott’s pi statistic;
Fleiss 1971), Conger’s kappa (Conger 1980), and Krippendorff ’s
alpha (Krippendorff 2012).

These results were calculated in the statistical language R (R
Core Development Team 2014) using implementations of these
indices as outlined by Gwet (2014) and assume that the scores
from Table 1 are viewed at an interval level of measurement. In
general, an IR index returns 1 in the case of perfect agreement,
0 in the case of agreement equivalent to random chance, and

Table . IR values using three standard multirater indices for the teams in Table .

IR scores Fleiss Conger Krippendorff

Team  − . . .
Team  . . .
Team  . . .

negative values when the observed agreement is less than what
is expect by chance—as in the case of intentional misrepresen-
tation of ratings.

Twopoints areworth noting here. First, all three indices agree
to within a few hundredths—so they agree with one another—
and second, they order the three teams in precisely the opposite
order that intuition would suggest. This type of IR paradox is
well-documented in the literature, but only in the simple setups
mentioned in Section 1 (see, e.g., Cicchetti and Feinstein 1990;
Feinstein and Cicchetti 1990; Guggenmoos-Holzmann 1993;
Nelson and Pepe 2000; Gwet 2002).

To understand this paradox, it is valuable to look at how
IR values are determined. In general, IR indices calculate the
observed level of agreement among the raters and then adjust
this result by determining how much agreement could be
expected from random chance. This is seen in the equation:

IR = (observed agreement) − (chance agreement)
1 − (chance agreement)

. (1)

Here, the numerator is the agreement beyond chance, and the
denominator is the total possible agreement that could exist
beyond chance. A quick example shows why this corrective
action must be taken. Suppose two raters are asked to decide
whether subjects are male or female simply by examining hand-
writing samples. At first blush, achieving a 75% agreementmight
appear impressive, but this finding must be tempered by the fact
that the expected agreement due to random chance could be as
high as 50% if the categories “male” and “female” appear with
equal frequency in the test set. Thus, an effective IR index must
look beyond the observed level of agreement and adjust for the
fact that some agreement will appear simply due to chance. To
do so, an index uses the histogram of ratings that were actually
given (henceforth called the “frequency distribution” or FD) as
the best estimate for the distribution of the units across the cat-
egories of the rating scale in the population. With this distri-
bution in hand, it is possible, using probability theory, to figure
out howmuch of the observed agreement is not really agreement
after all, but instead, an artifact of throwing darts at a board with
finitely many zones of certain sizes.

Something not readily seen in Equation (1) is that each IR
index uses a different approach when calculating the (chance
agreement) term. Indeed, the interested reader can find an
overview of the common approaches and technical details in
Gwet (2014). For some indices, the correction for chance agree-
ment can be particularly draconian, especially when the distri-
bution of the raters’ scores is unbalanced. Gwet has shown this
tendency in both computer simulations (2002) and mathemat-
ical analyses (2008), writing that the behaviors of pi and kappa
indices are “very erratic . . . as soon as trait prevalence goes to
the extremes” (2008, p. 35). Indeed, under a fixed level of agree-
ment between two raters, it is possible to get almost any IR value
between the observed percentage of agreement and zero sim-
ply by adjusting the frequency with which certain ratings appear
(Guggenmoos-Holzmann1993;Gwet 2002). Said differently, the
(chance agreement) term in Equation (1) appears to be heavily
influenced by the types of units the raters are asked to score (the
FD), and this can result in unexpected behavior for the IR value.
Sadly, this is precisely the opposite of what one should desire
from a functioning IR index: the hope is that an index will show
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Figure . Example of the rating scale used for the Geometry problems study.

robustness—that is, that it will look past the frequency distribu-
tion it is given and get an accurate read on the agreement level
of the raters.

This discussion explains why traditional IR indices fail to
match common sense in the pilot examples above: Team 1 from
Table 1 has an extremely skewed FD (20 1’s and one 2), while
Team 3 has a strongly skewed distribution (10 1’s, 7 2’s, 4 3’s).
Hence, traditional chance-agreement-correction indices are so
heavy-handed that they grossly underestimate what intuition
suggests are very high levels of agreement when FDs are skewed.
In contrast, Team 2 has a more balanced distribution across the
rating levels and receives a higher IR. Thus, it appears that many
common indices are powerfully impacted by frequency distri-
bution, even in the case of multiple raters.

3. A Practical Example

Now, one might argue that the above airplane pilot exam-
ple is contrived. As such, we supplement it with an actual
research setting and dataset in which the issues discussed above
were critically important. In this project, 8 expert raters—
mathematicians, teachers, mathematics educators, and problem
solvers—were sent a collection of 12 high school Geometry
problems and asked to work and then rate them using a set of
14 different instruments (referred to as “metrics” below). These
metrics were designed to gauge how much a trait like Difficulty
or Novelty (metric names are capitalized) was present in each
of the problems. All ratings were assigned on a 1–9 Likert scale
similar to Figure 1.

The goal of the study was to determine the level of agree-
ment among experts when assessing features of mathematical
problems. The need for such a skill is critical, for many national
standards documents and articles in the mathematics education
literature suggest assigning problems with specific features—for
example, cognitive demand, multiple solutions, high authen-
ticity, etc. (National Council of Teachers of Mathematics 1991,
2000; Gutiérrez 2007, 2013; National Governors Association
Center for Best Practices, Council of Chief State School Offi-
cers 2012). After collecting the raters’ scores, a separate IR anal-
ysis was conducted for each of the 14 instruments (see column
names in Table 3) for five different IR indices (rows in Table 3).

These indices were Fleiss’s kappa, Conger’s kappa, Krippen-
dorff ’s alpha, the Brennan-Prediger coefficient, and Gwet’s AC2
index (Fleiss 1971; Conger 1980; Brennan and Prediger 1981;
Krippendorff 2012; Gwet 2014). While the first three indices are
well-cited, to our knowledge, the Brennan–Prediger coefficient
is not well-known, and Gwet’s AC2 index has been applied only
a limited number of times in the literature (see, e.g., Baethge,
Franklin, andMertens 2013;Wongpakaran et al. 2013; Lang et al.
2014). It is important to note that each of these indices uses
a different approach to correct for chance agreement, and as
such, responds differently to the frequency distribution paradox
discussed above. We collect Fleiss’s kappa, Conger’s kappa, and
Krippendorff ’s alpha under the label “Group 1” indices, and the
Brennan–Prediger coefficient and Gwet’s AC2 under the label
“Group 2” indices.

We note upfront that the small number of raters (n = 8) and
problems (u = 12) in this example preclude robust statistical
inference; indeed, the 95% confidence interval for each IR value
in Table 3 is quite wide, with standard errors often around 0.2
(see Gwet 2014, chap. 5 for details on inference in IR calcula-
tions). Nevertheless, we try to sketch some general themes that
are useful from these IR point estimates. One immediate obser-
vation fromTable 3 is just how different the IR results are for dif-
ferent indices. For example, using any of theGroup 1 indices, the
Productive Dispositions metric—an assessment of how likely
a problem is to instill a positive, rich view of mathematics—
appears to have very weak reliability (0.17–0.20). Under the
Group 2 indices, the IR has skyrocketed to 0.61 or 0.71! Similar
leaps can be seen in Authenticity (0.11–0.74), Affective Engage-
ment (0.30–0.76), and several of the other metrics. Each of these
differences serves as an important example of how a researcher’s
choice of IR can have a profound impact on the conclusions he
or she draws from an IR analysis. With a Group 1 IR choice, an
instrument might appear hopelessly flawed or the raters using it
might seem incapable of agreement; under a Group 2 IR choice,
the same instrument could be deemed perfectly reliable and the
raters in agreement.

Why do these IR indices, which purport to measure the level
of agreement in a set of ratings, return such different results for
a fixed metric? As with the airplane pilot example, the answer
lies in the frequency distribution paradox. If, for example, we

Table . IR values for each of themetrics using five different indices. These values are found by choosing ametric, collecting the scores of the  raters across the  problems
for that metric, and then calculating the IR using one of the possible indices.

Internal Number Presence Number
IR Cognitive resource of Representational Resource of of Productive Affective
index Difficulty Elegance Novelty sophistication collaboration steps Creativity media creation misconceptions solutions Dispositions Engagement Authenticity

Fleiss . . . . . . . . . . . . . .
Conger . . . . . . . . . . . . . .
Kripp . . . . . . . . . . . . . .
B-P . . . . . . . . . . . . . .
Gwet . . . . . . . . . . . . . .
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376 D. QUARFOOT AND R. A. LEVINE

Figure . Histograms for the two most balanced metrics, Difficulty and Novelty.

compare the distribution of ratings on the Difficulty and Nov-
elty metrics (for which the IR values are quite close) with those
given on the Productive Dispositions and Authenticity metrics
(forwhich the IR values vary greatly), we seemuchdifferent FDs.

First note that the disparity in Figure 2 and 3 suggests
that highly skewed rating distributions do occur in the wild,
and thus, the frequency distribution paradox is not simply an
esoteric theoretical construct, which never occurs in practice.
Furthermore, it appears that when the units to be rated are well-
distributed across the rating instrument, IR indices agree with
one another and appear to report the level of agreement among
raters. As the FD becomes more skewed, IR indices begin to
diverge and it is uncertain what they are truly measuring.

Perhaps most importantly, this example clearly shows that
if a study involves the use of a collection of metrics (instru-
ments) scoring a common set of units, then researchers will
almost surely want to be careful in their choice of IR index.
The reason is that while it is possible to design a single met-
ric so that the units are well-distributed across that metric, this
is difficult to do when many metrics need to be used on a
common set of units. Consequently, the units might be well-
distributed on some instruments and skewed on others, expos-
ing the study to the frequency distribution paradox. In the
Geometry study, it was simply impractical to ask experts to work
and rate hundreds of problems. Thus, the same set of problems
had to be used for each metric, and as a result, the full scale
range was present in somemetrics (e.g., Difficulty and Novelty),
but not in others (e.g., Productive Dispositions and Authen-
ticity). Indeed, when the problems were originally selected for
inclusion in the study, they were chosen precisely because they
appeared to represent a wide swath of Difficulty levels. Mean-
while, no attention was paid to how the problems were dis-
tributed across the other 13 metrics. In this setting of multi-
ple metrics and common units, skewed FDs might occur, and
researchers will need a robust IR index to avoid drawing false
conclusions.

4. The Simulation

A “robust” IR index is one that gives roughly the same result
for a fixed level of agreement irrespective of the frequency dis-
tribution it must use when correcting for chance agreement. In
this section, we run a Monte Carlo simulation to explore the
robustness of the five IR indices mentioned above. To do so,
we begin by constructing six different FDs. One way to think
about an FD is as the type of units the raters are exposed to as
filtered through the rating instrument in question. For exam-
ple, an intelligence-rating scale that reads (Lowest Third,Middle
Third, Highest Third) will produce much different results than
(Lowest 5%, Next 5%, Top 90%), even when scoring the same
individuals. Figure 4 shows the FDs used in this study.

When creating FDs, we wanted tomimic a Likert scale with L
levels, and so it was necessary to use a discrete distribution with
finite support. All six of the pictured FDs are special cases of
the beta-binomial distribution.We used the dbetabinom.ab
function in T. W. Yee’s VGAM library in R to create each dis-
tribution. In brief, the beta-binomial distribution is similar to
a standard binomial distribution, but the probability of success
changes, following a beta distribution, as described by two shape
parameters. To create the six plots in Figure 4, the following pairs
of shape parameters were passed to the beta-binomial distribu-
tion: FD 1 (0.25, 0.25), FD 2 (1, 1), FD 3 (2, 2), FD 4 (50, 50),
FD 5 (25, 50), and FD 6 (5, 50). For a shape pair (a, b), the
histogram is symmetric if a = b, and the overall graph approxi-
mates a binomial distribution for large values of a = b.

After creating the FDs, we designed a system to simulate the
agreement among raters. To do this, we set up six different agree-
ment distributions (ADs), as seen in Figure 5. Note that ADs are
always centered around Rater 1’s score, and show the probability
that a new rater will use a certain score given that Rater 1’s score
is known. Details about these ADs are provided later.

Together, a particular FD and particular AD can be used to
create a table of ratings in the following fashion: First, Rater 1’s

Figure . Histograms for the two most skewed metrics, Productive Dispositions and Authenticity.
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Figure . The six frequency distributions (FDs) used in the simulation, assuming a nine-level instrument.

scores for all the units are selected by sampling from the FD;
this fills the top row of the ratings table in Figure 6. Next, for
a given unit, we center an AD around Rater 1’s score (R1) and
then sample from this to fill the scores for the other raters; this
populates a given column in Figure 6.

There are a few technical challenges in this process. For
example, if Rater 1’s score is near either end of the scale, then
centering theADabout this valuewill result in scores that exceed
the boundaries of the Likert scale. In this case, values outside the

span 1 to L were dropped, and the probabilities for values in the
1 to L spanwere rescaled to have a sum of 1. Figure 7 shows what
AD 2 looks like for each of the possible values of R1 assuming a
nine-level Likert scale.

One feature of this simulation that has yet to be discussed is
that it is designed to work with rating instruments of varying
sizes. While the narrative so far has focused on a nine-level Lik-
ert scale, we ultimately also wish to understand how the num-
ber of levels, L, in a scale affects IR calculations. Changing the

Figure . The six agreement distributions (ADs) used in the simulation where Rater ’s score is denoted by �. The case of L = 9 is shown assuming Rater ’s score is a .
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378 D. QUARFOOT AND R. A. LEVINE

Figure . Overview of the simulation.

number of levels in the scale offers no challenge when setting
up the FDs: the beta-binomial distribution requires the size of
the rating instrument when it is created, and hence, scales based
on L. ADs, in contrast, might or might not scale based on the
size of the rating instrument. Indeed, it is unclear how a rater’s
agreement changes based on the size and granularity of the rat-
ing scale. To account for the different cases that could occur in
practice, we include ADs thatmaintain a fixed width (ADs 1 and
3), an AD that scales to fit part of the range of scores (AD 5),
and three ADs that fully scale to the range 1 through L (ADs 2,
4, and 6). We also use a variety of possible shapes for the ADs to

simulate the different types of agreement that might appear in
practice.

More specifically, AD 1 is set up as a binomial distribu-
tion with n = 4 and p = 1

2 . This creates a distribution with five
points of support (0 to 4, inclusive), which can be centered at
Rater 1’s score of choice. AD 2 is also a binomial distribution,
but it scales based on the size of the rating instrument. Thus,
it uses n = L and p = 1

2 . One difficulty that arises in this case
is that if L is odd, then the finite support of {0, 1, . . . , L} has
an even number of points, and thus, the graph does not have
a unique maximum (which we want to center at R1). In this

Figure . The actual nature of AD  depending on Rater ’s score (the number shown in the strip atop each graph). As Rater ’s score moves along the Likert scale, the AD
must move as well, adjusting for the finite nature of the rating scale.
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situation (and others that were similar), the support size of AD
was increased from L to L + 1, so that a uniquemaximumwould
occur and could be centered at R1.

AD 3 is similar to AD 1 in that it does not scale as L
changes. It is designed as a discrete triangular distribution on
{−2,−1, 0, 1, 2}, where the probabilities at x = −2 and x = 2
are 0. AD 4 is a scalable version of the triangular distribution
with support on {−� L+2

2 �, . . . , � L+2
2 �} (again, the probability is

set to be 0 at the endpoints). As always, whatever zone of support
anAD is initially assigned, it is eventually shifted so that it is cen-
tered about Rater 1’s score. Finally, ADs 5 and 6 are discrete uni-
form distributions. AD 5 has support on {−� L+2

4 �, . . . , � L+2
4 �},

and AD 6 is always the uniform distribution on {1, 2, . . . , L},
making it equivalent to random chance: new raters’ scores have
no relation to Rater 1’s scores (again, see Figure 5).

Returning to the simulation, Figure 6 depicts a ratings table
with 8 raters scoring 100 hypothetical units. The choice of 8
raters, 100 units, and (as discussed later) 500 iterations ensures
that (1) Rater 1’s scores are a reasonable approximation of the
FD from which they are sampled, (2) Raters 2–8’s scores are
a reasonable approximation of the AD from which they are
sampled, and (3) the overall simulated IR values have a 95%
confidence interval within a few hundredths of the calculated
values.

After creating a single ratings table for a fixed FD and AD as
outlined above, we found the IR using one of the five indices and
then repeated the whole process a total of 500 iterations. These
500 IR values were averaged to get a final IR value for a particu-
lar IR index, fixed FD, fixed AD, and fixed value of L. This pro-
cedure was repeated for all combinations of five IR indices, six
FDs, six ADs, and eight different values for L (4 through 11).
Note that we used the implementations of the five IR indices
outlined in Gwet (2014), and code for these can be found at
www.agreestat.com/r_functions.html. Given that we interpreted
our Likert data at the interval level of measurement—a rea-
sonable assumption per Carifio and Perla (2007)—the standard
quadratic penalty function was employed in the IR calculations.
That is, a rating difference of 3 (say 2 vs. 5) was penalized at a
level of 32 = 9, and a near agreement (say 2 vs. 3) was penalized
at a level of 12 = 1.

5. Simulation Results

Two important ideas are studied from the data created in this
simulation. First, for a fixed number of levels, we explore how
robust the five IR indices are to changes in the frequency distri-
bution (Figure 8). Second, for a fixed FD and AD, we examine if
changing the number of levels in the rating scale has an effect on
the IRs for each of the five indices (Figure 9 and 10). Given that
someADs adjust to the number of levels, while others do not, we
expect the IR values for some FD/AD pairings to be unaffected
by changes in L, while others will show changes.

Turning to Figure 8, which is based on a 9-tiered Likert scale
(L = 9), we can visually see the robustness of a given IR index to
various frequency distributions by looking at the colors or val-
ues in the columns of the five 6 × 6 level plots. Here, each col-
umn represents a given (fixed) AD, and if an IR index is robust
to the FDs it encounters, then the colors going down a column

should be nearly identical. The level plots suggest four primary
findings:

1. Looking at the overall coloring of the level plots,
it appears that Fleiss’s kappa, Conger’s kappa, and
Krippendorff ’s alpha perform almost identically, and
that the Brennan–Prediger coefficient and Gwet’s AC2
are also nearly identical. Thus, these five IR indices fall
into two distinct groups (hence the grouping terminol-
ogy introduced earlier).

2. The Group 1 indices each vary greatly for a fixed agree-
ment level (i.e., the scores in a particular column). For
example, AD 1 is a strong agreement index, and sur-
veying the average IR results in this column for Krip-
pendorff ’s alpha reveals values between 0.43 (FD 6, very
skewed) and 0.94 (FD 1, extremes). In contrast, the
Group 2 indices are far more robust to different distri-
butions: the columns of each have consistent coloring.
These findings generalize similar results that have been
observed in the case of two raters and two nominal cate-
gories (Gwet 2008).

3. Overall, all five indices report that AD 6 has the lowest
IR. Given that this AD represents chance agreement—
Raters 2–8 do not even consider Rater 1’s scores when
recording their scores—we would expect these IR val-
ues to be zero. Interestingly, the Group 1 indices do a
more consistent job of reporting this randomness as zero
than those in Group 2. In fact, the Brennan–Prediger
coefficient and Gwet’s AC2 appear to be less robust to
distribution changes when agreement nears chance. For
example, the Brennan–Prediger coefficient reports IR
values between 0.09 (FD 4, binomial) and −0.09 (FD 1,
extremes).

4. The results from Group 1 indices are particularly diffi-
cult to trust. For example, in just the six FDs used in this
study, Fleiss’s kappa routinely gave IR values that were
0.5 apart for a fixed AD. Indeed, the IR spreads for the
first five ADs in the Fleiss table are 0.51 (0.94 − 0.43),
0.64, 0.35, 0.62, and 0.65. This finding makes the inter-
pretation of a Fleiss-generated IR value especially dif-
ficult. Surprisingly, the only time Fleiss’s kappa consis-
tently reports the level of agreement is when there is no
agreement to report (AD6). Furthermore, notice that the
range of IR values for ADs 1–5 all overlap. Thus, if we
take any value in this overlap, say 0.7, then we see that by
simply varying the FD, any of our five ADs can report the
value 0.7 despite the fact that ADs 1–5 are hard-coded to
contain different levels of agreement!
This problem is not present in the Group 2 indices. As
a comparison, the spreads for the first five ADs in the
Gwet AC2 table are 0.05 (0.92 − 0.87), 0.08, 0.05, 0.13,
and 0.08. So, while variation in the frequency distribu-
tion does create variation in the IR, Gwet’s index is capa-
ble of dramatically lessening this effect.

We now turn to Figure 9 and 10. These figures show the effect
of changing the number of levels in the Likert scale that raters
use under each of the possible FD/AD combinations and for
each IR index. We offer a few observations:

1. As before, the five indices cluster into the two groups pre-
viously delineated. If we look at a fixed AD, say AD 2,
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Figure . Level plots for all five IR indices for each of the six FDs and ADs assuming a nine-level rating scale of interval data.

and step through the graphs of rows FD 1 through FD
6, we see the two index groupings pull apart from one
another; this echoes the results from Figure 8 and sug-
gests the trends seen in that figure occur at all the studied
levels (4 through 11), not simply L = 9.

2. The graphs for ADs 1–3 (across all FDs) show that
increasing the number of levels, while holding all
other factors constant, actually results in an increased
IR! This finding is quite surprising and immediately
suggests that researchersmust think aboutmore than the
frequency distribution paradox when designing a mea-
surement instrument. Indeed, it appears that the AD,
FD, and the number of levels all influence the IR for a
given experiment. The reason for this finding is the fol-
lowing: As the number of levels increases (linearly), one
must ask how the AD will expand to fit this scaling. If
the standard deviation of the AD does not also grow lin-
early, then the growth of the rating instrument will not
match the expansion of the AD. For example, AD 2 is
a fully expanding binomial distribution; specifically, it

is a binomial distribution with p = 1
2 and support on

{0, 1, 2, . . . , L} (or L + 1 if L is odd). The variance of
this distribution is np(1 − p) = L

4 , and thus, the stan-
dard deviation is

√
L
2 , which is less than linear growth

in L. This implies that as L grows larger, AD 2 actually
becomes a stronger agreement metric, and hence, the IR
should increase.
There are other factors also at play in the graphs from
ADs 1–3 (and other ADs that might occur in practice).
Note that an AD does not always look like its idealized
shape as seen in Figure 5. Indeed, as Rater 1’s scoresmove
to the extreme ends of the scale, the AD (which deter-
mines the scores of the other raters) begins to deform,
as seen in Figure 7. These deformed versions of a given
AD can offer a weaker level of agreement, and hence the
IR is, in part, influenced by how often an AD is pulled
into its deformed versions. This is certainly a function
of the FD, but also of L. If we consider FD 2 (uniform
on 1 through L), we see that adding more levels to the
scale tends to decrease the likelihood that R1 will take an
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Figure . Plots comparing IR values to number of levels in FDs – with ADs –.

extreme value, and hence that anyADwill need to invoke
its deformed versions.

3. In contrast with ADs 1–3, ADs 4 and 5 both have stan-
dard deviations that grow (roughly) linearly in L. This
can be proven directly from the functional definition of

variance or intuitively, from the shapes of the ADs them-
selves. Because the growth of the scale and the growth
of standard deviation of the AD match, the graphs
for these ADs are roughly horizontal. The observed
kinks in the graphs occur because the growth in the
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Figure . Plots comparing IR values to number of levels in FDs – with ADs –.

standard deviation is not precisely linear (more accu-
rately, it is a step function). For example, AD 4 is a
fully scaling triangular distribution designed to have
support on {−� L+2

2 �, . . . , � L+2
2 �}. As L increases, the

AD rescales every other integer; the floor function causes

this and was included because of the discrete nature of
the support. Thus, in cell (FD 4, AD 4) of Figure 10,
we see a pattern in the graph that repeats every two
units. Note that the graph goes up from L = 4 to L = 5
(and 6 to 7, 8 to 9, etc.) because both of these scales are
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using the same AD, but the increased scale size leads
to less appearance of the scale-end deformation effect
mentioned above, and hence, a higher IR. As L becomes
larger, the scale-end effect weakens, and the zig-zag
pattern reduces in intensity.
The case of AD 5makes sense as well. This distribution is
set up to have support on {−� L+2

4 �, . . . , � L+2
4 �}. Because

of the floor function, the AD only expands every four
values of L, and hence, we see jumps in the graphs of the
AD 5 column every four steps. Because of the precise
way the support is set up, the L values 4 through 11
show the end of a four-cycle, a complete four-cycle, and
the start of another four-cycle. Note that when the AD
does not scale (e.g., in the middle of a four-cycle), the IR
grows because the scale is expanding and the ends are
less likely to be used.

6. Discussion

What is to be made of the above results? To start, our find-
ings strongly suggest that Group 1 IR indices are difficult to
trust. Because of how they correct for chance agreement, Fleiss’s
kappa, Conger’s kappa, and Krippendorff ’s alpha all suffer from
the same problem: they are profoundly influenced by the fre-
quency distribution of the units being scored. Group 2 indices
(the Brennan–Prediger coefficient and Gwet’s AC2) represent a
hopeful step forward in this regard. As seen in Figure 8, they
perform quite consistently across various FDs for a fixed AD.
This issue is important both in theory and in practice. As the
Geometry problems example shows, the need for a robust IR
index is especially high when a set of instruments are applied
to a common set of units. In such a case, the ratings distribu-
tions for each instrument are unlikely to all be well-balanced,
and Group 1 indices underreport IR values in skewed frequency
distributions. Indeed, Group 1 indices are so sensitive to distri-
butional variation that one can largely predict the frequency dis-
tribution for a given set of units/instrument simply by exam-
ining how differently the instrument performs on Group 1
and Group 2 indices, as we saw in the discussion of Figure 2
and 3.

This does not, however, suggest that Group 2 indices are the
IR panacea. At an important, core level, it appears that many
factors affect the final, single number that is produced by an IR
index: the approach the index uses to correct for chance agree-
ment, the AD of the raters, the FD of the units, and the num-
ber of levels in the rating instrument. Many of these factors are
intertwined, and not even Group 2 indices are capable of disen-
tangling these threads. As seen in Figure 9 and 10, the relation-
ship of L, an FD, and an AD is particularly thorny. If, as in the
case of ADs 1–3, increasing L linearly results in less-than-linear
increase in the standard deviation of the AD, then the IR value
will increase as the instrument grows in size. What makes the
structuring of IR studies particularly frustrating is that both the
“true” FD of the scored units and the AD of the raters are invis-
ible to the researcher (unless he or she back-derives them at the
end of the rating process). Hence, it is impossible to know at the
start of an experiment if changing L will alter the IR. In some

cases (e.g., cell AD 1, FD 4 of Figure 10), the choice of L dra-
matically influences the IR; in other cases (e.g., cell AD 4, FD 6
of Figure 10), the effects are minimal. This issue remains a topic
for future research.

Supplementary Material

The supplementary materials contains the R code for the simu-
lation described in the article.
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