Demystifying the Common Core State Standards for Mathematics

Wednesday, October 15, 2014
4:30 – 7:00 p.m.

www.seeeeseminar.com

Sponsored by:
SEEE Seminar Editorial Committee

• Penny Adler, League of Women Voters – San Diego
• Mike Chapin, Geocon, Inc.
• Luke Duesbery, SDSU Center for Teaching Critical Thinking & Creativity (CTCTC)
• Hugh (Bud) Mehan, UCSD Center for Research on Educational Equity, Access, and Teaching Excellence (CREATE)
• Jacque Nevels, League of Women Voters – San Diego
• Susan Nickerson, SDSU Center for Research in Mathematics and Science Education (CRMSE)
• Chris Rasmussen, SDSU CRMSE
• Joi Spencer, USD School of Leadership and Education
• Meredith Vaughn, SDSU CRMSE
www.SeееSeminar.com
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:30</td>
<td>Reception and Networking</td>
</tr>
<tr>
<td>5:00</td>
<td>Welcome and Introductions</td>
</tr>
<tr>
<td>5:10</td>
<td>Speaker Phil Daro</td>
</tr>
<tr>
<td>5:50</td>
<td>Panel Presentations</td>
</tr>
<tr>
<td>6:15</td>
<td>Moderated Discussion and Q&A</td>
</tr>
<tr>
<td>7:00</td>
<td>Adjournment</td>
</tr>
</tbody>
</table>

Please note—photos and video will be taken for web site. Contact us if you do not wish to be in them. Thank you!
Demystifying the Common Core State Standards for Mathematics

Phil Daro
Coauthor, Common Core State Standards
Director, San Francisco SERP Field Site

http://serpinstitute.org/index.php/people/staff/phil-daro/
Stepping Stones

Phil Daro
Progressions

1. Stepping stones within lesson
2. Across lessons, within unit
3. Through concepts across units and grades
Progressions are pathways of thinking

• Students are located along a progression.
• Like all of us, they move back and forth along the progression inside a single problem
• Progressions map concepts: how concepts build on each other, depend on each other
• Coherence and focus
Making sense

A basic human response. We have to be trained to suppress it. Schools sometimes do this, especially in mathematics. Making sense is an interaction between prior knowledge and current experience: what is already known and a question.
Students’ Prior Knowledge

Students bring a variety of prior knowledge to each lesson...variety across students. This is a fundamental pedagogic challenge. The focus of my talk today.
Variety: the challenge

How do we bring students from their varied starting points to a common way of thinking, a common and precise use of language sufficient for an explanation of the mathematics to mean what it should to the student?
Variety: the Stepping Stones within a lesson

Where are the stepping stones from where students start to grade level mathematics?
Mile wide –inch deep
cause:
too little time per concept
cure:
more time per topic
= less topics
Why do students have to do math problems?

a) to get answers because Homeland Security needs them, pronto

b) I had to, why shouldn’t they?

c) so they will listen in class

d) to learn mathematics
Why give students problems to solve?

• To learn mathematics.
• Answers are part of the process, they are not the product.
• The product is the student’s mathematical knowledge and know-how.
• The ‘correctness’ of answers is also part of the process. Yes, an important part.
Answers are a black hole: hard to escape the pull

- Answer getting short circuits mathematics, making mathematical sense
- Very habituated in US teachers versus Japanese teachers
- Devised methods for slowing down, postponing answer getting
Answer getting vs. learning mathematics

• USA:
 • How can I teach my kids to get the answer to this problem?

 Use mathematics they already know. Easy, reliable, works with bottom half, good for classroom management.

• Japanese:
 • How can I use this problem to teach the mathematics of this unit?
Butterfly method

\[
\begin{array}{c}
3 \\
\hline
4 \\
\end{array}
+
\begin{array}{c}
\hline
1 \\
\end{array}
=
\begin{array}{c}
3 \\
\end{array}
\]
Less wide-more deep

People are realizing that Answer getting, as important as it truly is, is not the goal. Making sense and making explanations of mathematics that make sense are the real goals.

Learning tricks is superficial; understanding is deep...a solid foundation
Prior knowledge

There are no empty shelves in the brain waiting for new knowledge.

Learning something new ALWAYS involves changing something old.

You must change prior knowledge to learn new knowledge.
You must change a brain full of answers

• To a brain with questions.
• Change prior answers into new questions.
• The new knowledge answers these questions.
• Teaching begins by turning students’ prior knowledge into questions and then managing the productive struggle to find the answers.
• Direct instruction comes after this struggle to clarify and refine the new knowledge.
Variety across students of prior knowledge is key to the solution, it is not the problem.
Getting to the mathematics

From variety of what students bring ...
To common grade level content...ways of thinking with grade level mathematics.
Progression II.

• Not: covering a succession of topics
• Not:: below grade level means re-cover topics
• Yes: building knowledge, upgrading prior knowledge, always need more foundation work to build another storey
• Yes: within each problem- the whole progression
Unfinished Learning

• Long division example
• The whole progression is alive inside every problem, every lesson, every student
• Stay with the grade level problem and give more help: feedback and questions
• Not: quit on the grade level and “re-teach”
• How games motivate persistence and effort
Where are the stepping stones?

Students are standing on them
The variety of ways students think about a problem are the stepping stones to the grade level way of thinking.
Students explain their way of thinking...how they make sense of the problem, what confuses them, how they represent the problem, why the solution makes sense.
Students discuss how the different ways of thinking relate to each other.
Four Common Strategies for Differences among Students

1. Deny and Cover
2. Share and Wander
3. Differentiate and Forget about it
4. The Ways of Thinking are the Stepping Stones
Differences?

Fixed traits? Like “good at math/bad at math”
U.S. has a long tradition of “Remedies”,
and of snake oil.

Learning styles

Pace? Pace through what? The course? Ahead and behind.

Ways of thinking
Common humanity and differences

We all think
We all have prior knowledge
We all learn, i.e. revise prior knowledge
We all communicate
We are all different
Variety is wonderful
Variety is the foundation for learning, not the prob
..different ways of thinking relate...

Underlying mathematics often becomes visible, sensible, seeing it from different views
The different views come from differences in prior knowledge.
Stepping through different views and pulling them together by relating them, steps variety of students toward common understanding:
The grade level way of thinking; the target of the lesson.
the target of the lesson

Converge on the target
Explicit summary of the mathematics
Quote student work
Deny and cover

• Start lesson with lecture on grade level topic
• Show them how you want them to get the answer
• ignore evidence of variety such as student behavior, work and motivation, focus on compliance to procedure,
• “flunking” students is interpreted as high standards caused by non-compliance or mis placement
• It’s not my fault, what could I do
Where are the stepping stones?

The Ways of Thinking are the Stepping Stones
The students are already standing on them

• Students’ ways of thinking *are* the stepping stones.

• Have a student closest to grade level way of thinking explain last (SAVE TIME)

• Have student with easy way of entering problem explain first

• Have two or three other ways of thinking explain in between, moving toward grade level
Upgrading prior knowledge

• By using variety as stepping stones, you are pulling all students toward grade level from wherever they start
• You are showing how new way of thinking relates to old
• You are upgrading prior knowledge
15 ÷ 3 = □
1. As a multiplication problem
2. Equal groups of things
3. An array (rows and columns of dots)
4. Area model
5. In the multiplication table
6. Make up a word problem
Show 15 ÷ 3 = □

1. As a multiplication problem (3 x □ = 15)
2. Equal groups of things: 3 groups of how many make 15?
3. An array (3 rows, □ columns make 15?)
4. Area model: a rectangle has one side = 3 and an area of 15, what is the length of the other side?
5. In the multiplication table: find 15 in the 3 row
6. Make up a word problem
Show $16 \div 3 = \square$

1. As a multiplication problem
2. Equal groups of things
3. An array (rows and columns of dots)
4. Area model
5. In the multiplication table
6. Make up a word problem
Start apart, bring together to target

• Diagnostic: make differences visible; what are the differences in mathematics that different students bring to the problem
• All understand the thinking of each: from least to most mathematically mature
• Converge on grade-level mathematics: pull students together through the differences in their thinking
Next lesson

• Start all over again
• Each day brings its differences, they never go away
From Variety to Common Mathemathical Understanding
Explain the mathematics when students are ready

• Toward the end of the lesson
• Prepare the 3-5 minute summary in advance,
• Spend the period getting the students ready,
• Get students talking about each other’s thinking,
• Quote student work during summary at lesson’s end
Start apart, bring together to target

- Diagnostic: make differences visible; what are the differences in mathematics that different students bring to the problem
- All understand the thinking of each: from least to most mathematically mature
- Converge on grade -level mathematics: pull students together through the differences in their thinking
Students Job: Explain your thinking

• Why (and how) it makes sense to you
 – (MP 1,2,4,8)

• What confuses you
 – (MP 1,2,3,4,5,6,7,8)

• Why you think it is true
 – (MP 3, 6, 7)

• How it relates to the thinking of others
 – (MP 1,2,3,6,8)
What questions do you ask

• When you really want to understand someone else’s way of thinking?
• Those are the questions that will work.
• The secret is to really want to understand their way of thinking.
• Model this interest in other’s thinking for students
• Being listened to is critical for learning
Students Explaining their reasoning develops academic language and their reasoning skills

Need to pull opinions and intuitions into the open: make reasoning explicit
Make reasoning public
Core task: prepare explanations the other students can understand
The more sophisticated your thinking, the more challenging it is to explain so others understand
Teach at the speed of learning

• Not faster
• More time per concept
• More time per problem
• More time per student talking
• = less problems per lesson
motivation

Mathematical practices develop character: the pluck and persistence needed to learn difficult content. We need a classroom culture that focuses on learning...a try, try again culture. We need a culture of patience while the children learn, not impatience for the right answer. Patience, not haste and hurry, is the character of mathematics and of learning.
Boise III

- Akihiko Takahashi, DePaul University
- Well designed, tested lessons grades 6-HS
- Progressions
 - http://ime.math.arizona.edu/progressions/
- https://www.illustrativemathematics.org/
- http://serpinstitute.org/
- http://collegeready.gatesfoundation.org/
- Insidemathematics.org
Video problem

• Convince
 – Yourself
 – A friend
 – A skeptic

That
 \[2(n-1) = 2n - 2 \]

Is true for any number, \(n \).
Four levels of learning

I. Understand well enough to explain to others
II. Good enough to learn the next related concepts
III. Can get the answers
IV. Noise
Four levels of learning
The truth is triage, but all can prosper

I. Understand well enough to explain to others
 As many as possible, at least $1/3$

II. Good enough to learn the next related concepts
 Most of the rest

III. Can get the answers
 At least this much

IV. Noise
 Aim for zero
Efficiency of embedded peer tutoring is necessary

Four levels of learning
different students learn at levels within same topic

I. Understand well enough to explain to others
 An asset to the others, learn deeply by explaining

II. Good enough to learn the next related concepts
 Ready to keep the momentum moving forward, a help to others and helped by others

III. Can get the answers
 Profit from tutoring

IV. Noise
 Tutoring can minimize
When the content of the lesson is dependent on prior mathematics knowledge

• “I do – We do– You do” design breaks down for many students
• Because it ignores prior knowledge
• I – we – you designs are well suited for content that does not depend much on prior knowledge...
• You do- we do- I do- you do
Classroom culture:

•explain well enough so others can understand
• NOT answer so the teacher thinks you know
• Listening to other students and explaining to other students
Questions that prompt explanations

Most good discussion questions are applications of 3 basic math questions:

1. How does that make sense to you?
2. Why do you think that is true
3. How did you do it?
...so others can understand

• Prepare an explanation that others will understand
• Understand others’ ways of thinking
Minimum Variety of prior knowledge in every classroom; I - WE - YOU

Student A
Student B
Student C
Student D
Student E

Lesson START Level

CCSS Target Level
Variety of prior knowledge in every classroom; I - WE - YOU
Variety of prior knowledge in every classroom; I - WE - YOU
Variety of prior knowledge in every classroom; I - WE - YOU

Student A
Student B
Student C
Student D
Student E

Lesson START
Level

CCSS Target

Answer-Getting
You - we – I designs better for content that depends on prior knowledge

Student A
Student B
Student C
Student D
Student E

Lesson START
Day 1
Day 2
Level
Attainment
Target
Differences among students

• The first response, in the classroom: make different ways of thinking students’ bring to the lesson visible to all
• Use 3 or 4 different ways of thinking that students bring as starting points for paths to grade level mathematics target
• All students travel all paths: robust, clarifying
What to look for

• Students are talking about each other’s thinking
• Students say second sentences
• Audience for student explanations: the other students.
• Cold calls, not hands, so all prepare to explain their thinking
• Student writing reflects student talk
Look for: Who participates

• EL students say second sentences
• African American males are encouraged to argue
• Girls are encouraged to engage in productive struggle
• Students listen to each other
• Cold calls, not hands, so no one shies away from mathematics
Shifts

1. From explaining to the teacher to convince her you are paying attention
 – To explaining so the others understand

2. From just answer getting
 – To the mathematics students need as a foundation for learning more mathematics

3. From variety of ways of thinking
 -- To grade level CCSS way of thinking: converge on the mathematics
Step out of the peculiar world that never worked

• This whole thing is a shift from a peculiar world that failed large numbers of students. We got used to something peculiar.

• To a world that is more normal, more like life outside the mathematics classroom, more like good teaching in other subjects.
A Whole in the Head

Fractions: Progression in the Common Core
Story 2

A lesson observed
counting

- Already an abstraction to count apples
- Count inches
- In base ten, we start counting tens
- In measurement we count ½ inches
- We quarters of a dollar
Counting ones

• At some point, the number 3 can mean 3 ones….3 of 1. 30 can mean 3 of ten which is 10 of 1.
• Always starts with what 1 is.
• Word problems, rich problems: what does 1 mean in this situation?
Relating ones

• If there is time and distance, you have 1 minute and 1 mile...two ones. The relationship between the ones...how many times one is of the other ...gives the unit rate.

• Double number line, look at the 1s how many seconds at 1 mile? How many miles at 1 second?
Partitioning

• Partitioning starts in early grades with shapes,
• Very visual. Break a whole shape into equal parts.

• In third grade, partitioning is used to define fraction.
• Still Very visual.
Number line

Ruler in grades 1 and 2
Adding on the ruler in grade 2
Diagram of a ruler
Ask students to produce the diagram of a ruler and show their addition on their diagram.
What’s the difference between a diagram of a ruler and a diagram of a number line?
• What’s the difference between a diagram of a ruler and a diagram of a number line?
• At second grade, not much, except: the ruler shows inches and the number line shows numbers so it can be used to show anything you can count.
• At third grade: It shows numbers. A number is a point on the number line.
Red licorice

Made from organic cranberries.
Share among 4 friends: cut a length of red licorice into 4 equal lengths. How long is each piece?
If you cut the same length for 5 people, will the equal pieces be longer or shorter than the pieces for 4?
Students: Draw a diagram of red licorice and show why your answer makes sense so other students can understand you.
Partitioning one

Partition the length 1 into 4 equal parts. How long is a part?

On the number line, partition the length 0 to 1 into 4 equal parts. What is the number at the point where the first part from 0 ends? That point is the number $\frac{1}{4}$.

A fraction is a number, a point on the number line.
Of 1 we sing

• The length from 0 to ¼ is ¼ of 1 just as the length from 0 to 3 is 3 of 1.
• 1 is the “unit”.
• What we count in a situation = what 1 refers to in that situation
• What ¼ refers to is a number that is a part of 1.
Prior knowledge

• Students will have knowledge of partitioning a whole and a visual idea of a part. This is cognitively foundational, but not mathematically foundation.

• Work in 3rd and 4th grade should move students to partitioning 1 on the number line, more abstract and flexible. The unit 1 grows out of “whole, and replaces it. Out growing the whole takes work and thinking. What does 1 mean in this situation, what are we counting?
Future knowledge

Just as you count apples, inches and 10s, you can count \(\frac{1}{4} \) s.

Slow down: 1,2,3 of \(\frac{1}{4} \) of 1.

If you can count them, you can add them and subtract them. ..like apples or inches or tens.
Build on whole number arithmetic.

- If you can count them, you can use the same arithmetic you already know. The way you add and subtract whole numbers on the number line works exactly the same with unit fractions.
- I am adding quarters, I already know how.
Meanwhile...

- Go back to partitioning shapes (tape diagrams):
 - $2/4$ of a shape = $\frac{1}{2}$ of that shape
 - $2/4 = \frac{1}{2}$
- Grow forward to the number line, passing through red licorice as needed.
- Where are $2/4$ and $\frac{1}{2}$ on the number line?
2/4 and 1/4

• On the number line, 2/4 and ¼ are at the same place.
• They are the same point
• A point on the number line is a number
• Therefore they are the same number.
• Two different ways of writing the same number.
• I can replace one with the other in any calculation any time I want to. Whenever it serves my purpose.
Visuals help make sense

• See how multiplying the numerator and denominator of a fraction by the same number, \(n \), corresponds physically to partitioning each unit fraction piece into \(n \) smaller equal pieces.
Equivalent fractions

\[\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8} = \frac{5}{10} \ldots \]

\[3 = \frac{3}{1} = \frac{6}{2} \ldots \]

\[1 = \frac{1}{1} = \frac{2}{2} = \frac{3}{3} = \frac{4}{4} = \frac{5}{5} = \ldots \]

\[\frac{a}{b} = \frac{an}{bn} \]
I know how to generate equivalent fractions

• So I can change fractions to equivalent fractions that serve my purpose.

• I have a strip of red licorice 10 inches long. My little sister bit off 5 centimeters. How long is the remaining piece?
Focus in the standards

• No “simplify” fractions.
• Yes generate equivalent fractions that serve a useful purpose, often this goes in the direction of less simple.
• No term “improper fraction”
• Yes 5/3 is a fraction is a number is exactly like any other fraction.
Need common units

• Change 5 centimeters into the equivalent length in inches. Common units, common denomination, common denominator.

• Add $\frac{3}{4}$ to $\frac{5}{6}$

• Need common units.

• What are the units? The unit fractions.
\[
\frac{3 \times 6}{4 \times 6} + \frac{5 \times 4}{6 \times 4} = \frac{38}{24}
\]
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Look ahead.....

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ratio Table
In whose head is the whole?
Dancing partitions
Where is \(\frac{1}{6} \) of \(\frac{1}{4} \)?
Since 4 of $\frac{1}{4}$ in one, and 6 little parts in $\frac{1}{4}$, then
$4 \times 6 = 24$ little parts in one.

\[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array} \]

\[\begin{array}{c}
\bigcirc \\
\bigcirc \\
\end{array} \]

Count them $\frac{4}{4}$
\[\frac{1}{6} \times \frac{1}{4} \]

Because

\[\text{they} = \frac{1}{4} \text{ of } 1 \]

\[\frac{1}{4} \]

\[\boxed{1} \]
Count them.

4 groups of 6 each = 24

\[\frac{24}{4} = \text{4} \]
How many Little guys?

\[
\begin{align*}
\frac{3 \times 6}{4 \times 6} &= \frac{18}{24} \\
\frac{5 \times 4}{6 \times 4} &= \frac{20}{24} \\
(18 + 20) \div 4 &= \frac{38}{24} \\
\frac{1}{24} &= \frac{1}{4}
\end{align*}
\]
Show that the length of a part from cutting \(\frac{1}{4} \) into 4 parts and then that \(\frac{1}{4} \) length into 6 equals...
equals
the length cutting
1 into 6 parts
and then that
into 4 parts.
Jaime has to travel from his home on one side of a circular lake to the store on the opposite side. He has his choice of canoeing to the other side of the lake at a speed of 4 mph or running on a trail along the bank of the lake at a speed of 7 mph. If the lake is 2 miles across, what method would be the most efficient, and why?
Panelists

• **Mark Alcorn**, Mathematics Coordinator, San Diego County Office of Education, 2012 Elementary Teacher of the Year

• **Khamphet Pease**, Mathematics Teacher, Wilson Middle School, Noyce Project Learn Fellow, 2014 Teacher of the Year

• **Brian Shay**, Mathematics Co-Chair, Canyon Crest Academy, Math for America San Diego Mentor Fellow
Mark Alcorn
Mathematics Coordinator, San Diego County Office of Education
2012 Elementary Teacher of the Year
Back in Mr. Alcorn’s 5th grade class

\[8 \times 6 = ?\]

Inefficient counting:
1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12 . . .
Back in Mr. Alcorn’s 5th grade class

\[3 \times \frac{1}{2} = \]

\[3 \text{ groups of } \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 \frac{1}{2}\]

\[3 \times \frac{1}{2} = ?\]
What is the relationship between basic facts and reasoning?

Sample 3rd grade math pacing under 1997 California State Standards:

October content: 8×6

1-2 weeks of concepts of multiplication

Very little time to develop conceptual understanding or efficient multiplication strategies

December/January content: $8,148 \times 6$
What is the relationship between basic facts and reasoning?

Sample 3rd grade pacing under Common Core State Standards

October: 8 x 6

Making meaning of multiplication
Connecting Multiplication to Division
Looking for Patterns and Relationships in basic facts

June: Memorized Fact of 8 x 6
What is the relationship between basic facts and reasoning?

3 × 4 = 12
6 × 4 = 24
12 × 4 = 48

I can use the patterns and relationships I figured out in 3rd grade to help me derive a multiplication fact.

4 × 6 = 24
8 × 6 =
What is the most efficient strategy?

Do I need paper and pencil to solve 18×6?

$$(9 \times 6) + (9 \times 6) = 54 + 54 = 108$$

Can I visualize a model for $4 \times \frac{1}{2}$?
Khamphhet Pease

8th Grade Mathematics Teacher,
Wilson Middle School (SDUSD)

Noyce Project Learn Fellow

2015 San Diego County Teacher of the Year
District CCSS Implementation Plan

2012 – 2013: Awareness and Understanding
- Understanding CCSS
- Key Shifts
- Key Practices
- Curriculum Design

2013 – 2014: Transitioning
Professional Learning
Development and Alignment of Assessment and Curriculum
Field Test CCSS state assessment

2014+ - Implementing
Professional Learning
Integrated Math
Aligned Instruction
Aligned Assessment
Math Pathways

<table>
<thead>
<tr>
<th>Grade Level/ Course 2013-14</th>
<th>Multiple Indicators Considered in Placement</th>
<th>2014-2015</th>
<th>2015-2016</th>
<th>If students remained on this path - when could they take AP Calculus?</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>6</td>
<td>7</td>
<td>12<sup>th</sup> grade</td>
</tr>
<tr>
<td>Grade 5</td>
<td></td>
<td>CC Math 6 or Accelerated 6</td>
<td>CC Math 7 or Accelerated Math 7</td>
<td>11<sup>th</sup> or 12<sup>th</sup> grade</td>
</tr>
<tr>
<td>Grade 6</td>
<td>For Accelerated or Advanced Common Core</td>
<td>CC Math 7</td>
<td>CC Math 8</td>
<td>(Pre-calc. 12<sup>th</sup> grade)</td>
</tr>
<tr>
<td>Grade 6, ADV Pre-Algebra</td>
<td>Integrated Math Placement Test (grades - 5, 6, & 7)</td>
<td>Accelerated Math 7</td>
<td>Integrated Math I ADV</td>
<td>11<sup>th</sup> or 12<sup>th</sup> grade</td>
</tr>
<tr>
<td>Grade 7, Pre-Algebra</td>
<td>MDTP (administered in grades - 5, 6, & 7)</td>
<td>CC Math 8</td>
<td>Integrated I</td>
<td>12<sup>th</sup> grade (or 11<sup>th</sup> ADV)</td>
</tr>
<tr>
<td>Grade 7, ADV Pre-Algebra</td>
<td></td>
<td>CC Math 8 (potential I ADV)</td>
<td>Integrated I or ADV (potential II ADV)</td>
<td>11<sup>th</sup> or 12<sup>th</sup> grade</td>
</tr>
<tr>
<td>Grade 7, ADV Algebra</td>
<td>CST Score (prior year)</td>
<td>Integrated I ADV</td>
<td>Integrated II ADV</td>
<td>11<sup>th</sup> or 12<sup>th</sup> grade</td>
</tr>
<tr>
<td>Grade 8, Alg. Readiness</td>
<td>Current Mathematics Grade (grades 5-11)</td>
<td>Integrated I</td>
<td>Integrated II</td>
<td>12<sup>th</sup> grade - Pre-calculus, 12<sup>th</sup> grade</td>
</tr>
<tr>
<td>Grade 8, ADV Alg. or Alg.</td>
<td></td>
<td>Integrated I ADV (or Integrated II or ADV)</td>
<td>Integrated III or ADV</td>
<td>12<sup>th</sup> grade (or 11<sup>th</sup> ADV)</td>
</tr>
<tr>
<td>Grade 8, ADV Geometry</td>
<td></td>
<td>Intermediate Algebra ADV</td>
<td>Honors Pre-calculus</td>
<td>11<sup>th</sup> or 12<sup>th</sup> grade</td>
</tr>
<tr>
<td>Grade 9, Algebra</td>
<td></td>
<td>Integrated II or ADV</td>
<td>Integrated III or ADV</td>
<td>(Pre-calc – 12<sup>th</sup> grade)</td>
</tr>
<tr>
<td>Grade 9, Geometry</td>
<td></td>
<td>Intermediate Algebra</td>
<td>Pre-calculus</td>
<td>12<sup>th</sup> grade</td>
</tr>
<tr>
<td>Grade 9, ADV Geometry</td>
<td></td>
<td>Intermediate Algebra ADV</td>
<td>Honors Pre-calculus</td>
<td>11<sup>th</sup> or 12<sup>th</sup> grade</td>
</tr>
<tr>
<td>Grade 9, ADV Intermediate Algebra</td>
<td></td>
<td>Honors Pre-calculus</td>
<td>AP Calculus AB</td>
<td></td>
</tr>
</tbody>
</table>

- These pathways are flexible. Students can move between a Common Core and an Advanced pathway.
- The Advanced Integrated sequence compresses four math courses (Integrated I, II, III and Pre-calculus) into three years of math. Students may progress directly to an AP course upon successful completion of the series.
- Continuation in advanced courses will be guided principally by success in the current advanced course.
- Intermediate Algebra and ADV Intermediate Algebra courses are being phased out. 2014-15 will be the last year these courses are offered.
- International Baccalaureate (IB) math courses will be offered at IB designated high schools, beyond the Integrated I, II, and III sequence.
- iHigh courses may be available for high school students to meet the approved course sequence.
Support for Teachers

- Curriculum (Big Ideas Math)
- Scope & Sequence and Pacing Guides
- Professional Development
- Common Core Support Teachers
- My Big Campus Group/Resource Website
What Does It Look Like in the classroom?

- Less standards
- Focus on the Standards of Mathematical Practices
- More focus on Student Discourse
- Multiple Ways
- Everyone participates
How Will The Students Be Assessed?

- Assessments focused on meaning making rather than answer getting.
- Smarter Balanced Test in the Spring
Brian Shay
Mathematics Co-Chair, Canyon Crest Academy
Math for America San Diego Mentor Fellow
San Dieguito UHSD

One District’s Journey Toward The Common Core

Brian Shay,
Co-Chair Canyon Crest Academy, HS Lead ToSA
Brian.shay@sduhsd.net
4 Year Transition Plan

2012-2013
- Administrators & teacher leaders attend CCSS trainings
- Create CCSS transition leadership team & initial plan
- Select Teachers on Special Assignment for CCSS
- CCSS Resources Page created for teachers

2013-2014
- Extensive CCSS professional development for teachers
- Teachers develop & experiment with CCSS-aligned lessons & units
- Math curricular approach & course sequences selected
- Adopt math instructional materials
- Collaborate with feeder districts to ensure curricular continuity
- Educate families & community about CCSS transition
- Pilot new state assessments

2014-2015
- Align Essential Learning Outcomes (ELOs) & formative assessments to CCSS
- Ongoing professional development
- Continue shifting instructional & assessment practices
- Develop curricular materials
- New math courses implemented in grades 7-9
- Implement new state assessments

2016-2017
- Implement CCSS-aligned formative assessments
- Continue shifting instructional & assessment practices through ongoing teacher collaboration
- Continue to develop curricular materials
- New math courses implemented in grades 7-10
- Continue new state assessments
Math Course Pathway Decisions

Integrated or Traditional Decision
Math Department Chairs and Ed Services Staff
Regular meetings throughout Fall 2013
 Continuous conversation with staff
 Embedded into Professional Development
Each site provided their recommendation
 Unanimous to move to Integrated

Math Pathways
Integrated decision made, developed new pathways
Similar Approach - “Begin with end in mind”
Transition Plan Developed and Shared with Community
 Unanimous to Compress only in HS (4 courses to 3)
Instructional Materials

Extensive Review & Piloting - Jan-April
Decision-Making Process
Development and customization
 Utah Middle School Math Project
 Mathematics Vision Project

ToSA Curriculum Developers
 Late Spring 2014 Release: 10 FT ToSA Developers
 Paid Summer work, Integrated Math A, B, 1 modules
 2014-15 School Year: 2 FT, 4 PT ToSA Developers
 Creating Student/Parent Web Portal
 Creating Teacher Web Portal
Teacher PD and Support

ToSA’s: 2013-2014: 4 PT; 2014-2015: 8 PT

- Create and Conduct PD
- Facilitated conversations at sites on key decision points
- Lead committee work on key decision points
- UC/CSU Course Description
 - Approved: IM1 and IM1H
 - Submitting: IM2, IM2H, IM3, and IM3H
- Site-based coaching
- Develop Teacher resource website
- External PD opportunities (SDCOE, MVP Training, CMC, NCTM, County/Regional ToSA Support groups)
- PLC Process/Collaboration
Teacher PD and Support

- Course specific groups for Grade 7, 8, IM1 and Above
- Focus on: structure of standards, SMPs, task-based instruction, content gaps (student and teacher), facilitating group work, technology, math manipulatives
- Supporting all students in instruction and curricula shifts
- Discussing the Comprehensive Mathematics Instruction Framework and CA Math Framework
- Developing assessments, rubrics and standard setting
- Scope/Sequence: within courses, across courses
- Additional need based course & site specific PD
Administration PD and Support

- Shared classroom observation rubric aligned to SMP’s
- PD for site & district administrators
- PDs for Counselors
- School Board Presentations and Workshops
- Calibration walkthroughs
- Revisit bell schedules to incorporate additional PLC and Student Support time
Community PD and Support

- Community Outreach Meetings
 - Our HSs, MSs, and Feeder Districts (20+)
 - Principals, Ed Services, ToSA’s
- Math Info Nights at our Middle Schools
 - Principal, Counselor, Math Teacher
- Family Math Nights
- Math instructional materials meetings
- Ongoing Communication:
 - Math support website
 - Regular newspaper columns/e-blasts by Superintendent
 - Social media communication
 - Surveys for all MS and IM1 HS students and families
Discussion

Questions and Answers