Your goal in this course is to learn to prepare a variety of specimens for scanning electron microscopy, and to image those samples at high resolution in the SEM. You will be able to diagram the various related pieces of instrumentation and design preparation protocols. Although initially students will work together in groups, after the SEM practical each student will work independently on individual samples.

This course will take a minimum average of 5 hours per week in the laboratory. Students are not permitted to work in the laboratory outside of 8:30 am-5 pm M-F without express permission of Dr. Barlow. Students must log all their time in the laboratory and submit their weekly records along with their lab reports.

This class can fill a large portion of your life, so be sure you really have the necessary time to take this class.

REFERENCES AVAILABLE IN THE LABORATORY

- **BIOLOGICAL ELECTRON MICROSCOPY**, M. Dykstra (1992)
- **SCANNING AND TRANSMISSION EM**, Flegler et al. (1993)
- **WORKING WITH A SEM**, S. Chapman (1986)
- **CD-ROMs**: *Principles and Practice of X-Ray Microanalysis*
 - Oxford Instruments 1999

WEB: http://www.sci.sdsu.edu/emfacility/555class/review.html

GRADING: Late assignments incur a grade increment/day late penalty

<table>
<thead>
<tr>
<th></th>
<th>Instrumentation practicals</th>
<th>Scope Test</th>
<th>Lab report I</th>
<th>Lab report II</th>
<th>Lab report III</th>
<th>Lab report IV</th>
<th>Lab report V</th>
<th>Lab report</th>
<th>Lab report</th>
<th>Lab report</th>
<th>Lab report</th>
<th>Lab report</th>
<th>Lab report</th>
<th>Instrumentation Final Exam (Must pass to pass course)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>required for unsupervised use of equipment</td>
<td>SEM solo exam</td>
<td>Working Distance</td>
<td>Tilt Comp</td>
<td>Dynamic Focus</td>
<td>Resolution & spot size</td>
<td>Resolution & Working Distance</td>
<td>BSE & X-ray spectrum</td>
<td>BSE & X-ray maps</td>
<td>SEM Image portfolio</td>
<td>SEM Image portfolio/Class presentation</td>
<td>cr/ncr</td>
<td>cr/ncr</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>required for unsupervised use of equipment</td>
<td>SEM solo exam</td>
<td>Working Distance</td>
<td>Tilt Comp</td>
<td>Dynamic Focus</td>
<td>Resolution & spot size</td>
<td>Resolution & Working Distance</td>
<td>BSE & X-ray spectrum</td>
<td>BSE & X-ray maps</td>
<td>SEM Image portfolio</td>
<td>SEM Image portfolio/Class presentation</td>
<td>cr/ncr</td>
<td>cr/ncr</td>
<td></td>
</tr>
</tbody>
</table>

Lab reports will consist of labeled images and discussion highlighting each of the techniques discussed. Additional guidelines/deadlines will be given in lab.

The lecture is Wednesday afternoon from 13:00-13:50 in LS 269. Wednesday afternoon lab (14:10-4:40 pm) will be a laboratory demonstration and student practice session in the EM Facility (Physical Science 1). Upon successful completion of the SEM solo exam, students will sign up for independent time on the scope as needed to carry out the laboratory exercises. Students will also maintain a log of equipment and preparation time in the lab, to be used as part of the final grade.